The DnD code for X11 adds the composite overlay window (aka COW) to the
cache.
Yet the X11 requests to get and release the COW may trigger XErrors that
we ought to ignore otherwise the client will abort.
Fixes: #3715
If cairo is a subproject, it's not necessarily installed when gtk
is built. In the source tree, cairo's headers are not stored in
a directory called 'cairo'.
We were calling _gdk_surface_update_size() every frame, even if the
window size didn't change. This would cause us to discard all cached
buffers and redraw the whole screen.
This was BAD.
Whenever we communicate targets, we need to the union, otherwise
we don't tell the other side about our serialization. This makes
drops of images from gtk4-icon-browser to gimp and libreoffice
succeed in transferring data.
Fixes: #3654
When creating the output stream for a drop, we must
pass the mimetypes we support, otherwise the picking
of the right handler does not work.
Fixes: #3652
On x11 toplevel layout is not created before toplevel
is presented, but GTK tries to update it on idle
which leads to a crash due to accessing property
of undefined object. Treat soon to be created layout
as a layout with default values upon creation (resizable).
Depending on the input driver, we will get XI_Motion based scroll
events for regular mouse wheels. These are intended to be handled
as discrete scroll, so detect smooth scroll events that move by
exactly 1.0 in either direction.
Fixes: https://gitlab.gnome.org/GNOME/gtk/-/issues/3459
When being fullscreen, and wanting to unfullscreen but not caring about
whether to go unmaximized or maximized (as this information is lost), if
the GdkToplevelLayout represents the full intended state, we won't be
able to do the right thing.
To avoid this issue, make the GdkToplevelLayout API intend based, where
if one e.g. doesn't call gdk_toplevel_set_maximized() with anything, the
backend will not attempt to change the maximized state.
This means we can also remove the old 'initially_maximized' and
'initially_fullscreen' fields from the private GtkWindow struct, as we
only deal with intents now.
It was used by all surfaces to track 'is-mapped', but still part of the
GdkToplevelState, and is now replaced with a separate boolean in the
GdkSurface structure.
It also caused issues when a widget was unmapped, and due to that
unmapped a popover which hid its corresponding surface. When this
surface was hidden, it emitted a state change event, which would then go
back into GTK and queue a resize on popover widget, which would travel
back down to the widget that was originally unmapped, causing confusino
when doing future allocations.
To summarize, one should not hide widgets during allocation, and to
avoid this, make this new is-mapped boolean asynchronous when hiding a
surface, meaning the notification event for the changed mapped state
will be emitted in an idle callback. This avoids the above described
reentry issue.
This will sometimes mean a frame is skipped if a resize was requested
during the update phase of the frame dispatch. Not doing so can cause
trying to allocate a window smaller than the minimum size of the widget.
If compute_size() returns TRUE, the layout will not be propagated to
GTK. This will be used by the X11 backend to queue asynchronous resizes
that shouldn't yet allocate in GTK.
This removes the gdk_surface_set_shadow_width() function and related
vfuncs. The point here is that the shadow width and surface size can now
be communicated to GDK atomically, meaning it's possible to avoid
intermediate stages where the surface size includes the shadow, but
without the shadow width set, or the other way around.
This follows the trail of the Wayland backend in that GdkSurface changes
happen during the layout phase, and that a GDK_CONFIGURE no longer being
used to communicate the size changes of a surface; this now also uses
the layout signal on the GdkSurface.
Reading the comment, it seems to be related being a window manager
decoration utility; this is not something GTK4 aims to handle, just drop
support for this.
The plan is to concencrate size computations as part of the frame clock
dispatch, meaning we shouldn't do it synchronously in the present()
function.
Still, in Wayland, and maybe elsewhere, it is done in the present()
function, e.g. when no state change was made, but this will eventually
be changed.