Stash away the device timestamp when obscuring
the pointer, and compare it when we decice whether
to unobscure it. This fixes a problem where synthetic
motion events would make the cursor reappear
prematurely.
Fixes: #3792
If multiple nested widgets have drag sources on them, both using bubble
phase, we need to reliably pick the inner one. Both of them will try to
start dragging, and we need to make sure there are no situations where the
outer widget starts drag earlier and cancels the inner one.
Currently, this can easily happen via integer rounding: start and current
coordinates passed into gtk_drag_check_threshold() are initially doubles
(other than in GtkNotebook and GtkIconView), and are casted to ints. Then
those rounded values are used to calculate deltas to compare to the drag
threshold, losing quite a lot of precision along the way, and often
resulting in the outer widget getting larger deltas.
To avoid it, just don't round it. Introduce a variant of the function that
operates on doubles: gtk_drag_check_threshold_double() and use it instead
of the original everywhere.
Check the text handle role, instead of looking for the other handle
visibility. The other handle may be invisible during selection mode
(e.g. pointing to offscreen contents). This fixes both this code
switching to cursor mode out of the blue, and possible crashes later
on as this handle might be hidden in the process, while its own event
controller is handling events on the parent surface.
The gtk_text_view_set_handle_position() function called some lines above
takes care of handle visibility already, also accounting for other
conditions (e.g. whether the handle points to contents onscreen).
Forcibly showing handles here misbehaves if the handle should stay hidden,
and somewhat expensively as it involves creating and throwing a native
surface every time.
With the scrolledwindow drag gesture not claiming the sequence immediately,
we end up placing the cursor (and undoing the previous selection) each time
we scroll.
There is already handling too short drags in ::drag-end, so let this code
handle touchscreens as well.
If the gesture becomes captured (e.g. from a parent scrolledwindow), we
leave some things in the air. Clean these up properly. This is recurrent
with touch scroll.
When we start a dnd of the selection in the drag-update handler,
set the gesture state to denied. Otherwise, we get more drag-update
signals, and things get really confused, leading to no dnd and
sadness.
Make GdkEvents hold a single GdkDevice. This device is closer to
the logical device conceptually, although it must be sufficient for
device checks (i.e. GdkInputSource), which makes it similar to the
physical devices.
Make the logical devices have a more accurate GdkInputSource where
needed, and conflate the event devices altogether.
To build a better world sometimes means having to tear the old one down.
-- Alexander Pierce, "Captain America: The Winter Soldier"
ATK served us well for nearly 20 years, but the world has changed, and
GTK has changed with it. Now ATK is mostly a hindrance towards improving
the accessibility stack:
- it maps to a very specific implementation, AT-SPI, which is Linux and
Unix specific
- it requires implementing the same functionality in three different
layers of the stack: AT-SPI, ATK, and GTK
- only GTK uses it; every other Linux and Unix toolkit and application
talks to AT-SPI directly, including assistive technologies
Sadly, we cannot incrementally port GTK to a new accessibility stack;
since ATK insulates us entirely from the underlying implementation, we
cannot replace it piecemeal. Instead, we're going to remove everything
and then incrementally build on a clean slate:
- add an "accessible" interface, implemented by GTK objects directly,
which describe the accessible role and state changes for every UI
element
- add an "assistive technology context" to proxy a native accessibility
API, and assign it to every widget
- implement the AT context depending on the platform
For more information, see: https://gitlab.gnome.org/GNOME/gtk/-/issues/2833
If you run weston with the headless backend, you get a Wayland
display with no seat, which is just fine by the protocol.
gdk_display_get_default_seat() returns NULL in this case. Various
widgets assume that we always have a seat with a keyboard and a
pointer, since that is what X guarantees. Make things survive
without that, so we can run the testsuite under a headless
Wayland compositor.
Add back a property that determines whether an individual
widget will accept focus or not. :can-focus prevents the
focus from ever entering the entire widget hierarchy
below a widget, and :focusable just determines if grabbing
the focus to the widget itself will succeed.
