It's not necessary anymore because gdk_display_manager_get() always
succeeds and the value is independant of when it was called as it's no
longer backend specific.
Move it from GdkDisplayManagerX11.init to GdkDisplay.class_init.
This shouldn't cause any problems, but who knows, so keep this patch
small.
Reason for this is the unification of display managers.
There is currently no Wayland protocol for providing presentation
timestamps or hints about when drawing will be presented onscreen.
However, by assuming the straightforward algorithm used by the
DRM backend to Weston, we can reverse engineer the right values.
https://bugzilla.gnome.org/show_bug.cgi?id=698864
Combine duplicate code for creating and destroying surfaces.
To make the operation of the destroy() operation more obvious, the
destruction of the (fake) root window at display dispose time is
changed to not be a "foreign" destroy.
https://bugzilla.gnome.org/show_bug.cgi?id=698864
Use wl_surface_frame() to get notification when the compositor paints
a frame, and use this to throttle drawing to the compositor's refresh
cycle.
https://bugzilla.gnome.org/show_bug.cgi?id=698864
Lazily creating the cairo surface that backs a window when we
first paint to it means that the call to
gdk_wayland_window_attach_image() in
gdk_wayland_window_process_updates_recurse() wasn't working the
first time a window was painted.
https://bugzilla.gnome.org/show_bug.cgi?id=698864
When exposing an area, we were individually damaging and committing
each rectangle, *before* drawing. Surprisingly, this almost worked.
Order things right and only commit once.
https://bugzilla.gnome.org/show_bug.cgi?id=698864
This commit is very similar to 8c8853a1f5
We update the keynames.txt file from gdkkeynames.h, and we update
keynames-translate.txt to include all the keysym names that we want
to have translations for. Also strip the XF86 from the translatable
keysym names, since we are returning those names now from
gdk_keyval_name().
keyname-table.h is regenerated from these updated files.
Instead of GdkDisplay::init, only add the display to the display manager
in GdkDisplay::opened. This avoids spurious changes of the default
display in gtk_init() when we're trying to find the one that works and
try to open lots of different ones.
This makes Wayland and X11 no longer call into XKB and libX11 for these
functions but use GDK's own copy of these functions, just like the
win32, quartz and broadway backends.
A function was doing nothing but calling a function that was in its own
source file doing nothing but calling a function in its own source file
that did nothing.
This is another step towards making GdkDisplayManager backend-agnostic.
Most of the backends profit from this as their atom implementations
where generic anyway - x11 needed that to allow multiple X displays and
broadway, quartz and wayland don't have the concept of displays.
The X11 backend still did things, so I only #if 0'd some code but did
not actually update anything.
In the case that the client is started directly by the compositor the
WAYLAND_SOCKET environment variable is set containing the fd to use that was
created by a socketpair.
This environment variable is consumed by a call to wl_display_connect so a
second call will not take advantage of it.
https://bugzilla.gnome.org/show_bug.cgi?id=697673
If gdk_window_flush_outstanding_moves() creates new update area
we handle this directly in the same draw to avoid flashing.
This mainly affects win32 as X11 does its exposes from moves async.
However, its important for win32 since ScrollDC seems to sometimes
invalidate (and not copy) unexected regions.
http://bugzilla.gnome.org/show_bug.cgi?674051
Rather than set the window update region and repaint this region
when we get a WM_PAINT we just directly add it to the update
region. No need to roundtrip via win32.
This lets us also make sure we do this drawing in the same update
cycle. This seems especially important on Win7, because ScrollDC
seems to act kind of weird there, not using bitblt in areas where
it seemingly could, which makes scrolling look really flashy.
http://bugzilla.gnome.org/show_bug-cgi?id=674051
On crossing events resulting from moving windows (eg. workspace switch),
deviceid equals sourceid, so make those reset scroll valuators on all
slave devices to avoid misleading jumps in scroll events
Fixes https://bugzilla.gnome.org/show_bug.cgi?id=690275
Under Wayland we don't know the absolute position of the device but there are
some API calls that expect to get an root window position. Previously we were
not assigning any value to these out parameters potentially leaving the values
undefined.
This change returns the current surface relative position of the device.
