The old code was ordering visuals by depth, but considering that these
days we either use the default visual or a 32bit RGBA visual, that
reordering does not have an effect anymore.
In theory, the only effect is that the GLX Visual selection might select
a different replacement Visual when it checks for improved GL Visuals, but
even there I can't come up with a case where that matters, because
again, the visuals are only reordered by depth and we want to keep the
depth.
In any case, make this a separate commit so bisecting can find this
problem if it ever shows up.
Instead of the display telling the screen to tell the visuals to tell
the display to initialize itself, just init the display directly.
What a concept.
If the pointer capability is added, pointer swipe and pinch gestures
will be created. However, if the pointer capability is removed, the
gesture objects won't be destroyed.
If the pointer capability is removed and added several times in a row,
for example due to plugging and unplugging physical mouse, this can lead
to leaking the old gesture objects.
In order to prevent that, this change makes the seat destroy swipe and
pinch gestures when the pointer capability is withdrawn.
It's only used during DND to allow use of the root window's cow window
as a DND target, because apparently gnome-shell used to think that was a
great idea to DND to the overview.
Somebody complain to gnome-shell devs about it not being a good idea if
they want it fixed.
Potentially using Wayland is a better idea though.
This reverts 85ae875dcb
Related: https://bugzilla.gnome.org/show_bug.cgi?id=601731
Make _gdk_win32_display_get_monitor_scale_factor() less complex, by:
* Drop the preceding underscore.
* Dropping an unused parameter.
* Using a GdkSurface instead of a HWND, as the HWND that we pass into
this function might have been taken from a GdkSurface, which are now
always created with CS_OWNDC. This means if a GdkSurface was passed
in, we ensure that we only acquire the DC from the HWND once, and do
not attempt to call ReleaseDC() on it.
* Store the HDC that we acquire from the GdkSurface's HWND into the
surface, and use that as the HDC we need for our GdkGLContext.
* Drop the gl_hwnd from GdkWin32Display, as that is really should be
stored in the GdkSurface.
* For functions that were updated, name GdkWin32Display variables as
display_win32 and GdkSurface variables as surface, to unify things.
* Stop calling ReleaseDC() on the HDC that we use for OpenGL, since
they were acquired from HWND's created with CS_OWNDC.
It apparently worked by chance in the past, but now causes e.g.
alphanumeric characters to be interpreted as half-width katakana
when using the Japanese IME.
We must call gdk_drag_drop_done() when the drag ends,
successfully or not. Without this, we get an unwarranted
emission of ::cancel after a successful drop.
Since only the first call to gdk_drag_drop_done() is taking
effect, it is safe to call as a fallback, after emitting
::dnd-finished. If the application connects to that signal
and calls gdk_drag_drop_done() itself, its call will take
precedence.
This matches what the X11 implementation does.
Determine the root_x and root_y coordinates of the drag surface by
relying on the coordinates of the surface where the drag is being
carried out, plus the coordinates that we receive from the drag event,
which is in-line with what the X11 backend does.
This will prevent the drag surface from being initially drawn at the
correct position, but jumping towards the top-left corner of the screen
shortly afterwards.
The DnD support will still need some more updates to function correctly
on Windows, but at least this is a small improvement.
Fixes issue #3798.
This gets the basic mechanics of the drop portion of DnD working on the
macOS backend. You can drag, for example, from TextEdit into GNOME
Text Editor when using the macOS backend.
Other content formats are supported, and match what is currently
supported by the clipboard backend as the implementation to read
from the pasteboard is shared.
Currently, we look up the GdkDrag for the new GdkDrop. However,
nothing is stashing the drag away for further lookup. More work is
needed on GdkMacosDrag for that to be doable.
We will want to be able to reuse the pasteboard reading code from
the macOS DnD drop backend. This just removes the pasteboard
bits from the implementation and allows that to be passed in as in
both clipboard and DnD cases we'll have a specific NSPasteboard
to read from.
If we are undergoing a surface move, just apply the next_layout anyways,
even if we are not moving a toplevel surface.
Update the way how we obtain the x and y coordinates of a surface, if it
is a toplevel, apply the x and y coordinates from the results from we
obtained the underlying Win32 HWND, as we did before. But if it is a
popup, use gdk_win32_surface_get_geometry() to obtain the correct x and
y coordinates to place our popup surface.
Also correct how we compute the shadow dimensions, and the final popup
rectangle as we attempt to layout the popup surface, since GDK-Win32
keeps track of the shadow dimensions in system (unscaled) units, not GDK
units.
Fixes issue #3793.
The releasing of grabs while a button is pressed (e.g. after starting dnd, or
dragging the window, or going to overview with a pressed button, etc...) was
generalized here in https://gitlab.gnome.org/GNOME/gtk/-/merge_requests/1879.
However we shouldn't break all grabs here. In the case of grabbing popups,
compositors will still emit crossing events between client surfaces (e.g.
popping up and selecting a menu item via press-drag-release), breaking all
grabs here means inconsistent client state, that was
https://gitlab.gnome.org/GNOME/gtk/-/issues/2746.
That was fixed in mutter, by essentially making implicit grabs
owner_events=FALSE, however that breaks the mentioned use pattern entirely.
Mutter is changing this behavior back, so GTK should handle these crossing
events.
The grab that we are interested in breaking here is the implicit pointer
one. Popups will be dismissed via other means if the compositor says their
active grab needs breaking. This still leaves dnd/move/resize drags in
one place, while not allowing #2746 to happen with popups.
Add support to share the WGL context in GDK with the WGL context in GStreamer,
so that we can also use OpenGL in the gstreamer media backend to playback
videos. For now OpenGL/ES is not supported for this under Windows.
The process of setting this up in Windows is a little bit more involved, as:
* The OpenGL support in GstGL requires a GL 4.1 Core context, but we may just
get the GL version from wglCreateContextAttribsARB() that we pass into the
attributes, which is 3.2 by default. So, try to ask for a 4.1 Core context
first if we are asking for anything less.
* There is only one GstDisplay available for Windows, so we just use
gst_gl_display_new().
* We must explicitly tell libepoxy that we are using wglMakeCurrent() outside
of libepoxy that is being used in GdkGL, otherwise we would end up crashing
as the GL/WGL function pointers would become invalid.
* We must also deactivate temporarily the underlying WGL context that was made
current by gdk_gl_context_make_current() so that when
gst_gl_display_create_context() calls wglShareLists(), we won't get bitten
by error 0xaa (resource busy), as some drivers don't handle this well when
the GL context is current in another thread.
For the last two points we make use of macros defined by the platforms that the
build is done for to help us carry out the necessary tasks as needed.
Thanks to Matthew Waters for the info on integrating GstGL and windowing
toolkits on Windows.
Check that we are indeed running inside an Xorg server before enabling
the workaround.
XWayland or other nested X servers deadlock when that workaround is
applied.