Some Windows keymaps have bogus mappings for the Ctrl modifier. !4423 attempted
to fix this by ignoring the Ctrl layer, but that was not enough. We also need to
ignore combinations of Ctrl with other modifiers, i.e. Ctrl + Shift. For example,
Ctrl + Shift + 6 is mapped to the character 0x1E on a US keyboard (but it should
be treated as Ctrl + ^). Basically, always ignore Ctrl unless it is used in
conjunction with Alt, i.e. as part of AltGr.
Related issue: #4667
`free` is defined in `stdlib.h`, see for example
<https://pubs.opengroup.org/onlinepubs/009604499/functions/free.html>. Without
this include compilation can fail with the following error:
```
../gdk/loaders/gdkjpeg.c: In function ‘gdk_save_jpeg’:
../gdk/loaders/gdkjpeg.c:264:7: warning: implicit declaration of function ‘free’ [-Wimplicit-function-declaration]
free (data);
^
../gdk/loaders/gdkjpeg.c:264:7: warning: incompatible implicit declaration of built-in function ‘free’
../gdk/loaders/gdkjpeg.c:264:7: note: include ‘<stdlib.h>’ or provide a declaration of ‘free’
../gdk/loaders/gdkjpeg.c:302:67: error: ‘free’ undeclared (first use in this function)
return g_bytes_new_with_free_func (data, size, (GDestroyNotify) free, NULL);
^
../gdk/loaders/gdkjpeg.c:302:67: note: each undeclared identifier is reported only once for each function it appears in
../gdk/loaders/gdkjpeg.c:303:1: warning: control reaches end of non-void function [-Wreturn-type]
}
^
```
We don't want to risk having something really weird come out if we have a
WCG colorspace, so instead only do the performance hack on systems where
the output is likely reasonable.
We will want to eventually just be drawing in the appropriate colorspace,
but that is not available yet.
When using software rendering w/ cairo, assume we're drawing in
the best-monitor's colorspace rather than RGB to avoid colorspace
conversions on every frame.
Instead of relying on cairo_t to perform drawing from our backing
image surface to the Core Graphics context, we can convert the
cairo_image_surface_t into a CGImageRef without having to copy
data if we are certain of the alignment of the image up front.
Without this, there are many situations, based on the size of the
window that could cause cairo to take a slow path and malloc/copy
the data to ensure that alignment.
The previous commit titled "macos: align image surface rowstride to
16-bytes" ensures that this invariant is true so that our drawing
code can assume we can reference the framebuffer from the
cairo_image_surface_t using a CGDataProvider.
Since GdkMacosCairoContext and GdkMacosCairoSubview are coordinating,
we can also setup the transformation/scale early when drawing the
cairo_image_surface_t instead of when copying it to Core Graphics.
Furthermore, the CGImageRef is created with an RGB colorspace so
that we are not performing colorspace conversion to the output
device. We don't get color matching between displays, but we don't
expect that anyway, particularly with the software renderer.
When creating a cairo_image_surface_t we want both the framebuffer pointer
and each row to be aligned to 16-bytes so that Core Graphics will use more
optimal paths.
However, cairo_image_surface_create() will not guarantee that the rowstride
is aligned to 16-bytes so we must do that ourselves.
We need to avoid conflating the managing of frame callbacks from
the freeze/thaw mechanics and ensure we don't perform extra thaw
requests at the wrong time.
Some keymaps on Windows contain bogus mappings for Ctrl+key for certain
keys, e.g. Ctrl+Backspace = Delete, or Ctrl+[ = 0x1B. These are never
used on Windows, so we should ignore them.
Fixes#4667
GTK's old key symbol list is missing a few symbols like the per mille
sign that is included in some keyboard layouts. This commit updates
gdkkeyuni.c to match libxkbcommon's current key symbol list.
This change is done for 2 reasons:
- The logic to request this phase when compressing scroll events is
slightly broken. If there are multiple scroll events that are
coalesced into one, the surface frame clock will not get this request.
The worst case is having >= 2 scroll events on every frame, as the
compressed event will be left in the queue, and be further compressed
on future events.
- Even scroll events aside, this phase is requested in oddly specific
places that are not enough to cover all events, others do rely on
unrelated GdkFrameClock activity that happens to flush the events
as well.
Unify this phase request so it explicitly happens on the arrival of any
event. This ensures that events (compressed or not) will be handled
promptly after arrival.
As per Benjamin's suggestions, cleanup the previous implementation on
initializing the GLES context on Windows, so that we use more items that are
already in GDK proper and integrate two functions into one.
Instead of first trying to explicitly ask for a WGL 4.1 context, ask for
the WGL context version that matches what is reported via
epoxy_gl_version(), so that we get the maximum WGL version that is
supported by the graphics drivers, and make sure any WGL contexts that
are shared with this (initial) WGL context are created likewise.
We can try to do a default-bog-standard 3.2 core WGL context creation
if the need arises, but let's leave that alone for now.
The EGL context that we are actually creating must have matching OpenGL/ES
versions and allowed GL API set with the previously-created EGL context
that will be shared with it so that they can interoperate together, if
applicable.
This will fix the situation by making sure that we request for the
OpenGL/ES version and OpenGL API set that match with what we have in our shared
EGL context. Otherwise, the newly-created EGL context assumed a OpenGL/ES 2.0
context that supported desktop OpenGL, which may not be what we wanted, such as
in the case of libANGLE.
We are now able to create EGL contexts properly on Windows, but not GLES. This
tries to fix things by doing the following:
* Record the GL context type in a more proper fashion, using an Enum. This
makes things a bit cleaner.
* Force GLES-3.0+ contexts, since libANGLE requires this to properly work with
the shaders-its 2.0 contexts don't work well with our shaders.
We only save the size when we transition from floating to fixed, so that
we can restore the size to the one prior to being fixed.
However, we should not restore to this size whenever we see a 0x0 size
from xdg_toplevel, as it can do that any time it doesn't care about the
size, e.g. when the surface is floating and just changing state.
Fix this by only using the saved size when transitioning from fixed to
floating, not when staying floating while previously floating.
Closes: https://gitlab.gnome.org/GNOME/gtk/-/issues/4634