Bypassed with #if 0 because it is an awful hack and not really
acceptable from a privacy point of view for instance. It prevents
Firefox from deleting temporary files containing images being dragged,
so they stay on disk. Bug #561973.
GdkNativeWindow cast is needed in 64-bit Windows so gpointer data
is converted to a (64-bit) native window handle.
GPOINTER_TO_UINT() is used in other platforms.
Either g_type_register_static_simple (used by G_DEFINE_TYPE_EXTENDED)
and G_IMPLEMENT_INTERFACE use automatic variables for GTypeInfo and
GInterfaceInfo structs, while tutorials and source code often use
static variables. This commit consistently adopts the former method.
https://bugzilla.gnome.org/show_bug.cgi?id=600158
When we just invalidate some area from the app we don't need to clear
windows with no exposure mask, because that wouldn't have happened pre-csw
anyway. Additionally we can avoid such clearing for native windows in cases
where the xserver already did the clearing like on exposes or when resizing
toplevels.
This means we don't fully redraw a GtkSocket when it resizes, thus
avoiding flicker in gnome-mplayer as reported in this bug:
https://bugzilla.gnome.org/show_bug.cgi?id=598050
Backends that support native window background setting (and that clears
new window areas to this color/pixmap) should set this to true.
Currently only X11 supports this.
When moving or scrolling a window with native children, there is no
need to expose the areas that are copied by the windowing system
as part of moving/resizing the native windows anyway.
Fixed the prototypes of MyEnhancedXkbTranslateKeyCode() and
translate_keysym() to take a gint* because those functions treat
these arguments as an int, so we get around the need to cast.
We have to do this, especially after the screen containing the menubar
has changed. Such more larger changes in monitor geometry will cause
changes to how monitors are laid out in the root window. The position
coordinates of the windows will have to be updated to reflect their
position in the new layout.
The Quartz port now supports arbitrary multiple monitor layouts instead
of only monitors are were laid out horizontally. This builds on the
reworked coordinate translation done in a previous commit.
The root window contains all the monitors attached to a Mac. The
coordinate transformation now both translates the x and y coordinate,
translating it from the Cocoa monitor coordinate space to the GDK
coordinate space. How monitors are laid out in the root window differs
between Cocoa and GDK, which is why it is important to translate based
on the root window to get multi monitor setups to work properly.
We have replaced the old y coordinate transformation function with
new functions that translate both the x and y coordinate.
When creating new toplevels, we have to determine the Cocoa screen on
which the toplevel should appear and translate the coordinates according
to that screen.
This change also fixes event handling in case there is a monitor left
of the screen containing the menu bar. In such a case all coordinates
on the left monitor are negative. Event handling broke, because of
_gdk_quartz_window_find_child() checking bounds. Now that coordinates
are always properly translated to GDK coordinate space, in which negative
coordinates do never occur, the checks here will work properly.
Using this we can update our internal monitor/screen layout state
and emit the GdkScreen::size-changed signal. Work has not
completely finished on this yet, see bug 596238.
Add dummy for _gdk_input_window_crossing (). Set both input_window_destroy
and input_window_crossing pointers in the Impl struct.
Reported by John Ralls.
The root window width and height have already been correctly
initialised in _gdk_root_window_size_init() to cover all monitors, so
don't incorrectly re-initialise using GetSystemMetrics(SM_C[XY]SCREEN)
which only gives the size of the primary monitor anyway. (See MSDN.)
This fixes at least gdk_screen_get_{width,height}() which indirectly
affects at least the positioning of combo box pop-up menus on multiple
monitors.