The is_modifier field is supposed to be set if the key
would act as a modifier, not if any modifiers are currently
active. To fix this, introduce a private
_gdk_wayland_keymap_key_is_modifier function.
At the same time, make the hardware_keycode field in key
events actually contain the hardware keycode, not a copy
of the keyval.
We always emit direction-changed when we get a new keymap, but
for state changes, we compare old and new direction and only
emit the signal when the direction actually changes.
We can get G_IO_HUP and G_IO_IN at the same time, if the compositor writes
data to us and then closes our connection. Make sure that we dispatch events
always if we have G_IO_IN and then error out if we get G_IO_HUP after that.
This way we don't have to reopen all the time for pure updates,
and we can immediately unlink the shm file to avoid "leaking" them
on improper shutdown.
We now only update surface data after we have painted. Before we painted
in an idle, which meant we might send black data some times if we e.g.
resized the window and had not painted yet. Also, it means we're updating
less often to the daemon, saving resources.
We still have to queue a flush in the idle for non-draw operations,
otherwise e.g. resize of a toplevel will never be flushed if the clock
is frozen (e.g. during toplevel resize).
We don't want to update the window size on configure event, only
the position, as the size is client side controlled. We were
updating to an old size during resizes which causes us to send
surfaces of the wrong size to the daemon.
The cursor buffer is only non-null when a cursor is created from pixbuf,
so it is not necessary to keep track of whether to free this buffer on
finalize.
By keeping a pointer to the wl_cursor struct in GdkWaylandCursor, it is
no longer necessary to duplicate cursor data (width, height, hotspots,
etc.) between wl_cursor and GdkWaylandCursor.
Instead of maintaining the init refcount in regular event handlers that can
fire in case of hotplug or mode changes, use a dedicated sync callback
to wait for roundtrips.
If a window is overlapped by a layered (i.e. partially transparent)
window then that region will not disappear from the native window clip
region. This lets us handle compositing multiple layers of windows.
For native subwindows this doesn't really work. For them we apply the
clip region as a shape to the native window which lets us have client
side windows overlapping the native window. However, with the addition
of the layered stuff the "overlapped-by-alpha-csw" part got broken, as
this area is not removed from the clip region of the native window.
We fix this by also removing the layered area when applying the shape.
This means alpha and alpha backgrounds don't work over native windows,
but there is not much to do about that.
https://bugzilla.gnome.org/show_bug.cgi?id=696370
The global_removal argument is the _name_ of the object.
We were comparing it to the _object id_ of the object.
To fix this, store the name at the time the object is bound.
We need to be a bit more careful when updating the screen
size - the code that was there would not do the right thing
if e.g. the width of one monitor was reduced.
We use a ref-count mechanism to track whether parts of the init sequence
still needs round trips to receive remaining initial state. Typically
we need a couple of roundtrips total to get the global list, then the
input and output configurations, but with the ref-count we avoid making
global assumptions like that.
https://bugzilla.gnome.org/show_bug.cgi?id=696340
Allow to set a GdkWindow to use a custom surface instead of a
wl_shell_surface. It allows to register the surface as a custom type
with some Wayland interface.
https://bugzilla.gnome.org/show_bug.cgi?id=695861
The GDK model for keymaps expects the keymap object to stay
around and emit a ::keys-changed signal. So, do that. This
should make layout changes work, but it remains untested since
weston does not support layout changes at runtime.
At the same time, plug a memory leak where GdkWaylandKeymap
forgot to free its xkb objects in finalize.
https://bugzilla.gnome.org/show_bug.cgi?id=696339
For introspection scanning which ends up calling class_init() which in
turn calls into the keybindings code, we can just use the fallback
keyval conversion code.
https://bugzilla.gnome.org/show_bug.cgi?id=696457
With this commit, we pick up xft settings from GSettings
as well. Among other things, this makes the Large Text
setting work. Still to do: pick up fontconfig changes without
having all clients use up inotify watches for all font
directories.
Add GInitable interface with a default implementation that always
succeeds. This allows backends to override the GInitable implementation
and add their own checks to determine if the backend can be loaded. If
a backend cannot be loaded, GDK can attempt to load the next available
backend.
