When destroying a wl_surface (e.g. when a window or menu is closed), the
surface may continue to exist in the compositor slightly longer than on
the client side. In that case, the surface can still receive input
events, which need to be ignored gracefully.
In particular, this prevents segfaulting on wl_surface_get_user_data()
in that situation.
Reported in
https://gitlab.gnome.org/GNOME/gtk/-/issues/3296
The same issue for pointers/keyboards was reported in
https://bugzilla.gnome.org/show_bug.cgi?id=693338
and fixed with in
bfd7137ffb3625f17857a8fc099a72
In pointer_surface_update_scale(), only rescale the cursor surface when
the scale has actually changed and the cursor is on at least one output.
fixes https://gitlab.gnome.org/GNOME/gtk/-/issues/3350
Right now, this issue is not completely understood, so it might also
involve some questionable handling of cursor surface by sway/wlroots.
However, irrespective of that issue, this patch avoids unnecessary calls to the
compositor, and there should be no drawback: Whenever the pointer enters
a new output, pointer_surface_update_scale() will be called again, such
that correct scaling of the cursor is still ensured.
There is a slight difference: When the cursor leaves the last output,
previously the image was reset to scale factor 1. Now, it keeps whatever
was last. That might be more sensible than the previous behaviour,
assuming that it's likely that when the cursor enter an output again, it
has the same scaling. Alternatively, if one cares about resource usage
at this level, it might make more sense to destroy the surface than
rescaling to 1.
Mapping a surface under Wayland is an asynchronous process, where one
creates a surface and commits an initial state without having drawn
anything, then waiting for a configuration, which then is acknowledged
and content is painted and committed. Not until having received this
configuration is a surface actually mapped, so wait with setting the
mappedness until this.
The GdkWayland API takes generic GDK types and performs a run time
check, which means we need to properly annotate the actual expected
type in order to have methods recognised as such.
Make GdkEvents hold a single GdkDevice. This device is closer to
the logical device conceptually, although it must be sufficient for
device checks (i.e. GdkInputSource), which makes it similar to the
physical devices.
Make the logical devices have a more accurate GdkInputSource where
needed, and conflate the event devices altogether.
This is not used anymore now that surfaces are always toplevel in the
semantics of GdkWindow where child windows were available. We can drop
that and simplify the vfunc just a bit more.
Fixes#2765
If the tablet gets removed/freed while there are pad events in flight,
we leave a dangling pointer from the pad to the tablet, which may
lead to invalid reads/writes when handling the pad event(s).
If the wl_surface receiving touch events is destroyed, we will get no
wl_touch.up event to remove the touchpoint from our internal accounting.
Check for this, and drop touchpoints happening in surfaces that do
disappear during operation.
GdkEvent has been a "I-can't-believe-this-is-not-OOP" type for ages,
using a union of sub-types. This has always been problematic when it
comes to implementing accessor functions: either you get generic API
that takes a GdkEvent and uses a massive switch() to determine which
event types have the data you're looking for; or you create namespaced
accessors, but break language bindings horribly, as boxed types cannot
have derived types.
The recent conversion of GskRenderNode (which had similar issues) to
GTypeInstance, and the fact that GdkEvent is now a completely opaque
type, provide us with the chance of moving GdkEvent to GTypeInstance,
and have sub-types for GdkEvent.
The change from boxed type to GTypeInstance is pretty small, all things
considered, but ends up cascading to a larger commit, as we still have
backends and code in GTK trying to access GdkEvent structures directly.
Additionally, the naming of the public getter functions requires
renaming all the data structures to conform to the namespace/type-name
pattern.
Add all of the keyboard translation results in the key event,
so we can translate the keyboard state at the time the event
is created, and avoid doing state translation at match time.
We actually need to carry two sets of translation results,
since we ignore CapsLock when matching accelerators, in
gdk_event_matches().
At the same time, drop the scancode field - it is only ever
set on win32, and is basically unused in GTK.
Update all callers.
When we `Alt+Tab` away from a GTK application, it loses keyboard focus.
If we don't clear the modifiers, events from other devices that we
receive while unfocused will assume `Alt` is still pressed. This results
in e.g. Firefox navigating through the history instead of scrolling the
page when using the mouse wheel on it.
We don't get any information about modifiers while we are missing
keyboard focus, so assuming no modifiers are active is the best we can
do.
The shell sends us a modifier update immediately before we regain
keyboard focus, so the state shouldn't get out of sync.
Fixes https://gitlab.gnome.org/GNOME/gtk/-/issues/2112
Sprinkle various g_assert() around the code where gcc cannot figure out
on its own that a variable is not NULL and too much refactoring would be
needed to make it do that.
Also fix usage of g_assert_nonnull(x) to use g_assert(x) because the
first is not marked as G_GNUC_NORETURN because of course GTester
supports not aborting on aborts.
Drop the input-mode, since it only makes sense for
floating devices, which we don't have anymore. And renamt
::input-source to ::source, to match the getter.
Update all users.
Restructure the getters for event fields to
be more targeted at particular event types.
Update all callers, and replace all direct
event struct access with getters.
As a side-effect, this drops some unused getters.