When we create the first AT-SPI context we also need to register the
accessible root on the accessibility bus. The accessible root object is
the main entry point of an accessible application, and it holds the
global state to present to the ATs that connect to the bus.
Since we need to check at run time what kind of AT context to use, we
need a hook into the whole GDK backend machinery. The display connection
seems to be the best choice, in this case, as it allows us to determine
whether we're running on an X11 or Wayland system, and thus whether we
should create a GtkAtSpiContext.
This requires some surgery to fix the GtkATContext creation function, in
order to include a GdkDisplay instance.
Does not do anything, at the moment, but it's going to get filled out
soon.
The backend is selected depending on the platform being compiled in;
since we're using AT-SPI on X11 and Wayland, and we don't have other
accessibility implementations, we currently don't care about run time
selection, but we're going to have to deal with that.
And generate the code for the DBus interfaces.
We don't want the full object manager experience, here, because we're
going to have a single object responding to various interfaces and
remote method calls. For this reason, we're not using the gnome module
in Meson to call gdbus-codegen for us: we need to use the interface info
command line arguments, and those are not available from Meson.
To build a better world sometimes means having to tear the old one down.
-- Alexander Pierce, "Captain America: The Winter Soldier"
ATK served us well for nearly 20 years, but the world has changed, and
GTK has changed with it. Now ATK is mostly a hindrance towards improving
the accessibility stack:
- it maps to a very specific implementation, AT-SPI, which is Linux and
Unix specific
- it requires implementing the same functionality in three different
layers of the stack: AT-SPI, ATK, and GTK
- only GTK uses it; every other Linux and Unix toolkit and application
talks to AT-SPI directly, including assistive technologies
Sadly, we cannot incrementally port GTK to a new accessibility stack;
since ATK insulates us entirely from the underlying implementation, we
cannot replace it piecemeal. Instead, we're going to remove everything
and then incrementally build on a clean slate:
- add an "accessible" interface, implemented by GTK objects directly,
which describe the accessible role and state changes for every UI
element
- add an "assistive technology context" to proxy a native accessibility
API, and assign it to every widget
- implement the AT context depending on the platform
For more information, see: https://gitlab.gnome.org/GNOME/gtk/-/issues/2833
It's finally unused.
Accessible types should either watch properties they are interested in
directly, or should have (private) API to allow widgets to update the
accessible state directly.
Now that we don't have any additional subclasses of GtkEntryAccessible
in GTK, we can drop all the conditional fluff in the base class.
We still need to subscribe to the global notify signal, because of the
sheer amount of properties watched by GtkEntryAccessible.
GtkPasswordEntryAccessible is not a GtkEntryAccessible any more, so it
will need a proper implementation of various interfaces and
functionality in order to work like any other entry.
We're already listening to the adjustment property on the spin button,
there's no need to reset the adjustment on widget set/unset, since the
accessible instance is always tied to the same widget.
Drop the GtkWidgetAccessibleClass.notify_gtk and the
AtkObjectClass.initialize overrides: they don't do anything relevant.
Instead, have GtkProgressBar update the accessible state when the
fraction changes.
Do not use a generic "notify" signal handler.
Additionally, clean up the GtkIconViewAccessible implementation to bring
it up with modern idiomatic GObject.