The event is not useful at all, so we are better off
with a signal that doesn't have it, and it is only
relevant on toplevel windows, so we don't need it on
GtkWidget.
With this commit, delete events no longer go through the
::event, ::delete-event, ::event-after widget signals,
but just cause the ::close-request signal on GtkWindow to be
emitted.
Using get_preferred_size here does not work since it computes the
minimum height for the minimum width, but we want to know the minimum
height for the current width.
The fix is twofold. First, when checking that a corner is resizable, we must
check the constraints on both edges. Second, when checking either edge we
must include both perpendicular sides in order to allow those to be
resizable when the constraint does not allow resizing the edge being
checked.
When looking for the cursor to apply, start from the innermost
widget and go up. This is the right behavior for cases like
entry icons. The top-down order we were using so far is the
right behavior for cases like global wait cursors. Since we
have entry icons in gtk, but not global wait cursors, lets
pick the other order for now.
application/x-rootwindow-drop is not useful anywhere else,
so put it under #ifdef GDK_WINDOWING_X11
On W32 this prevents toplevels from automatically becoming valid
drop targets with a useless drop type.
(This commit is cherry-picked from the gtk-3-22 branch)
https://bugzilla.gnome.org/show_bug.cgi?id=786509
Instead of allowing people to pass a uint user-data, insist on them
comparing mime types.
The user data was a uint instead of a pointer anyway, so uniqueness
could not be guaranteed and it caused more issues than it was worth.
And that's ignoring the fact that it basically wasn't used.
Change constructors to reflect that.
While doing so, also add a fallback argument to the cursor constructors,
so it is now possible to create cursors with fallback.
The check used to achieve discarding events not meant for the window
widget itself (because they are handled in the regular paths). Using
the target widget is the equivalent now.
Use g_value_set/get_boxed() in gtk_window_get/set_property(), case PROP_ICON.
icon_from_list() shall always add a reference to the returned icon.
gtk_window_set_icon() must accept icon != NULL.
https://bugzilla.gnome.org/show_bug.cgi?id=789870
We disconnect from the GDK window, so the renderer can't keep any useful
state.
Plus, we might be using an entirely different window next time we
realize (after a call to gtk_window_set_display() for example) that should
use a completely different renderer anyway.
And have a priv->display instead of a priv->screen.
Includes turning gtk_menu_set_screen() into gtk_menu_set_display(),
because that function just forwards to its window.
If the compositor prefers server-side decorations and the client doesn't
customize the title bar, we disable client-side decorations and let the
compositor know. Otherwise, we continue to use client-side decorations.
Signed-off-by: Drew DeVault <sir@cmpwn.com>
https://bugzilla.gnome.org/show_bug.cgi?id=781909
As Timm Baedert pointed out, the previous fix made the
menubar go on top of popovers, which is just wrong. Instead,
make gtk_window_snapshot handle all direct children of the
window, taking care to stack popovers correctly.
This patch makes that work using 1 of 2 options:
1. Add all missing enums to the switch statement
or
2. Cast the switch argument to a uint to avoid having to do that (mostly
for GdkEventType).
I even found a bug while doing that: clearing a GtkImage with a surface
did not notify thae surface property.
The reason for enabling this flag even though it is tedious at times is
that it is very useful when adding values to an enum, because it makes
GTK immediately warn about all the switch statements where this enum is
relevant.
And I expect changes to enums to be frequent during the GTK4 development
cycle.
Clarify that ::destroy, not ::hide*, removes a window from its app, by
replacing the mention of open windows with the blurb on destruction from
:application, completing commit 7db4bee4b6
Also link to the equivalent gtk_application_(add|remove)_window() calls,
since Application.add_window() already links back to Window:application.
* unless you use gtkmm…
https://bugzilla.gnome.org/show_bug.cgi?id=639931
Instead of relying on special values of edge constraints, this
patch adds an internal-only gdk_window_supports_edge_constraints()
function that by default returns FALSE, and is implemented by
GdkWindowWayland and GdkWindowX11.
This way, we can properly detect server-side support for this
feature and adapt accordingly.
https://bugzilla.gnome.org/show_bug.cgi?id=783669
The last touch on this patch series is making GtkWindow able to
selectively adjust various UI details based on the different
tiled edges. The main driver here is that we don't want to show
shadows on edges that are constrained.
This patch adds the necessary code to do that, while still
maintaining compatibility with the old ways.
https://bugzilla.gnome.org/show_bug.cgi?id=783669
GTK windows don't have their tiling states really
hooked into the client-side decoration code, and
the only effect it has is disabling the resizing
edges.
With the introduction of per-edge tiling information,
we are backed by much more precise data on how the
window manager wants the app to behave.
This patch, then, fixes GtkWindow to take into account
per-edge tiling information. For compatibility purposes,
the previous tiled field was kept, and thing will just
continue working if no edge information is supplied.
https://bugzilla.gnome.org/show_bug.cgi?id=783669
Do not connect to get_settings_for_screen() if we have no screen…
Use g_signal_connect(), not connect_object(), to match how set_screen()
makes this same connection, and how finalize() already disconnects it.
https://bugzilla.gnome.org/show_bug.cgi?id=705640
Since setting a clip is mandatory for almost all widgets, we can as well
change the size-allocate signature to include a out_clip parameter, just
like GtkCssGadget did. And since we now always propagate baselines, we
might as well pass that one on to size-allocate.
This way we can also make sure to transform the clip returned from
size-allocate to parent-coordinates, i.e. the same coordinate space
priv->allocation is in.
That means the whole hierarchy is getting destroyed, leaving those
behind incurs not only in a leak, but also on weak refs (and unintended
repick) to happen in the wrong moment.
As we now refrain from sending the crossing events if there's an
implicit grab, those events must be sent on button release when
the implicit grab is broken.
Check the grab widget (both explicit and implicit) and check for a cursor
from the target widget up to this grab widget. If the target widget is
outside the grab widget, only the grab wigdet's cursor will be checked.
This also means that we have to ensure the cursor is updated on button
releases, as an implicit grab being deactivated must trigger a cursor
lookup from the target widget.
We don't draw or size-allocate the titlebar when the window is
fullscreen or undecorated, so reflect this by setting it to
!child_visible. This can happen when changing the value of the decorated
property while the window is shown.
We can just replace window comparisons with coordinate matching, the
cursor corresponding to edges is now set in a capture-phase motion
handler, as cursors aren't set on GdkWindows anymore.
There should be no circumstances where an implicit grab is requested but
no focus exists, there's however circumstances (like windowing grabs taking
input to a different window) where we might get implicit grabs being undone
when then new window didn't create a focus for the pointer itself.
Only if they fall outside the grab widget, in that case the widget holding
the implicit grab won't be receiving events anymore, so we can just undo
it.
We now rely on toplevels receiving and forwarding all the events
the windowing should be able to handle. Event masks are no longer a
way to determine whether an event is deliverable ot a widget.
Events will always be delivered in the three captured/target/bubbled
phases, widgets can now just attach GtkEventControllers and let those
handle the events.
Unlike GTK+ grabs which are global to all/one device, the implicit grab
is per focus, which means each may have implicit grabs on different or
the same widget.
Each toplevel will keep its own tracking of the current ongoing foci,
add the plumbing that will allow to create/update/remove those as they
come and go.