We were adding incomplete frame timings to the
profile, which lead to occasional nonsense
numbers. Instead, only add timings to the profile
once we marked them as complete. This also
gives us an opportunity to add the presentation
time as a marker.
Since commit 3b2f9395, the frame time may be set into the future, so
only ensure monotonicity, and don't store the offset. This prevents the
frame time from becoming out of sync with g_get_monotonic_time().
Fixes#1612
The main GDK thread lock is not portable and deprecated.
The only reason why gdk_threads_add_timeout() and
gdk_threads_add_timeout_full() exist is to allow invoking a callback
with the GDK lock held, in case 3rd party libraries still use the
deprecated gdk_threads_enter()/gdk_threads_leave() API.
Since we're removing the GDK lock, and we're releasing a new major API,
such code cannot exist any more; this means we can use the GLib API for
installing timeout callbacks.
https://bugzilla.gnome.org/show_bug.cgi?id=793124
This fixes stuttering in animations that rely on the regularity of
gdk_frame_clock_get_frame_time.
https://bugzilla.gnome.org/show_bug.cgi?id=787665
BEFORE
gdkgears:
58 FPS and visibly stuttering
gnome-maps on a 59.95Hz monitor:
"paint" g_get_monotonic_time +17278μs, gdk_frame_clock_get_frame_time +17278μs
"paint" g_get_monotonic_time +17449μs, gdk_frame_clock_get_frame_time +17426μs
"paint" g_get_monotonic_time +17620μs, gdk_frame_clock_get_frame_time +17600μs
AFTER
gdkgears:
60 FPS and smoother
gnome-maps on a 59.95Hz monitor:
"paint" g_get_monotonic_time +18228μs, gdk_frame_clock_get_frame_time +16680μs
"paint" g_get_monotonic_time +15010μs, gdk_frame_clock_get_frame_time +16680μs
"paint" g_get_monotonic_time +17134μs, gdk_frame_clock_get_frame_time +16680μs
This patch makes that work using 1 of 2 options:
1. Add all missing enums to the switch statement
or
2. Cast the switch argument to a uint to avoid having to do that (mostly
for GdkEventType).
I even found a bug while doing that: clearing a GtkImage with a surface
did not notify thae surface property.
The reason for enabling this flag even though it is tedious at times is
that it is very useful when adding values to an enum, because it makes
GTK immediately warn about all the switch statements where this enum is
relevant.
And I expect changes to enums to be frequent during the GTK4 development
cycle.
These were showing up higher in Sysprof profiles.
The simple fix is to avoid the emit_by_name() and let the interface emit
the signals directly. No function preconditions are provided since these
are internal API.
In the case where the layout phase queued a layout we don't
want to progress to the paint phase with invalid allocations, so
we loop the layout. This shouldn't normally happen, but it may
happen in some edge cases like if user/wm resizes clash with
natural window size changes from a gtk widget. This should not
generally loop though, so we detect this after 4 cycles and
print a warning.
This was detected because of an issue in GtkWindow where it
seems to incorrectly handle the case of a user interactive resize.
It seems gtk_window_move_resize() believes that configure_request_size_changed
changed due to hitting some corner case so it calls
gtk_widget_queue_resize_no_redraw(), marking the window as need_alloc
after the layout phase. This commit fixes the issue, but we should
also look into if we can fix that.
If no updates, redraws, or repaints have been scheduled for this frame,
we will skip immediately to RESUME_EVENTS, and no GdkFrameTimings will
be created.
https://bugzilla.gnome.org/show_bug.cgi?id=694732
Commit 1db87c897f accidentally removed
a check for !in_paint_idle in maybe_start_idle which causes us
to create a paint loop whenever something requests a phase
inside the paint_idle.
The default windows timer resolution is 16msec, which is too little
for fluent animations (say at 60Hz). So, while a paint clock is
active we temporarily raise the timer resolution to 1 msec.
Add an API to start or stop continually updating the frame clock.
This is a slight convenience for applcations and avoids the problem
of getting one more frame run after an animation stops, but the
primary motivation for this is because it looks like we might have
to use timeBeginPeriod()/timeEndPeriod() on Windows to get reasonably
accurate timing, and for that we'll need to know if there is an
animation running.
https://bugzilla.gnome.org/show_bug.cgi?id=693934
* remove gdk_frame_clock_get_frame_time_val(); a convenience
function that would rarely be used.
* remove gdk_frame_clock_get_requested() and
::frame-requested signal; while we might want to eventually
be able to track the requested phases for a clock, we don't
have a current use case.
* Make gdk_frame_clock_freeze/thaw() private: they are only
used within GTK+ and have complex semantics.
* Remove gdk_frame_clock_get_last_complete(). Another convenience
function that I don't have a current use case for.
