gtk_widget_reposition_after is called both to add new children,
and to reposition existing children. We only want to emit
accessible changes in the former case (since AT-SPI doesn't
have events for reordering).
A bit hacky: we skip parsing values that have a reference or
reference-list type, but we do not error out. Instead, we return a NULL
value, which we catch in the GtkBuildable interface implementation to
get the actual object, and construct a reference list value.
There's still some ickyness around the value type that can only be
solved by having an attribute and role taxonomy.
Accessible attributes are not GObject properties. This means that we
need a custom parser for setting attributes in our UI description files.
The new section is defined as a sub-tree with the `<accessibility>`
element at its root, and elements for each type of accessible
attributes, i.e. properties, relations, and states:
```xml
<object class="..." id="...">
<accessibility>
<property name="label">The accessible label</property>
<state name="pressed">false</state>
<relation name="labelled-by">label1</relation>
</accessibility>
</object>
```
The name of the attribute is the enumeration value; the value is defined
by the WAI-ARIA specification.
There were several places where we were confusing
GList and GSList and list->data and list->next, causing
a crash in the accessible name computation for buttons
with mnemonic labels.
Anybody who keeps their own CSS nodes around or wants to order CSS nodes
different from widgets will from now on have to do it manually all the
time.
This is outdated behavior, nobody should be doing either of those two
things.
Also, the correct case is much more common, and not doing it
automatically was causing bugs.
Fixes#3280
And honor it in gtk_popover_popdown(). By default, a GtkPopover
pops down automatically if a child popover was closed, if this
property is FALSE, the popover will remain opened.
As a companion to go with the platform_change api,
add a gtk_accessible_get_platform_state() function
that can be used by backends to get the platform
state.
This is in preparation for making entries inherit
their focus states from the text widget within.
Since we need to check at run time what kind of AT context to use, we
need a hook into the whole GDK backend machinery. The display connection
seems to be the best choice, in this case, as it allows us to determine
whether we're running on an X11 or Wayland system, and thus whether we
should create a GtkAtSpiContext.
This requires some surgery to fix the GtkATContext creation function, in
order to include a GdkDisplay instance.
GtkBuildable's get_name()/set_name() methods may shadow
GtkWidget's methods. Avoid that by renaming the API to
get_buildable_id()/set_buildable_id(), which also reflects
the name of the XML attribute the API refers to.
https://gitlab.gnome.org/GNOME/gtk/-/issues/3191
Using gtk_widget_insert_before on a complex container
is a *bad* idea; it will mess up the containers bookkeeping
of its children and can easily lead to failure and crashes.
My previous change here was too hasty - this code is not
actually transforming points - it is just a convoluted
way to transform the z axis from child coordinates to
the parent.
Replace our uses of graphene_matrix_transform_point,
_point3d and _bounds by our own versions that handle
projective transforms correctly.
This fixes render node bounds being incorrect for widgets
involving projective transforms (e.g. testrevealer swing
transformations), and also fixes picking on such widgets.
The code in gtk_widget_real_css_changed assumes that
queue_resize > queue_allocate > queue_draw, but the
second one is not really true. These days, we happily
keep reusing the same render node even when the child
allocation is changed.
So, if a css change has flags that tell us we should
redraw, we need to queue a draw, otherwise we might
end up reusing an outdated render node.
This fixes spinners staying visible when they stop
spinning, despite the theme setting their opacity
to 0.
Make GdkEvents hold a single GdkDevice. This device is closer to
the logical device conceptually, although it must be sufficient for
device checks (i.e. GdkInputSource), which makes it similar to the
physical devices.
Make the logical devices have a more accurate GdkInputSource where
needed, and conflate the event devices altogether.
Some widgets have different roles after they are constructed, so we need
to allow changing the role defined by the class. We should still avoid
setting a role after the GtkATContext has been created.
Some widgets have different accessible roles depending on some
parameter, so we cannot set the role at class init time. For those
widgets, we add an "accessible-role" property to GtkAccessible, and we
allow setting it (only) at construction time.
Each widget type has an accessible role associated to its class, as
roles cannot change during the life time of a widget instance.
Each widget is also responsible for creating an ATContext, to proxy
state changes to the underlying accessibility infrastructure.
GtkAccessible is an interface for accessible UI elements.
Currently, it doesn't do much except exist as a type; in the future, it
will be the entry point for all accessible state in GTK.
To build a better world sometimes means having to tear the old one down.