Since backends may need to read any relevant options (such as the
display flag) to determine if they can be created successfully, this
patch also removes calls that attempt to create the display manager
before the options have been parsed.
https://bugzilla.gnome.org/show_bug.cgi?id=694465
The check for GDK_CURSOR_IS_PIXMAP was ineffective, since _all_
cursors have this type, from the looks of it. Instead, store
buffer ownership information separately.
These might be candidates for a future settings interface; until
then, we use GSettings directly. Note again that we are careful
to avoid a dependency on GNOME schemas.
Key repeat under X is not affected by modifiers. And on some systems
(e.g my Thinkpad), NumLock is permanently on, rendering key repeat
nonfunctional. This commit changes the Wayland backend to do
key repeat regardless of modifiers.
http://bugzilla.gnome.org/show_bug.cgi?id=695497
Commit 0d9d808217 fixed the hotspot issue,
but commit f2cc52fddd then optimized away
cursor changes a little too aggressively. We always need to set the
cursor on enter. Make sure we clear the current cursor on leave so we
don't think it's already set on the next enter.
https://bugzilla.gnome.org/show_bug.cgi?id=695512
Until we figure out where we want to go with settings under
Wayland, this makes GTK+ applications a lot easier to deal
with under Wayland.
Note that we are careful to deal with the absence of schemas,
so this does not introduce a dependency on GNOME settings.
wl_pointer.set_cursor is rejected if the serial number doesn't match
the enter serial number for the wl_pointer. We passed the right serial
number when setting the cursor surface in response to the enter event.
Later set_cursor requests fail, but we can still attach new buffers to
our cursor surface, which is why the cursor changed, but the hotspot
didn't update. Clicking in the decoration results in a leave/enter pair
which triggers wl_pointer.set_cursor with the right serial. That's why
clicking the decoration sets the right cursor.
https://bugzilla.gnome.org/show_bug.cgi?id=695512
We need to pass the delta between the old and new hotspot
when attaching the new cursor surface, to keep the hotspot
at the same position. We can't deal with this in the compositor,
since the set_cursor call already overwrites the old hotspot,
so the information is lost by the time the attach happens.
Unfortunately, we can't query the initial hotspot from
the compositor, so the first cursor change will make the
hotspot jump.
https://bugzilla.gnome.org/show_bug.cgi?id=695512
Use separate fields for saving the window dimensions prior to fullscreening
and maximisation. Then use those fields to restore the window dimensions from.
Requests are not limited in size by BroadwayRequest, as
BroadwayRequestTranslation can be of variable size. No need
to copy the request anymore though, because requests are aligned
now.
With recent changes in attach semantics, we always need to attach before
committing. Without this changes to the window contents to not get reflected
in the content of the surface.
Signed-off-by: Rob Bradford <rob@linux.intel.com>
We currently use this information to display the title
string in the window list of the desktop shell.
Signed-off-by: Rob Bradford <rob@linux.intel.com>
Both of them started to make use of round(), a C99 function. So, include
fallback-c89.c to provide a fallback implementation for round() for
compilers that don't have round()
https://bugzilla.gnome.org/show_bug.cgi?id=694339
If no updates, redraws, or repaints have been scheduled for this frame,
we will skip immediately to RESUME_EVENTS, and no GdkFrameTimings will
be created.
https://bugzilla.gnome.org/show_bug.cgi?id=694732
When events are paused, we should not return TRUE from prepare() or check().
GTK+ handles this for events that are already in the GTK+ queue, but
we also need suppress checks for events that are in the system queue - if we
return TRUE indicating that there are events in the system queue, then we'll
call dispatch(), and do nothing. The event source will spin, and will never
run the other phases of the paint clock.
(Broadway doesn't have a window system queue separate from the GDK event queue,
but we write the function the same way for consistency.)
https://bugzilla.gnome.org/show_bug.cgi?id=694274
When events are paused, we should not return TRUE from prepare() or check().
GTK+ handles this for events that are already in the GTK+ queue, but
we also need suppress checks for events that are in the system queue - if we
return TRUE indicating that there are events in the system queue, then we'll
call dispatch(), and do nothing. The event source will spin, and will never
run the other phases of the paint clock.
https://bugzilla.gnome.org/show_bug.cgi?id=694274
Commit 1db87c897f accidentally removed
a check for !in_paint_idle in maybe_start_idle which causes us
to create a paint loop whenever something requests a phase
inside the paint_idle.