#include "config.h" #include "gskglrenderer.h" #include "gskdebugprivate.h" #include "gskenums.h" #include "gskgldriverprivate.h" #include "gskglprofilerprivate.h" #include "gskprofilerprivate.h" #include "gskrendererprivate.h" #include "gskrendernodeprivate.h" #include "gsktransformprivate.h" #include "gskglshaderbuilderprivate.h" #include "gskglglyphcacheprivate.h" #include "gskgliconcacheprivate.h" #include "gskglrenderopsprivate.h" #include "gskcairoblurprivate.h" #include "gskglshadowcacheprivate.h" #include "gskglnodesampleprivate.h" #include "gsktransform.h" #include "glutilsprivate.h" #include "gskprivate.h" #include "gdk/gdkgltextureprivate.h" #include "gdk/gdkglcontextprivate.h" #include "gdk/gdkprofilerprivate.h" #include "gdk/gdkrgbaprivate.h" #include #define SHADER_VERSION_GLES 100 #define SHADER_VERSION_GL2_LEGACY 110 #define SHADER_VERSION_GL3_LEGACY 130 #define SHADER_VERSION_GL3 150 #define ORTHO_NEAR_PLANE -10000 #define ORTHO_FAR_PLANE 10000 #define DEBUG_OPS 0 #define SHADOW_EXTRA_SIZE 4 #if DEBUG_OPS #define OP_PRINT(format, ...) g_print(format, ## __VA_ARGS__) #else #define OP_PRINT(format, ...) #endif #define INIT_PROGRAM_UNIFORM_LOCATION(program_name, uniform_basename) \ G_STMT_START{\ programs->program_name ## _program.program_name.uniform_basename ## _location = \ glGetUniformLocation(programs->program_name ## _program.id, "u_" #uniform_basename);\ if (programs->program_name ## _program.program_name.uniform_basename ## _location == -1) \ { \ g_clear_pointer (&programs, gsk_gl_renderer_programs_unref); \ goto out; \ } \ }G_STMT_END #define INIT_COMMON_UNIFORM_LOCATION(program_ptr, uniform_basename) \ G_STMT_START{\ program_ptr->uniform_basename ## _location = \ glGetUniformLocation(program_ptr->id, "u_" #uniform_basename);\ }G_STMT_END typedef enum { FORCE_OFFSCREEN = 1 << 0, RESET_CLIP = 1 << 1, RESET_OPACITY = 1 << 2, DUMP_FRAMEBUFFER = 1 << 3, NO_CACHE_PLZ = 1 << 5, LINEAR_FILTER = 1 << 6, } OffscreenFlags; static inline void init_full_texture_region (TextureRegion *r, int texture_id) { r->texture_id = texture_id; r->x = 0; r->y = 0; r->x2 = 1; r->y2 = 1; } static void G_GNUC_UNUSED print_render_node_tree (GskRenderNode *root, int level) { #define INDENT 4 const guint type = gsk_render_node_get_node_type (root); guint i; switch (type) { case GSK_CONTAINER_NODE: g_print ("%*s Container\n", level * INDENT, " "); for (i = 0; i < gsk_container_node_get_n_children (root); i++) print_render_node_tree (gsk_container_node_get_child (root, i), level + 1); break; case GSK_TRANSFORM_NODE: g_print ("%*s Transform\n", level * INDENT, " "); print_render_node_tree (gsk_transform_node_get_child (root), level + 1); break; case GSK_COLOR_MATRIX_NODE: g_print ("%*s Color Matrix\n", level * INDENT, " "); print_render_node_tree (gsk_color_matrix_node_get_child (root), level + 1); break; case GSK_CROSS_FADE_NODE: g_print ("%*s Crossfade(%.2f)\n", level * INDENT, " ", gsk_cross_fade_node_get_progress (root)); print_render_node_tree (gsk_cross_fade_node_get_start_child (root), level + 1); print_render_node_tree (gsk_cross_fade_node_get_end_child (root), level + 1); break; case GSK_TEXT_NODE: g_print ("%*s Text\n", level * INDENT, " "); break; case GSK_COLOR_NODE: g_print ("%*s Color %s\n", level * INDENT, " ", gdk_rgba_to_string (gsk_color_node_peek_color (root))); break; case GSK_SHADOW_NODE: g_print ("%*s Shadow\n", level * INDENT, " "); print_render_node_tree (gsk_shadow_node_get_child (root), level + 1); break; case GSK_TEXTURE_NODE: g_print ("%*s Texture %p\n", level * INDENT, " ", gsk_texture_node_get_texture (root)); break; case GSK_DEBUG_NODE: g_print ("%*s Debug: %s\n", level * INDENT, " ", gsk_debug_node_get_message (root)); print_render_node_tree (gsk_debug_node_get_child (root), level + 1); break; case GSK_CLIP_NODE: g_print ("%*s Clip (%f, %f, %f, %f):\n", level * INDENT, " ", root->bounds.origin.x, root->bounds.origin.y, root->bounds.size.width, root->bounds.size.height); print_render_node_tree (gsk_clip_node_get_child (root), level + 1); break; default: g_print ("%*s %s\n", level * INDENT, " ", g_type_name_from_instance ((GTypeInstance *) root)); } #undef INDENT } static void G_GNUC_UNUSED dump_framebuffer (const char *filename, int w, int h) { int stride = cairo_format_stride_for_width (CAIRO_FORMAT_ARGB32, w); guchar *data = g_malloc (h * stride); cairo_surface_t *s; glReadPixels (0, 0, w, h, GL_BGRA, GL_UNSIGNED_BYTE, data); s = cairo_image_surface_create_for_data (data, CAIRO_FORMAT_ARGB32, w, h, stride); cairo_surface_write_to_png (s, filename); cairo_surface_destroy (s); g_free (data); } static void G_GNUC_UNUSED dump_node (GskRenderNode *node, const char *filename) { const int surface_width = ceilf (node->bounds.size.width); const int surface_height = ceilf (node->bounds.size.height); cairo_surface_t *surface; cairo_t *cr; surface = cairo_image_surface_create (CAIRO_FORMAT_ARGB32, surface_width, surface_height); cr = cairo_create (surface); cairo_save (cr); cairo_translate (cr, -node->bounds.origin.x, -node->bounds.origin.y); gsk_render_node_draw (node, cr); cairo_restore (cr); cairo_destroy (cr); cairo_surface_write_to_png (surface, filename); cairo_surface_destroy (surface); } static inline bool G_GNUC_PURE node_is_invisible (const GskRenderNode *node) { return node->bounds.size.width == 0.0f || node->bounds.size.height == 0.0f || isnan (node->bounds.size.width) || isnan (node->bounds.size.height); } static inline bool G_GNUC_PURE graphene_rect_intersects (const graphene_rect_t *r1, const graphene_rect_t *r2) { /* Assume both rects are already normalized, as they usually are */ if (r1->origin.x > (r2->origin.x + r2->size.width) || (r1->origin.x + r1->size.width) < r2->origin.x) return false; if (r1->origin.y > (r2->origin.y + r2->size.height) || (r1->origin.y + r1->size.height) < r2->origin.y) return false; return true; } static inline bool G_GNUC_PURE _graphene_rect_contains_rect (const graphene_rect_t *r1, const graphene_rect_t *r2) { if (r2->origin.x >= r1->origin.x && (r2->origin.x + r2->size.width) <= (r1->origin.x + r1->size.width) && r2->origin.y >= r1->origin.y && (r2->origin.y + r2->size.height) <= (r1->origin.y + r1->size.height)) return true; return false; } static inline void sort_border_sides (const GdkRGBA *colors, int *indices) { gboolean done[4] = {0, 0, 0, 0}; int i, k; int cur = 0; for (i = 0; i < 3; i ++) { if (done[i]) continue; indices[cur] = i; done[i] = TRUE; cur ++; for (k = i + 1; k < 4; k ++) { if (gdk_rgba_equal (&colors[k], &colors[i])) { indices[cur] = k; done[k] = TRUE; cur ++; } } if (cur >= 4) break; } } static inline gboolean G_GNUC_PURE color_matrix_modifies_alpha (GskRenderNode *node) { const graphene_matrix_t *matrix = gsk_color_matrix_node_peek_color_matrix (node); const graphene_vec4_t *offset = gsk_color_matrix_node_peek_color_offset (node); graphene_vec4_t row3; if (graphene_vec4_get_w (offset) != 0.0f) return TRUE; graphene_matrix_get_row (matrix, 3, &row3); return !graphene_vec4_equal (graphene_vec4_w_axis (), &row3); } static inline void gsk_rounded_rect_shrink_to_minimum (GskRoundedRect *self) { self->bounds.size.width = ceilf (MAX (MAX (self->corner[0].width, self->corner[1].width), MAX (self->corner[2].width, self->corner[3].width)) * 2); self->bounds.size.height = ceilf (MAX (MAX (self->corner[0].height, self->corner[1].height), MAX (self->corner[2].height, self->corner[3].height)) * 2); } static inline gboolean G_GNUC_PURE node_supports_transform (GskRenderNode *node) { /* Some nodes can't handle non-trivial transforms without being * rendered to a texture (e.g. rotated clips, etc.). Some however * work just fine, mostly because they already draw their child * to a texture and just render the texture manipulated in some * way, think opacity or color matrix. */ const guint node_type = gsk_render_node_get_node_type (node); switch (node_type) { case GSK_COLOR_NODE: case GSK_OPACITY_NODE: case GSK_COLOR_MATRIX_NODE: case GSK_TEXTURE_NODE: case GSK_CROSS_FADE_NODE: case