-- Alexander Pierce, "Captain America: The Winter Soldier"
ATK served us well for nearly 20 years, but the world has changed, and
GTK has changed with it. Now ATK is mostly a hindrance towards improving
the accessibility stack:
- it maps to a very specific implementation, AT-SPI, which is Linux and
Unix specific
- it requires implementing the same functionality in three different
layers of the stack: AT-SPI, ATK, and GTK
- only GTK uses it; every other Linux and Unix toolkit and application
talks to AT-SPI directly, including assistive technologies
Sadly, we cannot incrementally port GTK to a new accessibility stack;
since ATK insulates us entirely from the underlying implementation, we
cannot replace it piecemeal. Instead, we're going to remove everything
and then incrementally build on a clean slate:
- add an "accessible" interface, implemented by GTK objects directly,
which describe the accessible role and state changes for every UI
element
- add an "assistive technology context" to proxy a native accessibility
API, and assign it to every widget
- implement the AT context depending on the platform
For more information, see: https://gitlab.gnome.org/GNOME/gtk/-/issues/2833
This got stuck in ancient times when widgets were windowed, so the devices
in a window to know the devices in that widget would pan out. We do only
want here the devices that are inside the widget, not spread over the
surface, so rewrite this helper function to poke the toplevel foci, and
look they are contained inside the widget.
Crossing events are now detached from widget state, all tricky consequences
from getting multiple crossing events are now somewhat moot. Resort to sending
all generated crossing events, and drop this barely (ever?) used API.
When a gesture (group) claims a sequence, all other gesture groups
in the same widget should get cancelled. Not just previously claimed
ones, that shouldn't happen actually.
Add a variant of gtk_widget_add_controller that
inserts the controller at the beginning, instead
of the end. This will be used in entry completion
to make sure the entry completion key event handling
supersedes the entry one while the popup is open.
Keep this private for now, until we determine if
it needs to be public api.
We were adding event controllers at the end, but
announcing a change at the beginning, in
gtk_widget_add_controller. Fix that by emitting
::items-changed for the position where we actually
inserted the controller.
We already know that a widget will have literally 1 node, not more.
Avoid doing the GtkSnapshot state stack dance and just append a new
transform node instead.
Seems to give me around 400 more icons in the fishbowl
It feels slightly wrong to have GtkOrientable operate on widgets, but at
least what happens when an orientable widget changes orientation should
be part of GtkWidget.
This will allow to add more state changes without accessing widget state
from the outside of gtkwidget.c.
We expect widgets to use their own derived GtkWidgetAccessible type,
these days, and given that we hard code the default accessible type of a
GtkWidget to GtkWidgetAccessible, and that we enforce the dependency of
the type passed to gtk_widget_class_set_accessible_type(), the registry
code path is clearly unused.
The tooltip handling in GtkWidget is "special":
- the string is stored inside the qdata instead of the private
instance data
- the accessors call g_object_set() and g_object_get(), and the
logic is all inside the property implementation, instead of
being the other way around
- the getters return a copy of the string
- the setters don't really notify all the involved properties
The GtkWidgetAccessible uses the (escaped) tooltip text as a source for
the accessible object description, which means it has to store the
tooltip inside the object qdata, and update its copy at construction and
property notification time.
We can simplify this whole circus by making the tooltip properties (text
and markup) more idiomatic:
- notify all side-effect properties
- return a constant string from the getter
- if tooltip-text is set:
- store the text as is
- escape the markup and store it separately for the markup getter
- if tooltip-markup is set:
- store the markup as is
- parse the markup and store it separately for the text getter
The part of the testtooltips interactive test that checks that the
getters are doing the right thing is now part of the gtk testsuite, so
we ensure we don't regress in behaviour.
If you add a widget to a parent, this will invalidate the css nodes
for parent/siblings. Afterwards, if the parent is mapped, we will
realize the new child. This calls gtk_widget_update_alpha() which
needs the css opacity, so it revalidates the css.
Thus, for each widget_add (while visible) will trigger a full
revalidation of each sibling. If you add N children to a parent that
leads to O(N^2) revalidations.
