GtkBuilderScope is an interface that provides the scope that a builder
instance operates in.
It creates closures and resolves types. Language bindings are meant to
use this interface to customize the behavior of builder files, in
particular when instantiating templates.
A default implementation for C is provided via GtkBuilderCScope (to keep
with the awkward naming that glib uses for closures). It is derivable on
purpose so that languages or extensions that extend C can use it.
The reftest code in fact does derive GtkBuilderCScope for its own scope
implementation that implements looking up symbols in modules.
gtk-widget-factory was updated to use the new GtkBuilderCScope to add
its custom callback symbols.
So it does it different from gtk-demo, which uses the normal way of
exporting symbols for dlsym() and thereby makes the 2 demos test the 2
ways GtkBuilder uses for looking up symbols.
Use it as the default object for expression binds and when connecting
signals. It is intended to work kind of as the "this" object while
parsing. In fact, the term "current object" was stolen from the Java
docs and various C++ tutorials for the this pointer.
Set the current object in gtk_widget_init_template() and
GtkListItemBuilder.
This more-or-less replaces the object passed to
gtk_builder_connect_signals() in GTK3.
gtk_builder_connect_signals() is no longer necessary, because all the
setup that made it necessary to have this extra step is now done
automatically via the closure functions.
This will be the future way to connect signals automatically (and be
used for other things, too).
For now, gtk_builder_connect_signals_default() is ported to use it.
The "iconified" state is mostly an X11-ism; every other platform calls
this state "minimized" because it may not involve turning a window into
an icon at all.
GTK uses the Meson `buildtype` option to determine whether to enable or
disable debugging code and safeties. We should document our behaviour
and expectations.
This builds upon the GtkTextHistory helper to provide undo and redo support
for the GtkTextView widget and GtkTextBuffer object.
You can undo/redo using familiar shortcuts such as Primary+Z,
Primary+Shift+Z, ad Primary+Y.
Developers that wish to disable undo, should set the
GtkTextBuffer:enable-undo property to FALSE.
You can wrap irreversible actions
gtk_text_buffer_begin_irreversible_action() and
gtk_text_buffer_end_irreversible_action(). This will cause the undo stack
to drop all undo/redo actions and the changes made between them will be
the "initial state" of the buffer.
Calling gtk_text_buffer_set_text() will do this automatically for you.
This function is not useful. Every icon theme
on my system either does not have that field,
or has it as 'folder'. So, just use 'folder'
when you need an example icon.
This creates a new GtkTextViewChild that can manage overlay children at
given x,y offsets in buffer coordinates. This simplifies GtkTextView by
extracting this from GtkTextWindow as well as providing a real widget for
the borders.
With this change, we also rename gtk_text_view_add_child_in_window() to
gtk_text_view_add_overlay(). For those that were using
GTK_TEXT_WINDOW_WIDGET, they can use a GtkOverlay. It does not appear
that anyone was using GTK_TEXT_WINDOW_(LEFT|RIGHT|TOP|BOTTOM) for widgets
in this fashion, but that can be done by setting a gutter widget with
gtk_text_view_set_gutter(). We can make GtkTextViewChild public if
necessary to simplify this should it become necessary.
GtkTextViewChild will setup a CSS node of either "text" or "border"
depending on the GtkTextWindowType.
The old GtkTextViewChild has been renamed to AnchoredChild as it is only
used for widgets with anchors in the GtkTextBuffer. This also removes the
use of allocated GSList and instead embeds a GQueue and GList to save a
few extraneous allocations.
The renaming of this function doesn't make much since because the window
is the GtkTextWindowType, not GdkWindow specifically. So we can keep the
old name which is closer to the proper meaning and less code for consumers
to change when porting to 4.x.
The documentation stated:
GTK is a library.… GTK depends on the following libraries:
GTK The GTK library itself contains widgets, that is, GUI
components such as GtkButton or GtkTextView.
There is no point in stating, that the GTK library
depends on the GTK library.
I recently turned gtk_widget_activate_action()
into a varargs function. That is more convenient
from C, but we need a non-varargs variant for
bindings. So add the old API back, under the
name gtk_widget_activate_action_variant(),
with a rename-to annotation.
The only cases of stateful actions we've seen
so far have been boolean properties, and we
don't really want to add much state handling
API, so lets just go with property actions
for now.
Adapt the only user in GtkText.
Add a facility to register and install actions
at class init time. The intended use for these
actions is for
a) context and other model-based menus
b) key bindings
Most of these actions are going to be stateless,
so add separate apis for the simple and stateful
cases.
We avoid creating an action group for these by
teaching the action muxer about these actions.
The action muxer also maintains the enabled
state for these actions.
Drop the ::populate-popup signal and implement
the new context menu api. Things are a bit more
complicated here, since we have different menus
on links and selectable text.
