Previously HiDPI scale was retrieved and applied too late in the initialization
process to affect monitor size and monitor workarea size, but the code that
initializes these sizes *did* try to use the scale, even though it was always
getting scale=1.
To fix this, move the too-late code into monitor enumeration routine.
This also fixes a probable semantic bug where width and height were divided
by scale, again.
Now monitor and workarea should be in application pixels (i.e. divided by scale),
as intended.
https://bugzilla.gnome.org/show_bug.cgi?id=778835
Previously GDK only made up monitors when it initially found none. Now it
also makes up monitors when it initially finds some, but later fails to get
their informatin in a normal way and finally prunes them out, being left with
zero monitors.
Having zero-length monitor array is unexpected and causes a number
of critical warnings and some critical functionality (such as displaying
drop-down menus) fails in such cases.
Ideally, there might be such a way to interrogate W32 API that produces the
information about non-real (but active) monitors out of it so that it isn't
necessary for us to make stuff up. However, this code is already complicated,
and i am not prepared to dig W32 API to find a way to do this.
This fixes the issues people had when they accessed a Windows desktop via RDP.
https://bugzilla.gnome.org/show_bug.cgi?id=777527
This enables HiDPI support for GTK+ on Windows, so that the
fonts and window look better on HiDPI displays. Notes for the current
work:
-The DPI awareness enabling can be disabled if and only if an application
manifest is not embedded in the app to enable DPI awareness AND a user
compatibility setting is not set to limit DPI awareness for the app, via
the envvar GDK_WIN32_DISABLE_HIDPI. The app manifest/user setting for
DPI awareness will always win against the envvar, and so the HiDPI items
will be always setup in such scenarios, unless DPI awareness is disabled.
-Both automatic detection for the scaling factor and setting the scale
factor using the GDK_SCALE envvar are supported, where the envvar takes
precedence, which will therefore disable automatic scaling when
resolution changes.
-I am unable to test the wintab items because I don't have such devices
around.
https://bugzilla.gnome.org/show_bug.cgi?id=768081
WINBOOL is MinGW-specific, so change it to BOOL, which is universally
available.
Also, Visua Studio is more picky on where __stdcall (WINAPI) is placed, so
fix that to be in-sync with what is done in the other sources.