To demo this I changed gtk-demo to always double the count
(independent of the fps) and print the time it took. Here is the
results (after a bit):
Setting fishbowl count=256 took 3,4 msec
Setting fishbowl count=512 took 10,1 msec
Setting fishbowl count=1024 took 34,1 msec
Setting fishbowl count=2048 took 126,3 msec
Setting fishbowl count=4096 took 480,3 msec
Setting fishbowl count=8192 took 1892,7 msec
Setting fishbowl count=16384 took 7751,0 msec
Setting fishbowl count=32768 took 38097,7 msec
Setting fishbowl count=65536 took 191987,7 msec
To fix this we drop gtk_widget_update_alpha() and just
calculate it when needed (which is only in a single place).
It was really only necessary because we previously set
the alpha on the surface.
With this fix the above becomes:
Setting fishbowl count=256 took 1,0 msec
Setting fishbowl count=512 took 1,9 msec
Setting fishbowl count=1024 took 3,7 msec
Setting fishbowl count=2048 took 7,4 msec
Setting fishbowl count=4096 took 18,1 msec
Setting fishbowl count=8192 took 31,0 msec
Setting fishbowl count=16384 took 66,3 msec
Setting fishbowl count=32768 took 126,7 msec
Setting fishbowl count=65536 took 244,6 msec
Setting fishbowl count=131072 took 492,2 msec
Setting fishbowl count=262144 took 984,3 msec
We require a C compiler supporting C99 now. The main purpose of
these fallbacks was for MSVC. From what I can see this is now all supported
by MSVC 2015+ anyway.
The only other change this includes is to replace isnanf() with the
(type infering) C99 isnan() macro, because MSVC doesn't provide isnanf().
It's private, no APIs, we don't talk about it. But we will start using
it very soon, so we can do size request caching in columns and avoid
sizegroups...
If you run weston with the headless backend, you get a Wayland
display with no seat, which is just fine by the protocol.
gdk_display_get_default_seat() returns NULL in this case. Various
widgets assume that we always have a seat with a keyboard and a
pointer, since that is what X guarantees. Make things survive
without that, so we can run the testsuite under a headless
Wayland compositor.
Add back a property that determines whether an individual
widget will accept focus or not. :can-focus prevents the
focus from ever entering the entire widget hierarchy
below a widget, and :focusable just determines if grabbing
the focus to the widget itself will succeed.
See #2686
This signal is mainly used for bad things, and we
don't want to emit signals during layout if we can
avoid it.
If you are subclassing, you should either use a
layout manager or override the size_allocate vfunc.
If you are using a GtkDrawingArea or GtkGLArea,
use their ::resize signals to learn about size
changes.
Fixes: #2705
The a11y machinery is using signal subscription to get notified of size
changes and notify listeners in turn. This is suboptimal for a couple of
reasons:
- if something connects to the GtkWidget::size-allocate signal we need
to emit it; currently, we have an optimization in place that will
skip the signal emission if there are no handlers, and it would be
nice to go through the fast path
- the accessibility implementation is part of GTK, and should not go
through additional hoops like any out-of-tree API consumer
This is either no chagne because we know for a fact that the returned
value is a GtkNative - after all thats's the type we pass to
gtk_widget_get_ancestor().
Or it is a bug fix since casting NULL to a GtkNative using GTK_NATIVE()
is not going to work, but the API contract of gtk_widget_get_native()
explicitly allows a NULL return value.
We were having a problem where property actions were
not getting state updates because prop_actions_connect
was triggered from some instance_init function while
the widget class is not in place yet.
Delay that call until the widget is fully constructed,
so we can guarantee that we are dealing with the
correct class private struct, and see all class actions.
We already dropped this invariant in gtk_widget_verify_invariants()
because it was not true in all cases. Also, it is not really useful
these days as we extended what it means to be a "child" to also
include widgets in different toplevels.
For example, a popup in a popup button need not be realized just
because the button is in a realized window. The main invariants
we want are:
* Parent is realized before child
* Widget is realized before it is mapped
This sounds like its not a huge deal, but in fact it is a massive win
for things like menus, because when we go between menus in a menubar
each switch between two open menus involves a lot of intermingled
crossing events to different surfaces and for each of these the
tooltip window of the toplevel gets assigned to the new surface. This
shouldn't be a huge deal, as the tooltip window is not even visible,
but due to the realized invariant it get re-realized each time it gets
re-assigned.
This gives us a hook to walk the widget tree whenever a global
setting changes and do per-widget invalidations. This will
replace gtk_style_context_reset_widgets().
This was only living in gtkcontainer.c for historic
reasons. Move it closer to where it belongs, and
rename it from 'idle' to 'layout', since it is
really about the layout phase of the frame clock,
nowadays.