Setting event compression to false will allow inter-frame
mouse motion events to be delivered, which are necessary
for painting applications to produce smooth strokes.
https://bugzilla.gnome.org/show_bug.cgi?id=702392
We've long had double precision mouse coordinates on wayland (e.g.
when rotating a window) but with the new scaling we even have it on
X (and, its also in Xinput2), so convert all the internal mouse/device
position getters to use doubles and add new accessors for the
public APIs that take doubles instead of ints.
We don't track the full clip for each window anymore, as this
is not useful when no windows are opaque. However, we still
need the full clip for the shape, so its calculated manually.
However, it was previously only recalculated when the clip changes
which doesn't correctly handle the case of a sibling geometry changing.
So, instead of doing this directly when geometry changes we just
set a bit in the toplevel whenever some window geometry changes, and
we then handle this in process_updates, updating the shape for all
native windows. This should be ok performance-wise because we don't
expect a lot of native children.
This removes the typechecks in GDK_WINDOW_TYPE and GDK_WINDOW_DESTROYED. These
are only used internally in gdkwindow.c and gdkdisplay.c anyway, and these
functions check for typesafety of arguments on function entry.
This lets you register callbacks for when child widgets invalidate
areas of the window read it and/or change it.
For instance, this lets you do rendering effects and keeping offscreen
caches uptodate.
We now only do one expose event per native window, so there will
only be one begin/end_paint() call. This means all the work with
implicit paints to combine the paints on a single double buffer
surface is unnecessary, so we can just delete it.
Since we're not exporting the ability to create your own frame
clock for now, remove the setters for GdkFrameTimings fields.
Also remove all setters and getters for fields that are more
about implementation than about quantities that are meaningful
to the applcation and just access the fields directly within
GDK.
Now that GdkFrameClock is a class, not interface, there's no real advantage
to splitting the frame history into an aggregate object, so directly
merge it into GdkFrameClock.
When we have pending motion events, instead of delivering them
directly, request the new FLUSH_EVENTS phase of the frame clock.
This allows us to compress repeated motion events sent to the
same window.
In the FLUSH_EVENTS phase, which occur at priority GDK_PRIORITY_EVENTS + 1,
we deliver any pending motion events then turn off event delivery
until the end of the next frame. Turning off event delivery means
that we'll reliably paint the compressed motion events even if more
have arrived.
Add a motion-compression test case which demonstrates behavior when
an application takes too long handle motion events. It is unusable
without this patch but behaves fine with the patch.
https://bugzilla.gnome.org/show_bug.cgi?id=685460
We now store the current opacity for all windows. For native windows
we just call into the native implementation whenever the opacity changes.
However, for non-native windows we implement opacity by pushing a
second implicit paint that "stacks" on the existing one, acting as
an opacity group while rendering the window and its children.
This works well in general, although any native child windows will of
course not be opaque. However, there is no way to implement
implicit paint flushing (i.e. draw the currently drawn double buffer
to the window in order to allow direct drawing to the window).
We can't flush in the stacked implicit paint case because there
is no way to get the right drawing behaviour when drawing directly
to the window. We *must* draw to the opacity group to get the right
behaviour.
We currently flush if:
* A widget disables double buffering
* You call move/resize/scroll a window and it has non-native children
during the expose handler
In case this happens we warn and flush the outermost group, so there may
be drawing errors.
https://bugzilla.gnome.org/show_bug.cgi?id=687842
and gdk_window_get_fullscreen_mode() API to allow
applications to specify if a fullscreen window should
span across all monitors in a multi-monitor setup or
remain on the current monitor where the window is
placed.
Fullscreen mode can be either GDK_FULLSCREEN_ON_ALL_MONITORS
or GDK_FULLSCREEN_ON_CURRENT_MONITOR.
https://bugzilla.gnome.org/show_bug.cgi?id=691856
We track the areas that have alpha coverage so that we can
avoid using these as sources when copying window contents.
We also don't remove such areas from the clipping regions so
that they are painted both by parent and child.
GDK_NATIVE_WINDOWS was a way to keep some old apps running that did weird
things in gtk2. We should not have to carry this forwards in gtk 3.x.
We do however keep a g_warning() call reminding people of this fact to
ease debugging when they try to port their applications.
https://bugzilla.gnome.org/show_bug.cgi?id=644119
The X11 backend exports a number of symbols which are _-prefixed
(so don't become part of the gdk api), but are not named in a
way to prevent accidental clashes between backends.
The one API change here is that the gdk_xid_table functions
have been removed - they did not server an purpose, since the
xid table only stores windows anyway, and we already have a
lookup-by-xid function for windows.
This commit hides the GdkDisplayManager instance and class structs,
adds vfuncs for listing displays, opening displays, and getting and
setting the default display. The X11 backend has a derived
GdkDisplayManagerX11.
The gdk_display_manager_get() function is responsible for deciding on
which of the compiled in backends to use. Currently, it consults the
GDK_BACKEND environment variable and falls back to x11.
Use the grab and ungrab vfuncs from the frontend instead of the
_gdk_windowing wrappers, and move some things around accordingly.
Again, only the X11 backend has been updated, other backends
need to be updated to match.
It turned out no vfuncs were necessary. I've decided to move
the screen member up to GdkVisual, since it is the same in all
backends. The X11 backend subclasses now, to add the X members
that it needs to keep track of. GdkVisual and GdkVisualClass
are hidden now.
This commit hides GdkDragContext and GdkDragContextClass, adds
vfuncs for most drag context functionality, and turns the X11 DND
implementation into GdkDragContextX11. We also add vfuncs to
GdkDisplay for gdk_drag_get_protocol and to GdkWindow for
gdk_drag_begin, and implemenet them for X11.
Other backends need similar treatment and are broken now.
Add a GdkDisplay::get_app_launch_context vfunc, and a
gdk_display_get_app_launch_context that for X11 returns a subclass.
For win32 and quartz, the implementations were trivial, so we
just return a new GdkAppLaunchContext without subclassing. Since
the type of the context now depends on the display,
gdk_app_launch_context_set_display is deprecated.