This makes it possible to set 'maximized' to true in .ui files, and the
window will show up maximized.
gtk_window_is_maximized() will return the intended maximized state until
actually mapped, it will then show the actual maximized state. The same
applies to reading the property.
This commit changes the behavior of window size computation and the
default size properties to:
* The default-width and default-height properties are updated to the
current window size unless the size is fixed by e.g. being maxmized,
tiled etc.
* The compute-size semantics are to just pick the default size, or if
not adequate, use the measured size, and consequently update the
default size, unless unresizable.
* gtk_window_get_size() is removed, what's more likely relevant is the
gtk_window_get_default_size() which will now contain more sensible
values.
Various places that used gtk_window_get_size() were updated to use
gtk_window_get_default_size() to remember and restore previous sizes.
This also changes the default value of 'default-width' and
'default-height' from -1 to 0. The gtk builder simplify tool is taught
how to omit when the default size is set to both -1 and 0.
This fixes an issue where the focus of the window continuously received
fake motion events even when a popover was open, making input events end
up behind the popover.
It also adds a comment describing why motion events are requested. Note
that popovers won't work with this, and it's possible both in the past
and now that sporadic missplaced motion events will appear, e.g. when a
window changes allocation but a popover is open.
This removes the gdk_surface_set_shadow_width() function and related
vfuncs. The point here is that the shadow width and surface size can now
be communicated to GDK atomically, meaning it's possible to avoid
intermediate stages where the surface size includes the shadow, but
without the shadow width set, or the other way around.
This changes allocation of the widget trees to happen as a side effect
to the GdkSurface::layout signal, which first passes the GtkNative
instance where it is then forwarded to the implementations of the
GtkNative interface.
The implementations of GtkNative are the ones doing the actual
gtk_widget_allocate(), and they do so in their GtkNativeClass::layout
function.
The size should correspond what gtk_widget_measure() does, and it
measures what's within the window excluding the shadow; so make this
helper function correspond to this.
Showing before the child would result in bogus
gdk_drag_surface_present() with an "empty" (1x1) size. This can easily
be avoided by postponing showing until there is anything to show.
By moving popup layout emission to the layout phase, the current
GdkPopup::poup-layout-changed signal has no value on its own as it'd be
ignored by GtkPopover.
Make the Wayland backend communicate the popup layout changes via the
common signal; but leave the rest intact until other backends catch up.
Don't have GtkRoot listen directly to the layout signal on the frame
clock, but let it pass through GdkSurface. This will allow GdkSurface to
be more involved in the layout phase.
This broke when we started using GDK_PROFILER_CURRENT_TIME for
timekeeping - that gets defined to 0 when we're building without
sysprof, so we can use it to make such determinations. Go back
to using g_get_monotonic_time().
Fixes: #3438
This ensures that we don't leak window references inside the action muxer.
Otherwise, we risk not disposing the windows upon gtk_window_destroy()
and blocking the main loop from quitting.
Fixes#3419
This comes complete with animation support. For a good time, try:
@keyframes conic {
100% { background-image: conic-gradient(from 1turn, red, lime, blue, yellow, red); }
}
window {
background-image: conic-gradient(red, lime, blue, yellow, red);
animation: conic infinite linear 5s;
}