This commit adds gdk_display_get_setting and a ::setting-changed
signal, which will replace the settings event we use now. Note
that I've done away with the GdkSettingAction argument that the
event has, since we are not using it at all.
This was by all lights broken, and is basically an implementation detail
of the X11 backend since the pointer emulating touch just steals the pointer
cursor, so should be reimplemented there.
One used to point to the toplevel and the other to the client-side window
that the pointer pointed to. The latter was made to be like the former in
most places, so put those together, and fix the remaining cases where the
variable might not end up with a toplevel/native window.
This is not necessary now that there's no client-side windows to track.
The only removed piece that could make sense is emission of grab broken
events, but it's already an stretch since the semantics of those with
multi-touchpoint is unclear.
Anyhow, This should be fixed at the GTK level, while we let GDK deal with
seat/device level grabs.
GDK just needs to care about toplevels nowadays, which means these events
are already delivered from the windowing. We don't need to generate
intra-window crossing events ourselves.
Those should be interpreted by widget-local gestures, not guessed at a
high level with no notions of the specific context. Users will want
GtkGestureMultiPress to replace these events.
Switch code to use gdk_display_is_composited() instead.
The new code also doesn't use a vfunc to query the property but rather
requires the backend to call set_composited()/set_rgba() to change the
value.
Also add properties for those two properties.
The first property is equivalent to checking if an RGBA visual exists,
the 2nd is equivalent to gdk_screen_is_composited().
The update tracking code was ugly and using deprecated drawing APIs. It
was also in the wrong place.
So instead of trying to keep it working, I'll remove it. We need to find
a better way to put it and make it work there.
Nobody ever does a NULL check there so all that causes is crashes. So
we better return a non-primary monitor than NULL.
Fixes gdk-wayland always returning NULL.
Some backends (namely Wayland) do not support global coordinates so
using the window position to determine the monitor will always fail on
such backends.
In such cases, the backend itself might be better suited to identify
the monitor a given window resides on.
Add a vfunc get_monitor_at_window() to the display class so that we can
use the backend to retrieve the monitor, if the backend implements it.
https://bugzilla.gnome.org/show_bug.cgi?id=766566
If the monitor vfuncs are not implemented in a display class,
fall back to providing a single monitor object representing
the entire screen. This is not meant to be 'good enough', it
is just to provide some implementation until all backends
implement the monitor vfuncs. When that is the case, the
fallback should be removed.
gdk_display_list_devices is deprecated and all the backends
implement the same fallback by delegating to the device manager
and caching the list (caching it is needed since the method does
not transfer ownership of the container).
The compat code can be shared among all backends and we can
initialize the list lazily only in the case someone calls the
deprecated method.
https://bugzilla.gnome.org/show_bug.cgi?id=762891
gdk_display_add_seat was prepending new seats to the list, which
was effectively making the added seat the new default. Since that
is probably not intended, append to the list.
There's places where we still need to deal with floating devices, which are
unseen by seats. Ignore deprecations and keep using GdkDeviceManager until
we can forget about floating devices.
The current way of exposing GDK API that should be considered internal
to GTK+ is to append a 'libgtk_only' suffix to the function name; this
is not really safe.
GLib has been using a slightly different approach: a private table of
function pointers, and a macro that allows accessing the desired symbol
inside that vtable.
We can copy the approach, and deprecate the 'libgtk_only' symbols in
lieu of outright removal.
https://bugzilla.gnome.org/show_bug.cgi?id=739781
To properly support multithreaded use we use a global GPrivate
to track the current context. Since we also don't need to track
the current context on the display we move gdk_display_destroy_gl_context
to GdkGLContext::discard.
Its not really reasonable to handle failures to make_current, it
basically only happens if you pass invalid arguments to it, and
thats not something we trap on similar things on the X drawing side.
If GL is not supported that should be handled by the context creation
failing, and anything going wrong after that is essentially a critical
(or an async X error).
This adds the new type GdkGLContext that wraps an OpenGL context for a
particular native window. It also adds support for the gdk paint
machinery to use OpenGL to draw everything. As soon as anyone creates
a GL context for a native window we create a "paint context" for that
GdkWindow and switch to using GL for painting it.
This commit contains only an implementation for X11 (using GLX).
The way painting works is that all client gl contexts draw into
offscreen buffers rather than directly to the back buffer, and the
way something gets onto the window is by using gdk_cairo_draw_from_gl()
to draw part of that buffer onto the draw cairo context.
