GTK will not up front know how to correctly calculate a size, since it
will not be able to reliably predict the constraints that may exist
where it will be mapped.
Thus, to handle this, calculate the size of the toplevel by having GDK
emitting a signal called 'compute-size' that will contain information
needed for computing a toplevel window size.
This signal may be emitted at any time, e.g. during
gdk_toplevel_present(), or spontaneously if constraints change.
This also drops the max size from the toplevel layout, while moving the
min size from the toplevel layout struct to the struct passed via the
signal,
This needs changes to a test case where we make sure we process
GDK_CONFIGURE etc, which means we also needs to show the window and
process all pending events in the test-focus-chain test case.
It's not a portable API, so remove it. The corresponding backend
specific functions are still available, if they were implemented, e.g.
gdk_macos_monitor_get_workarea() and gdk_x11_monitor_get_workarea().
Make GdkEvents hold a single GdkDevice. This device is closer to
the logical device conceptually, although it must be sufficient for
device checks (i.e. GdkInputSource), which makes it similar to the
physical devices.
Make the logical devices have a more accurate GdkInputSource where
needed, and conflate the event devices altogether.
Looking at the xf86-input-wacom driver code, this is not even a thing
anymore. Drop this device type, in modern days there's
GDK_DEVICE_TOOL_TYPE_MOUSE for this.
Not all compositors support _NET_WM_FRAME_DRAWN. In cases
where the compositor doesn't support _NET_WM_FRAME_DRAWN we don't
need to do all the fancy damage tracking and fence watching.
Furthermore, if the compositor doesn't support _NET_WM_FRAME_DRAWN,
it's possible that one frame will start before the previous frame has
made it through the pipeline, leading to a blown assertion.
This commit side-steps the unnecessary code and associated assertion
when _NET_WM_FRAME_DRAWN isn't supported.
Fixes: https://gitlab.gnome.org/GNOME/gtk/-/issues/2927
If we create an implicit grab on a surface, leave the surface, and
release the button, we would get 2 XI_Leave events, one with mode
XINotifyNormal when the pointer leaves the surface, and another with
mode XINotifyUngrab when the button is released.
Meanwhile, the upper layers rely on crossing events being paired,
and particularly in no crossing event being sent until the implicit
grab is dismissed (either by releasing it, or via more pervasive
grabs).
Ignoring the set of XINotifyNormal events while an implicit grab
is active adapts the X11 backend to this behavior. If the grab were
released or taken away by another grab, a crossing event with one
of the other XINotify*Grab/XINotify*Ungrab will be generated.
Fixes: https://gitlab.gnome.org/GNOME/gtk/-/issues/2879
Since commit 972134abe4 a frame getting
drawn has three states (with the vendor nvidia driver at least):
1. drawn by gtk waiting on the GPU
2. drawn by GPU waiting on the compositor
3. drawn by compositor
Those three states are encoded in two flags: frame_pending and
frame_still_painting.
frame_pending means step 1 is done, but step 2 and 3 are still
in progress. frame_still_painting means step 2 is still in progress.
After step 1 is finished the surface is frozen until step 3 is finished.
When the compositor notifies gtk it's done with step 3, with a
_NET_WM_FRAME_DRAWN client message, the toolkit thaws the surface to
allow the next frame to proceed.
The compositor sometimes sends gtk a _NET_WM_FRAME_DRAWN client message
between steps 1 and 2. This message should be ignored because it's not
a reply to the current frame.
Unfortunately, gtk currently assumes if it gets a _NET_WM_FRAME_DRAWN
client message while waiting for step 2 that it's actually at step 3,
and proceeds to draw a new frame while the existing frame is still
pending, leading to a blown assertion.
This commit addresses the problem by ignoring _NET_WM_FRAME_DRAWN
client messages from the compositor unless actually expecting one.
Fixes: #2902
Since commit 972134abe4 we now call
glClientWaitSync for the vendor nvidia driver, to know when a frame
is ready for the compositor to process.
If a surface is hidden while a frame is still being rendered by the GPU,
the surface will never produce the damage event the code relies on to
trigger the call to glClientWaitSync. This leaves the fence dangling,
and the next time the surface is shown, it will start a fresh frame
and blow an assertion since the fence from the last frame is still
hanging around.
This commit ensures a frame gets fully wrapped up before hiding a
surface.
Commit a0f6ff101e made sure that a
context was bound before calling glClientWaitSync, but it doesn't
check that the context shares objects with the context that created
the fence.
This commit does a little more validation before deciding the current
context is good enough.
Since commit 972134abe4 we now call
glClientWaitSync for the vendor nvidia driver, to know when a frame
is ready for the compositor to process.
glClientWaitSync can be called regardless of which context is currently
bound, but if no context is bound at all, it returns 0 without
doing anything.
This commit checks for that edge case, and ensures a context gets
made current in the event no context is already current, before calling
glClientWaitSync.
When given a 0 timeout, glClientWaitSync is only supposed to return one
of three possible values:
- GL_ALREADY_SIGNALED - fence fired
- GL_WAIT_FAILED - there was an error
- GL_TIMEOUT_EXPIRED - fence hasn't fired yet
In addition, it can also return GL_CONDITION_SATISFIED if a non-zero
timeout is passed, and the fence fires while waiting on the timeout.
Since commit 972134abe4 we now call
glClientWaitSync (with a 0 timeout), but one user is reporting it's
returning some value that's not one of the above four.
This commit changes the g_assert to a g_error so we can see what
value is getting returned.
May help with https://gitlab.gnome.org/GNOME/gtk/-/issues/2858