Add a convenience api to skip children
that should not be included in the layout,
and call gtk_native_check_resize on all
native children outside of the vfunc.
Make gtk_popover_new_from_model() return a GtkPopoverMenu,
rename it to gtk_popover_menu_new_from_model() and add
a relative_to argument to gtk_popover_menu_new().
Update all callers.
We want to use a gdk_surface_new_popup for popups,
and align the constructor names with the surface
types, so rename
gdk_surface_new_popup -> gdk_surface_new_temp
gdk_surface_new_popup_full -> gdk_surface_new_popup
The temp surface type will disappear eventually.
The 'documentation' option also guarded the man page build. Instead
if skipping the whole docs subdir skip the specific gtkdoc calls, so that the
man page build still works.
This brings it in line with the gtk3 meson build.
This is not an api we want to propagate anymore.
If you need to, you can still emit the "clicked"
action signal on a button using g_signal_emit_by_name.
Make GtkMenuButton a widget that has a
toggle button, instead of deriving from it.
We give it icon-name and label properties,
to let people do what they expect to do
with menu buttons.
The default widget is mostly a dialog concept,
and does not really need this generic api.
If you need to mark a widget as default,
use gtk_window_set_default() directly.
This api wasn't used anywhere in GTK. And since
we've dropped the variant for the default widget,
this one should go too. If it is needed, it should
become and action too.
The skip-taskbar, skip-pager and urgency hints were
only ever implemented for X11, and are not very useful
with modern desktops. Relegate the functionality to
x11 backend api, and drop the GtkWindow api.
gtk_css_provider_get_named() is the old GTK3 style API to load themes.
Instead, export the function we currently use,
gtk_css_provider_load_named().
As a side effect we allow people to load a theme as often as they want
without conflicting with GTK's theme.
This library is meant to be the new CSS library that gets used from GDK,
GSK and GTK for string printing and parsing.
As a first step, move GtkCssProviderError into it.
While doing so, split it into GtkCssParserError (for critical problems)
and GtkCssParserWarning (for non-critical problems).
The need of a specialised fixed layout container that can be placed into
a GtkScrolledWindow ceased to exist once GtkScrolledWindow gained the
ability to automatically interpose a GtkViewport when adding a child
that does not implement GtkScrollable.
All the other justifications that led to the existence of GtkLayout as a
separate widget from GtkFixed have been largely made irrelevant in the
20 years since its inception.
...and the setter/getter for it.
This is a very old X session management thing, and you
will be hard-pressed to find a session manager that can
make use of it, and even harder-pressed to find apps
using it to their advantage.
Layout managers needs a way to store properties that control the layout
policy of a widget; typically, we used to store these in GtkContainer's
child properties, but since GtkLayoutManager is decoupled from the
actual container widget, we need a separate storage. Additionally, child
properties have their own downsides, like requiring a separate, global
GParamSpecPool storage, and additional lookup API.
GtkLayoutChild is a simple GObject class, which means you can introspect
and document it as you would any other type.
We delegate the size request mode, the measuring, and the allocation of
a widget through a GtkLayoutManager instance, if one has been attached
to the widget; otherwise, we fall back to the widget's own implementation.
A base abstract class for layout manager delegate objects.
Layout managers are associated to a single widget, like event
controllers, and are responsible for measuring and allocating the
children of the widget they are bound to.
Add a ::show-peek-icon property and show a clickable
icon when it is set. Clicking it toggles the visibility
of the content. The same functionality is also accessible
via a context menu item.
This is a common feature of password entries.
This is a first cut at updating the drawing model chapter
for the way we do things now. It introduces the scene graph and
render nodes, explains node caching and tree diffing, and removes
sections about subwindows.
Instead of gtk_snapshot_offset(), provide a full set of functions
kept in sync with GtkTransform APIs.
On top of that, add gtk_snapshot_save() and gtk_snapshot_restore()
mirroring cairo_save()/restore() that allow saving a snapshot's
transform state.
This is a new object (well, boxed type, but I'm calling it object) for
dealing with transform in a more constructive way than graphene_matrix_t
by keeping track of how the transform was created.
This way, reasoning about the transform becomes easier, and we can create
better ways to print it or transition from one transform to another one.
An example of this is that while a 0 degree and a 360degree rotation are
both the identity matrix, doing a transition between the two would cause
a rotation.
Use a GtkText child, and delegate the editable functionality
to it. Also forward all the properties that are provided by
GtkText.
Some of the more internal APIs, such as layout and im context
access and caps-lock warning, are removed here, but we preserve
most of the plain GtkEntry API by forwarding it to the GtkText
child.
The transform matrix is a translation matrix from the parent's origin to
the widget origin. We will later allow more transformations than just
translations.