As a fallback (if we're doing redirected drawing or some effect like a
cairo_push_group()) we read back the gl buffer into memory and composite
using cairo. This means that GL rendering works in all cases, including
rendering to a PDF. However, this is not particularly fast.
In the *typical* case, where we're drawing directly to the window in
the regular paint loop we hit the fast path. The fast path uses opengl
to draw the buffer to the window back buffer, either by blitting or
texturing. Then we track the region that was drawn, and when the draw
ends we paint the normal cairo surface to the window (using
texture-from-pixmap in the X11 case, or texture from cairo image
otherwise) in the regions where there is no gl painted.
There are some complexities wrt layering of gl and cairo areas though:
* We track via gdk_window_mark_paint_from_clip() whenever gtk is
painting over a region we previously rendered with opengl
(flushed_region). This area (needs_blend_region) is blended
rather than copied at the end of the frame.
* If we're drawing a gl texture with alpha we first copy the current
cairo_surface inside the target region to the back buffer before
we blend over it.
These two operations allow us full stacking of transparent gl and cairo
regions.
If a motion event handler (or other handler running from the flush-events
phase of the frame clock) recursed the main loop then flushing wouldn't
complete until after the recursed main loop returned, and various aspects
of the state would get out of sync.
To fix this, change flushing of the event queue to simply mark events as
ready to flush, and let normal event delivery handle the rest.
https://bugzilla.gnome.org/show_bug.cgi?id=705176
We've long had double precision mouse coordinates on wayland (e.g.
when rotating a window) but with the new scaling we even have it on
X (and, its also in Xinput2), so convert all the internal mouse/device
position getters to use doubles and add new accessors for the
public APIs that take doubles instead of ints.
Instead of GdkDisplay::init, only add the display to the display manager
in GdkDisplay::opened. This avoids spurious changes of the default
display in gtk_init() when we're trying to find the one that works and
try to open lots of different ones.
Since events can be paused independently for each window during processing,
make _gdk_display_pause_events() count how many times it is called
and only unpause when unpause_events() is called the same number of
times.
https://bugzilla.gnome.org/show_bug.cgi?id=685460
Unqueuing events from the windowing system when paused could result
in weird reordering if event filters resulted in application-visible
behavior. Since we now resume events when the frame clock is frozen,
we now no longer count on low-level event handling running while
event handling is paused.
https://bugzilla.gnome.org/show_bug.cgi?id=685460
When we have pending motion events, instead of delivering them
directly, request the new FLUSH_EVENTS phase of the frame clock.
This allows us to compress repeated motion events sent to the
same window.
In the FLUSH_EVENTS phase, which occur at priority GDK_PRIORITY_EVENTS + 1,
we deliver any pending motion events then turn off event delivery
until the end of the next frame. Turning off event delivery means
that we'll reliably paint the compressed motion events even if more
have arrived.
Add a motion-compression test case which demonstrates behavior when
an application takes too long handle motion events. It is unusable
without this patch but behaves fine with the patch.
https://bugzilla.gnome.org/show_bug.cgi?id=685460
There are cases where crossing events aren't generated by input devices themselves
but rather through programmatical means (windows being moved/hidden/destroyed while
the pointer is on top).
Those events come from X as sourceid=deviceid, and GDK does its deal at lessening
this by setting a meaningful source device on such events, although this caused
some confusion on the mechanism to block/synthesize touch crossing events that
could possibly cause bogus enter events on the new window below the pointer.
Fixes https://bugzilla.gnome.org/show_bug.cgi?id=691572
the backing GdkTouchGrabInfo will be needed if the overriding device
grab finishes before the touch does in order to send events back to
the implicit grab window. Instead, wait until the touch is physically
finished before removing the matching GdkTouchGrabInfo
If the touch sequence happens on a window with GDK_TOUCH_MASK set,
a GdkTouchGrabInfo is created to back it up. Else a device grab is
only created if the sequence emulates the pointer.
If both a device and a touch grab are present on a window, the later
of them both is obeyed, Any grab on the device happening after a
touch grab generates grab-broken on all the windows an implicit
touch grab was going on.
Anytime a touch device interacts, the crossing events generation
will change to a touch mode where only events with mode
GDK_CROSSING_TOUCH_BEGIN/END are handled, and those are sent
around touch begin/end. Those are virtual as the master
device may still stay on the window.
Whenever there is a switch of slave device (the user starts
using another non-touch device), a crossing event with mode
GDK_CROSSING_DEVICE_SWITCH may generated if needed, and the normal
crossing event handling is resumed.