* Rename:
gdk_frame_clock_get_start() => gdk_frame_clock_get_history_start()
gdk_frame_clocK_get_current_frame_timings() => gdk_frame_clock_get_timings()
Since we're not exporting the ability to create your own frame
clock for now, remove the setters for GdkFrameTimings fields.
Also remove all setters and getters for fields that are more
about implementation than about quantities that are meaningful
to the applcation and just access the fields directly within
GDK.
Now that GdkFrameClock is a class, not interface, there's no real advantage
to splitting the frame history into an aggregate object, so directly
merge it into GdkFrameClock.
It's unlikely that anyone will want to have, say, a GtkWidget that
also acts as a GdkFrameClock, so an abstract base class is as
flexible as making GdkFrameClock an interface, but has advantages:
- If we decide to never make implementing your own frame clock
possible, we can remove the virtualization.
- We can put functionality like history into the base class.
- Avoids the oddity of a interface without a public interface
VTable, which may cause problems for language bindings.
For an operation like synchronizing audio to video playback, we need to
be able to predict the time that a frame will be presented. The details
of this depend on the windowing system, so make the backend predict
a presentation time for ::begin-frame and set it on the GdkFrameTimings.
The timing algorithm of GdkFrameClockIdle is adjusted to give predictable
presentation times for frames that are not throttled by the windowing
system.
Helper functions:
gdk_frame_clock_get_current_frame_timings()
gdk_frame_clock_get_refresh_info()
are added for operations that would otherwise be needed multiple times
in different locations.
https://bugzilla.gnome.org/show_bug.cgi?id=685460
Add functions that tell us whether the main loop slept before we drew
a frame. Blocking with the frame clock frozen doesn't count as sleeping.
We'll use this to advertise to the compositor whether we
are drawing as fast as possible (and it should do the same) or timing
frames carefully (and it should do the same.)
https://bugzilla.gnome.org/show_bug.cgi?id=685460
Don't start the idle if we're in the middle of painting a frame -
this will prevent us from getting the timing right when starting
the idle after the frame.
https://bugzilla.gnome.org/show_bug.cgi?id=685460
In order to be able to track statistics about how well we are drawing,
and in order to be able to do sophisticated things with frame timing
like predicting per-frame latencies and synchronizing audio with video,
we need to be able to track exactly when previous frames were drawn
to the screen.
Information about each frame is stored in a new GdkFrameTimings object.
A new GdkFrameHistory object is added which keeps a queue of recent
GdkFrameTimings (this is added to avoid further complicating the
implementation of GdkFrameClock.)
https://bugzilla.gnome.org/show_bug.cgi?id=685460
Keeping events paused after the end of a frame put us in a
weird state where we had to process and queue events - so that
we would get the message from the compositor - but not deliver
them. Instead resume events before ending the frame.
https://bugzilla.gnome.org/show_bug.cgi?id=685460
When we have pending motion events, instead of delivering them
directly, request the new FLUSH_EVENTS phase of the frame clock.
This allows us to compress repeated motion events sent to the
same window.
In the FLUSH_EVENTS phase, which occur at priority GDK_PRIORITY_EVENTS + 1,
we deliver any pending motion events then turn off event delivery
until the end of the next frame. Turning off event delivery means
that we'll reliably paint the compressed motion events even if more
have arrived.
Add a motion-compression test case which demonstrates behavior when
an application takes too long handle motion events. It is unusable
without this patch but behaves fine with the patch.
https://bugzilla.gnome.org/show_bug.cgi?id=685460
Switch GtkStyleContext to using GdkFrameClock. To do this, add a new
UPDATE phase to GdkFrameClock.
Add a GdkFrameClockTarget interface with a single set_clock() method,
and use this to deal with the fact that GtkWidget only has a frame
clock when realized.
https://bugzilla.gnome.org/show_bug.cgi?id=685460
If the backend is throttling paints, then the frame clock will be
frozen at the end of the frame. If not, then we need to add throttling,
so wait until 16ms after the start of the frame before beginning the
next frame.
https://bugzilla.gnome.org/show_bug.cgi?id=685460
Add the ability to freeze a frame clock, which pauses its operation,
then thaw it again later to resume.
Initially this is used to implement freezing updates when we are
waiting for ConfigureNotify in response to changing the size of
a toplevel.
We need a per-window clock for this to work properly, so add that
for the X11 backend.
https://bugzilla.gnome.org/show_bug.cgi?id=685460
Instead of having gdk_frame_clock_request_frame() have
gdk_frame_clock_request_phase() where we can say what phase we need.
This allows us to know if we get a frame-request during layout whether
it's just a request for drawing from the layout, or whether another
layout phase is needed.
https://bugzilla.gnome.org/show_bug.cgi?id=685460