See #2686
In the presence of attached children, the css tree and the
widget tree are not in sync, so we need to explicitly set
the parent of the css node before inserting the widget, or
else we end up with critical warnings and a non-working
menu.
This can be seen in testtextview.
When toggling caret visibility (with F7) we would hit an assertion if the
cursor is currently blinking. This adjusts things to ensure that we should
be showing the carent when scheduling our blink timeouts.
Fixes#2647
After the :can-focus change in the previous commit, widgets
need to set suitable focus and grab_focus implementations
to implement the desired focus behavior.
This commit does that for all widgets.
Reviewing the existing settings, the only backend with
some differences in the modifier intent settings is OS X,
and we would rather have that implemented by interpreting
the existing modifiers in the appropriate way.
X11 Wayland Win32 OS X
primary ctrl ctrl ctrl mod2
mnemonic alt alt alt alt
context menu - - - ctrl
extend sel shift shift shift shift
modify sel ctrl ctrl ctrl mod2
no text alt|ctrl alt|ctrl alt|ctrl mod2|ctrl
shift group varies - - alt
GTK now uses the following modifiers:
primary ctrl
mnemonic alt
extend sel shift
modify sel ctrl
no text alt|ctrl
The context menu and shift group intents were not used
in GTK at all.
Update tests to no longer expect <Primary> to roundtrip
through the accelerator parsing and formatting code.
At the bottom, it sometimes has to fight for the same position than
text handles, besides might not be ergonomically convenient (eg.
finger/hand partly covering the popover). Move it at the top to fix
both.
Instead of being a GObject managing two GtkWidgets, make GtkTextHandle
a GtkWidget subclass, representing a single handle.
From the perspective of users (GtkText and GtkTextView), this is not a
big leap since they have to be aware of a great deal of text handles'
state. It actually makes things more direct and simple.
With text handles being widgets, those can be actual children of the
widget, and may have their own GdkSurface that we move around at will.
This is the second major aspect of this refactor.
This is a huge reorganization of GtkDropTarget. I did not know how to
split this up, so it's unfortunately all one commit.
Highlights:
- Split GtkDropTarget into GtkDropTarget and GtkDropTargetAsync
GtkDropTarget is the simple one that only works with GTypes and offers
a synchronous interface.
GtkDropTargetAsync retains the full old functionality and allows
handling mime types.
- Drop events are handled differently
Instead of picking a single drop target and sending all DND events to
it, every event is sent to every drop target. The first one to handle
the event gets to call gdk_drop_status(), further handlers do not
interact with the GdkDrop.
Of course, for the ultimate GDK_DROP_STARTING event, only the first
one to accept the drop gets to handle it.
This allows stacking DND event controllers that aren't necessarily
interested in handling the event or that might decide later to drop
it.
- Port all widgets to either of those
Both have a somewhat changed API due to the new event handling.
For the ones who should use the sync version, lots of cleanup was
involved to operate on a sync API.
It is enough to just set the parent (and make the parent
call gtk_native_check_resize in size_allocate).
This commit removes the relative_to argument to the
constructors of GtkPopover and GtkPopoverMenu, and
updates all callers.
Split the focus tracking into a separate
GtkEventControllerFocus, and change the API one more time.
We are back to having ::focus-in and ::focus-out signals.
Update all users.
Restructure the getters for event fields to
be more targeted at particular event types.
Update all callers, and replace all direct
event struct access with getters.
As a side-effect, this drops some unused getters.
Instead of relying on gdk's antiquated crossing events,
create a new GtkCrossingData struct that contains the
actual widgets, and a new event controller vfunc that
expects this struct. This also saves us from making sense
of X's crossing modes and details, and makes for a
generally simpler api.
The ::focus-in and ::focus-out signals of GtkEventControllerKey
have been replaced by a single ::focus-change signal that
takes GtkCrossingData as an argument. All callers have
been updated.
The old code did mimetype checks everywhere when type compatibility has
since been moved to the GtkDropTarget::accept signal.
So the code can now just assume a compatible mime type exists.