GSK_LINEAR_GRADIENT_NODE: case GSK_DEBUG_NODE: case GSK_TEXT_NODE: return TRUE; case GSK_TRANSFORM_NODE: return node_supports_transform (gsk_transform_node_get_child (node)); default: return FALSE; } return FALSE; } static inline void load_vertex_data_with_region (GskQuadVertex vertex_data[GL_N_VERTICES], GskRenderNode *node, RenderOpBuilder *builder, const TextureRegion *r, gboolean flip_y) { const float min_x = builder->dx + node->bounds.origin.x; const float min_y = builder->dy + node->bounds.origin.y; const float max_x = min_x + node->bounds.size.width; const float max_y = min_y + node->bounds.size.height; const float y1 = flip_y ? r->y2 : r->y; const float y2 = flip_y ? r->y : r->y2; vertex_data[0].position[0] = min_x; vertex_data[0].position[1] = min_y; vertex_data[0].uv[0] = r->x; vertex_data[0].uv[1] = y1; vertex_data[1].position[0] = min_x; vertex_data[1].position[1] = max_y; vertex_data[1].uv[0] = r->x; vertex_data[1].uv[1] = y2; vertex_data[2].position[0] = max_x; vertex_data[2].position[1] = min_y; vertex_data[2].uv[0] = r->x2; vertex_data[2].uv[1] = y1; vertex_data[3].position[0] = max_x; vertex_data[3].position[1] = max_y; vertex_data[3].uv[0] = r->x2; vertex_data[3].uv[1] = y2; vertex_data[4].position[0] = min_x; vertex_data[4].position[1] = max_y; vertex_data[4].uv[0] = r->x; vertex_data[4].uv[1] = y2; vertex_data[5].position[0] = max_x; vertex_data[5].position[1] = min_y; vertex_data[5].uv[0] = r->x2; vertex_data[5].uv[1] = y1; } static void load_vertex_data (GskQuadVertex vertex_data[GL_N_VERTICES], GskRenderNode *node, RenderOpBuilder *builder) { const float min_x = builder->dx + node->bounds.origin.x; const float min_y = builder->dy + node->bounds.origin.y; const float max_x = min_x + node->bounds.size.width; const float max_y = min_y + node->bounds.size.height; vertex_data[0].position[0] = min_x; vertex_data[0].position[1] = min_y; vertex_data[0].uv[0] = 0; vertex_data[0].uv[1] = 0; vertex_data[1].position[0] = min_x; vertex_data[1].position[1] = max_y; vertex_data[1].uv[0] = 0; vertex_data[1].uv[1] = 1; vertex_data[2].position[0] = max_x; vertex_data[2].position[1] = min_y; vertex_data[2].uv[0] = 1; vertex_data[2].uv[1] = 0; vertex_data[3].position[0] = max_x; vertex_data[3].position[1] = max_y; vertex_data[3].uv[0] = 1; vertex_data[3].uv[1] = 1; vertex_data[4].position[0] = min_x; vertex_data[4].position[1] = max_y; vertex_data[4].uv[0] = 0; vertex_data[4].uv[1] = 1; vertex_data[5].position[0] = max_x; vertex_data[5].position[1] = min_y; vertex_data[5].uv[0] = 1; vertex_data[5].uv[1] = 0; } static void load_offscreen_vertex_data (GskQuadVertex vertex_data[GL_N_VERTICES], GskRenderNode *node, RenderOpBuilder *builder) { const float min_x = builder->dx + node->bounds.origin.x; const float min_y = builder->dy + node->bounds.origin.y; const float max_x = min_x + node->bounds.size.width; const float max_y = min_y + node->bounds.size.height; vertex_data[0].position[0] = min_x; vertex_data[0].position[1] = min_y; vertex_data[0].uv[0] = 0; vertex_data[0].uv[1] = 1; vertex_data[1].position[0] = min_x; vertex_data[1].position[1] = max_y; vertex_data[1].uv[0] = 0; vertex_data[1].uv[1] = 0; vertex_data[2].position[0] = max_x; vertex_data[2].position[1] = min_y; vertex_data[2].uv[0] = 1; vertex_data[2].uv[1] = 1; vertex_data[3].position[0] = max_x; vertex_data[3].position[1] = max_y; vertex_data[3].uv[0] = 1; vertex_data[3].uv[1] = 0; vertex_data[4].position[0] = min_x; vertex_data[4].position[1] = max_y; vertex_data[4].uv[0] = 0; vertex_data[4].uv[1] = 0; vertex_data[5].position[0] = max_x; vertex_data[5].position[1] = min_y; vertex_data[5].uv[0] = 1; vertex_data[5].uv[1] = 1; } static void gsk_gl_renderer_setup_render_mode (GskGLRenderer *self); static gboolean add_offscreen_ops (GskGLRenderer *self, RenderOpBuilder *builder, const graphene_rect_t *bounds, GskRenderNode *child_node, TextureRegion *region_out, gboolean *is_offscreen, guint flags) G_GNUC_WARN_UNUSED_RESULT; static void gsk_gl_renderer_add_render_ops (GskGLRenderer *self, GskRenderNode *node, RenderOpBuilder *builder); struct _GskGLRenderer { GskRenderer parent_instance; int scale_factor; GdkGLContext *gl_context; GskGLDriver *gl_driver; GskGLProfiler *gl_profiler; GskGLRendererPrograms *programs; RenderOpBuilder op_builder; GskGLTextureAtlases *atlases; GskGLGlyphCache *glyph_cache; GskGLIconCache *icon_cache; GskGLShadowCache shadow_cache; #ifdef G_ENABLE_DEBUG struct { GQuark frames; } profile_counters; struct { GQuark cpu_time; GQuark gpu_time; } profile_timers; #endif cairo_region_t *render_region; }; struct _GskGLRendererClass { GskRendererClass parent_class; }; G_DEFINE_TYPE (GskGLRenderer, gsk_gl_renderer, GSK_TYPE_RENDERER) static void G_GNUC_UNUSED add_rect_ops (RenderOpBuilder *builder, const graphene_rect_t *r) { const float min_x = r->origin.x; const float min_y = r->origin.y; const float max_x = min_x + r->size.width; const float max_y = min_y + r->size.height; ops_draw (builder, (GskQuadVertex[GL_N_VERTICES]) { { { min_x, min_y }, { 0, 1 }, }, { { min_x, max_y }, { 0, 0 }, }, { { max_x, min_y }, { 1, 1 }, }, { { max_x, max_y }, { 1, 0 }, }, { { min_x, max_y }, { 0, 0 }, }, { { max_x, min_y }, { 1, 1 }, }, }); } static GdkRGBA BLACK = {0, 0, 0, 1}; static void G_GNUC_UNUSED add_rect_outline_ops (GskGLRenderer *self, RenderOpBuilder *builder, const graphene_rect_t *rect) { ops_set_program (builder, &self->programs->color_program); ops_set_color (builder, &BLACK); add_rect_ops (builder, &GRAPHENE_RECT_INIT (rect->origin.x, rect->origin.y, 1, rect->size.height)); add_rect_ops (builder, &GRAPHENE_RECT_INIT (rect->origin.x, rect->origin.y, rect->size.width, 1)); add_rect_ops (builder, &GRAPHENE_RECT_INIT (rect->origin.x + rect->size.width - 1, rect->origin.y, 1, rect->size.height)); add_rect_ops (builder, &GRAPHENE_RECT_INIT (rect->origin.x, rect->origin.y + rect->size.height - 1, rect->size.width, 1)); } static inline GskRoundedRect transform_rect (GskGLRenderer *self, RenderOpBuilder *builder, const GskRoundedRect *rect) { GskRoundedRect r; r.bounds.origin.x = builder->dx + rect->bounds.origin.x; r.bounds.origin.y = builder->dy + rect->bounds.origin.y; r.bounds.size = rect->bounds.size; r.corner[0] = rect->corner[0]; r.corner[1] = rect->corner[1]; r.corner[2] = rect->corner[2]; r.corner[3] = rect->corner[3]; return r; } static inline void render_fallback_node (GskGLRenderer *self, GskRenderNode *node, RenderOpBuilder *builder) { const float scale = ops_get_scale (builder); const int surface_width = ceilf (node->bounds.size.width * scale); const int surface_height = ceilf (node->bounds.size.height * scale); cairo_surface_t *surface; cairo_surface_t *rendered_surface; cairo_t *cr; int cached_id; int texture_id; GskTextureKey key; if (surface_width <= 0 || surface_height <= 0) return; key.pointer = node; key.scale = scale; key.filter = GL_NEAREST; cached_id = gsk_gl_driver_get_texture_for_key (self->gl_driver, &key); if (cached_id != 0) { ops_set_program (builder, &self->programs->blit_program); ops_set_texture (builder, cached_id); load_offscreen_vertex_data (ops_draw (builder, NULL), node, builder); return; } /* We first draw the recording surface on an image surface, * just because the scaleY(-1) later otherwise screws up the * rendering... */ { rendered_surface = cairo_image_surface_create (CAIRO_FORMAT_ARGB32, surface_width, surface_height); cairo_surface_set_device_scale (rendered_surface, scale, scale); cr = cairo_create (rendered_surface); cairo_save (cr); cairo_translate (cr, - floorf (node->bounds.origin.x), - floorf (node->bounds.origin.y)); gsk_render_node_draw (node, cr); cairo_restore (cr); cairo_destroy (cr); } surface = cairo_image_surface_create (CAIRO_FORMAT_ARGB32, surface_width, surface_height); cairo_surface_set_device_scale (surface, scale, scale); cr = cairo_create (surface); /* We draw upside down here, so it matches what GL does. */ cairo_save (cr); cairo_scale (cr, 1, -1); cairo_translate (cr, 0, - surface_height / scale); cairo_set_source_surface (cr, rendered_surface, 0, 0); cairo_rectangle (cr, 0, 0, surface_width / scale, surface_height / scale); cairo_fill (cr); cairo_restore (cr); #ifdef G_ENABLE_DEBUG if (GSK_RENDERER_DEBUG_CHECK (GSK_RENDERER (self), FALLBACK)) { cairo_move_to (cr, 0, 0); cairo_rectangle (cr, 0, 0, node->bounds.size.width, node->bounds.size.height); if (gsk_render_node_get_node_type (node) == GSK_CAIRO_NODE) cairo_set_source_rgba (cr, 0.3, 0, 1, 0.25); else cairo_set_source_rgba (cr, 1, 0, 0, 0.25); cairo_fill_preserve (cr); if (gsk_render_node_get_node_type (node) == GSK_CAIRO_NODE) cairo_set_source_rgba (cr, 0.3, 0, 1, 1); else cairo_set_source_rgba (cr, 1, 0, 0, 1); cairo_stroke (cr); } #endif cairo_destroy (cr); /* Upload the Cairo surface to a GL texture */ texture_id = gsk_gl_driver_create_texture (self->gl_driver, surface_width, surface_height); gsk_gl_driver_bind_source_texture (self->gl_driver, texture_id); gsk_gl_driver_init_texture_with_surface (self->gl_driver, texture_id, surface, GL_NEAREST, GL_NEAREST); if (gdk_gl_context_has_debug (self->gl_context)) gdk_gl_context_label_object_printf (self->gl_context, GL_TEXTURE, texture_id, "Fallback %s %d", g_type_name_from_instance ((GTypeInstance *) node), texture_id); cairo_surface_destroy (surface); cairo_surface_destroy (rendered_surface); gsk_gl_driver_set_texture_for_key (self->gl_driver, &key, texture_id); ops_set_program (builder, &self->programs->blit_program); ops_set_texture (builder, texture_id); load_offscreen_vertex_data (ops_draw (builder, NULL), node, builder); } static inline void render_text_node (GskGLRenderer *self, GskRenderNode *node, RenderOpBuilder *builder, const GdkRGBA *color, gboolean force_color) { const PangoFont *font = gsk_text_node_peek_font (node); const PangoGlyphInfo *glyphs = gsk_text_node_peek_glyphs (node, NULL); const float text_scale = ops_get_scale (builder); const graphene_point_t *offset = gsk_text_node_get_offset (node); const guint num_glyphs = gsk_text_node_get_num_glyphs (node); const float x = offset->x + builder->dx; const float y = offset->y + builder->dy; int i; int x_position = 0; GlyphCacheKey lookup; /* If the font has color glyphs, we don't need to recolor anything */ if (!force_color && gsk_text_node_has_color_glyphs (node)) { ops_set_program (builder, &self->programs->blit_program); } else { ops_set_program (builder, &self->programs->coloring_program); ops_set_color (builder, color); } memset (&lookup, 0, sizeof (CacheKeyData)); lookup.data.font = (PangoFont *)font; lookup.data.scale = (guint) (text_scale * 1024); /* We use one quad per character, unlike the other nodes which * use at most one quad altogether */ for (i = 0; i < num_glyphs; i++) { const PangoGlyphInfo *gi = &glyphs[i]; const GskGLCachedGlyph *glyph; float glyph_x, glyph_y, glyph_x2, glyph_y2; float tx, ty, tx2, ty2; float cx; float cy; if (gi->glyph == PANGO_GLYPH_EMPTY) continue; cx = (float)(x_position + gi->geometry.x_offset) / PANGO_SCALE; cy = (float)(gi->geometry.y_offset) / PANGO_SCALE; glyph_cache_key_set_glyph_and_shift (&lookup, gi->glyph, x + cx, y + cy); gsk_gl_glyph_cache_lookup_or_add (self->glyph_cache, &lookup, self->gl_driver, &glyph); if (glyph->texture_id == 0) goto next; ops_set_texture (builder, glyph->texture_id); tx = glyph->tx; ty = glyph->ty; tx2 = tx + glyph->tw; ty2 = ty + glyph->th; glyph_x = floor (x + cx + 0.125) + glyph->draw_x; glyph_y = floor (y + cy + 0.125) + glyph->draw_y; glyph_x2 = glyph_x + glyph->draw_width; glyph_y2 = glyph_y + glyph->draw_height; ops_draw (builder, (GskQuadVertex[GL_N_VERTICES]) { { { glyph_x, glyph_y }, { tx, ty }, }, { { glyph_x, glyph_y2 }, { tx, ty2 }, }, { { glyph_x2, glyph_y }, { tx2, ty }, }, { { glyph_x2, glyph_y2 }, { tx2, ty2 }, }, { { glyph_x, glyph_y2 }, { tx, ty2 }, }, { { glyph_x2, glyph_y }, { tx2, ty }, }, }); next: x_position += gi->geometry.width; } } static inline void render_border_node (GskGLRenderer *self, GskRenderNode *node, RenderOpBuilder *builder) { const GdkRGBA *colors = gsk_border_node_peek_colors (node); const GskRoundedRect *rounded_outline = gsk_border_node_peek_outline (node); const float *widths = gsk_border_node_peek_widths (node); int i; struct { float w; float h; } sizes[4]; if (gsk_border_node_get_uniform (node)) { ops_set_program (builder, &self->programs->inset_shadow_program); ops_set_inset_shadow (builder, transform_rect (self, builder, rounded_outline), widths[0], &colors[0], 0, 0); load_vertex_data (ops_draw (builder, NULL), node, builder); return; } /* Top left */ if (widths[3] > 0) sizes[0].w = MAX (widths[3], rounded_outline->corner[0].width); else sizes[0].w = 0; if (widths[0] > 0) sizes[0].h = MAX (widths[0], rounded_outline->corner[0].height); else sizes[0].h = 0; /* Top right */ if (widths[1] > 0) sizes[1].w = MAX (widths[1], rounded_outline->corner[1].width); else sizes[1].w = 0; if (widths[0] > 0) sizes[1].h = MAX (widths[0], rounded_outline->corner[1].height); else sizes[1].h = 0; /* Bottom right */ if (widths[1] > 0) sizes[2].w = MAX (widths[1], rounded_outline->corner[2].width); else sizes[2].w = 0; if (widths[2] > 0) sizes[2].h = MAX (widths[2], rounded_outline->corner[2].height); else sizes[2].h = 0; /* Bottom left */ if (widths[3] > 0) sizes[3].w = MAX (widths[3], rounded_outline->corner[3].width); else sizes[3].w = 0; if (widths[2] > 0) sizes[3].h = MAX (widths[2], rounded_outline->corner[3].height); else sizes[3].h = 0; { const float min_x = builder->dx + node->bounds.origin.x; const float min_y = builder->dy + node->bounds.origin.y; const float max_x = min_x + node->bounds.size.width; const float max_y = min_y + node->bounds.size.height; const GskQuadVertex side_data[4][6] = { /* Top */ { { { min_x, min_y }, { 0, 1 }, }, /* Upper left */ { { min_x + sizes[0].w, min_y + sizes[0].h }, { 0, 0 }, }, /* Lower left */ { { max_x, min_y }, { 1, 1 }, }, /* Upper right */ { { max_x - sizes[1].w, min_y + sizes[1].h }, { 1, 0 }, }, /* Lower right */ { { min_x + sizes[0].w, min_y + sizes[0].h }, { 0, 0 }, }, /* Lower left */ { { max_x, min_y }, { 1, 1 }, }, /* Upper right */ }, /* Right */ { { { max_x - sizes[1].w, min_y + sizes[1].h }, { 0, 1 }, }, /* Upper left */ { { max_x - sizes[2].w, max_y - sizes[2].h }, { 0, 0 }, }, /* Lower left */ { { max_x, min_y }, { 1, 1 }, }, /* Upper right */ { { max_x, max_y }, { 1, 0 }, }, /* Lower right */ { { max_x - sizes[2].w, max_y - sizes[2].h }, { 0, 0 }, }, /* Lower left */ { { max_x, min_y }, { 1, 1 }, }, /* Upper right */ }, /* Bottom */ { { { min_x + sizes[3].w, max_y - sizes[3].h }, { 0, 1 }, }, /* Upper left */ { { min_x, max_y }, { 0, 0 }, }, /* Lower left */ { { max_x - sizes[2].w, max_y - sizes[2].h }, { 1, 1 }, }, /* Upper right */ { { max_x, max_y }, { 1, 0 }, }, /* Lower right */ { { min_x , max_y }, { 0, 0 }, }, /* Lower left */ { { max_x - sizes[2].w, max_y - sizes[2].h }, { 1, 1 }, }, /* Upper right */ }, /* Left */ { { { min_x, min_y }, { 0, 1 }, }, /* Upper left */ { { min_x, max_y }, { 0, 0 }, }, /* Lower left */ { { min_x + sizes[0].w, min_y + sizes[0].h }, { 1, 1 }, }, /* Upper right */ { { min_x + sizes[3].w, max_y - sizes[3].h }, { 1, 0 }, }, /* Lower right */ { { min_x, max_y }, { 0, 0 }, }, /* Lower left */ { { min_x + sizes[0].w, min_y + sizes[0].h }, { 1, 1 }, }, /* Upper right */ } }; int indices[4] = { 0, 1, 2, 3 }; GskRoundedRect outline; /* We sort them by color */ sort_border_sides (colors, indices); /* Prepare outline */ outline = transform_rect (self, builder, rounded_outline); ops_set_program (builder, &self->programs->border_program); ops_set_border_width (builder, widths); ops_set_border (builder, &outline); for (i = 0; i < 4; i ++) { if (widths[indices[i]] > 0) { ops_set_border_color (builder, &colors[indices[i]]); ops_draw (builder, side_data[indices[i]]); } } } } static inline void render_color_node (GskGLRenderer *self, GskRenderNode *node, RenderOpBuilder *builder) { ops_set_program (builder, &self->programs->color_program); ops_set_color (builder, gsk_color_node_peek_color (node)); load_vertex_data (ops_draw (builder, NULL), node, builder); } static inline void upload_texture (GskGLRenderer *self, GdkTexture *texture, TextureRegion *out_region) { if (texture->width <= 128 && texture->height <= 128 && !GDK_IS_GL_TEXTURE (texture)) { const IconData *icon_data; gsk_gl_icon_cache_lookup_or_add (self->icon_cache, texture, &icon_data); out_region->texture_id = icon_data->texture_id; out_region->x = icon_data->x; out_region->y = icon_data->y; out_region->x2 = icon_data->x2; out_region->y2 = icon_data->y2; } else { out_region->texture_id = gsk_gl_driver_get_texture_for_texture (self->gl_driver, texture, GL_LINEAR, GL_LINEAR); out_region->x = 0; out_region->y = 0; out_region->x2 = 1; out_region->y2 = 1; } } static inline void render_texture_node (GskGLRenderer *self, GskRenderNode *node, RenderOpBuilder *builder) { GdkTexture *texture = gsk_texture_node_get_texture (node); const int max_texture_size = gsk_gl_driver_get_max_texture_size (self->gl_driver); if (texture->width > max_texture_size || texture->height > max_texture_size) { const float min_x = builder->dx + node->bounds.origin.x; const float min_y = builder->dy + node->bounds.origin.y; const float max_x = min_x + node->bounds.size.width; const float max_y = min_y + node->bounds.size.height; const float scale_x = (max_x - min_x) / texture->width; const float scale_y = (max_y - min_y) / texture->height; TextureSlice *slices; guint n_slices; guint i; gsk_gl_driver_slice_texture (self->gl_driver, texture, &slices, &n_slices); ops_set_program (builder, &self->programs->blit_program); for (i = 0; i < n_slices; i ++) { const TextureSlice *slice = &slices[i]; float x1, x2, y1, y2; x1 = min_x + (scale_x * slice->rect.x); x2 = x1 + (slice->rect.width * scale_x); y1 = min_y + (scale_y * slice->rect.y); y2 = y1 + (slice->rect.height * scale_y); ops_set_texture (builder, slice->texture_id); ops_draw (builder, (GskQuadVertex[GL_N_VERTICES]) { { { x1, y1 }, { 0, 0 }, }, { { x1, y2 }, { 0, 1 }, }, { { x2, y1 }, { 1, 0 }, }, { { x2, y2 }, { 1, 1 }, }, { { x1, y2 }, { 0, 1 }, }, { { x2, y1 }, { 1, 0 }, }, }); } } else { TextureRegion r; upload_texture (self, texture, &r); ops_set_program (builder, &self->programs->blit_program); ops_set_texture (builder, r.texture_id); load_vertex_data_with_region (ops_draw (builder, NULL), node, builder, &r, FALSE); } } /* Returns TRUE is applying transform to bounds * yields an axis-aligned rectangle */ static gboolean result_is_axis_aligned (GskTransform *transform, const graphene_rect_t *bounds) { graphene_matrix_t m; graphene_quad_t q; graphene_rect_t b; graphene_point_t b1, b2; const graphene_point_t *p; int i; gsk_transform_to_matrix (transform, &m); gsk_matrix_transform_rect (&m, bounds, &q); graphene_quad_bounds (&q, &b); graphene_rect_get_top_left (&b, &b1); graphene_rect_get_bottom_right (&b, &b2); for (i = 0; i < 4; i++) { p = graphene_quad_get_point (&q, i); if (fabs (p->x - b1.x) > FLT_EPSILON && fabs (p->x - b2.x) > FLT_EPSILON) return FALSE; if (fabs (p->y - b1.y) > FLT_EPSILON && fabs (p->y - b2.y) > FLT_EPSILON) return FALSE; } return TRUE; } static inline void render_transform_node (GskGLRenderer *self, GskRenderNode *node, RenderOpBuilder *builder) { GskTransform *node_transform = gsk_transform_node_get_transform (node); const GskTransformCategory category = gsk_transform_get_category (node_transform); GskRenderNode *child = gsk_transform_node_get_child (node); switch (category) { case GSK_TRANSFORM_CATEGORY_IDENTITY: gsk_gl_renderer_add_render_ops (self, child, builder); break; case GSK_TRANSFORM_CATEGORY_2D_TRANSLATE: { float dx, dy; gsk_transform_to_translate (node_transform, &dx, &dy); ops_offset (builder, dx, dy); gsk_gl_renderer_add_render_ops (self, child, builder); ops_offset (builder, -dx, -dy); } break; case GSK_TRANSFORM_CATEGORY_2D_AFFINE: { ops_push_modelview (builder, node_transform); gsk_gl_renderer_add_render_ops (self, child, builder); ops_pop_modelview (builder); } break; case GSK_TRANSFORM_CATEGORY_2D: case GSK_TRANSFORM_CATEGORY_3D: case GSK_TRANSFORM_CATEGORY_ANY: case GSK_TRANSFORM_CATEGORY_UNKNOWN: { TextureRegion region; gboolean is_offscreen; if (node_supports_transform (child)) { ops_push_modelview (builder, node_transform); gsk_gl_renderer_add_render_ops (self, child, builder); ops_pop_modelview (builder); } else { int filter_flag = 0; if (!result_is_axis_aligned (node_transform, &child->bounds)) filter_flag = LINEAR_FILTER; if (add_offscreen_ops (self, builder, &child->bounds, child, ®ion, &is_offscreen, RESET_CLIP | RESET_OPACITY | filter_flag)) { /* For non-trivial transforms, we draw everything on a texture and then * draw the texture transformed. */ /* TODO: We should compute a modelview containing only the "non-trivial" * part (e.g. the rotation) and use that. We want to keep the scale * for the texture. */ ops_push_modelview (builder, node_transform); ops_set_texture (builder, region.texture_id); ops_set_program (builder, &self->programs->blit_program); load_vertex_data_with_region (ops_draw (builder, NULL), child, builder, ®ion, is_offscreen); ops_pop_modelview (builder); } } } break; default: g_assert_not_reached (); break; } } static inline void render_opacity_node (GskGLRenderer *self, GskRenderNode *node, RenderOpBuilder *builder) { GskRenderNode *child = gsk_opacity_node_get_child (node); const float opacity = gsk_opacity_node_get_opacity (node); float prev_opacity; if (gsk_render_node_get_node_type (child) == GSK_CONTAINER_NODE) { gboolean is_offscreen; TextureRegion region; /* The semantics of an opacity node mandate that when, e.g., two color nodes overlap, * there may not be any blending between them */ if (!add_offscreen_ops (self, builder, &child->bounds, child, ®ion, &is_offscreen, FORCE_OFFSCREEN | RESET_OPACITY | RESET_CLIP)) return; prev_opacity = ops_set_opacity (builder, builder->current_opacity * opacity); ops_set_program (builder, &self->programs->blit_program); ops_set_texture (builder, region.texture_id); load_vertex_data_with_region (ops_draw (builder, NULL), node, builder, ®ion, is_offscreen); } else { prev_opacity = ops_set_opacity (builder, builder->current_opacity * opacity); gsk_gl_renderer_add_render_ops (self, child, builder); } ops_set_opacity (builder, prev_opacity); } static inline void render_linear_gradient_node (GskGLRenderer *self, GskRenderNode *node, RenderOpBuilder *builder) { const int n_color_stops = gsk_linear_gradient_node_get_n_color_stops (node); if (n_color_stops < GL_MAX_GRADIENT_STOPS) { const GskColorStop *stops = gsk_linear_gradient_node_peek_color_stops (node, NULL); const graphene_point_t *start = gsk_linear_gradient_node_peek_start (node); const graphene_point_t *end = gsk_linear_gradient_node_peek_end (node); ops_set_program (builder, &self->programs->linear_gradient_program); ops_set_linear_gradient (builder, n_color_stops, stops, builder->dx + start->x, builder->dy + start->y, builder->dx + end->x, builder->dy + end->y); load_vertex_data (ops_draw (builder, NULL), node, builder); } else { render_fallback_node (self, node, builder); } } static inline void render_radial_gradient_node (GskGLRenderer *self, GskRenderNode *node, RenderOpBuilder *builder) { const int n_color_stops = gsk_radial_gradient_node_get_n_color_stops (node); if (n_color_stops < GL_MAX_GRADIENT_STOPS) { const GskColorStop *stops = gsk_radial_gradient_node_peek_color_stops (node, NULL); const graphene_point_t *center = gsk_radial_gradient_node_peek_center (node); const float start = gsk_radial_gradient_node_get_start (node); const float end = gsk_radial_gradient_node_get_end (node); const float hradius = gsk_radial_gradient_node_get_hradius (node); const float vradius = gsk_radial_gradient_node_get_vradius (node); ops_set_program (builder, &self->programs->radial_gradient_program); ops_set_radial_gradient (builder, n_color_stops, stops, builder->dx + center->x, builder->dy + center->y, start, end, hradius * builder->scale_x, vradius * builder->scale_y); load_vertex_data (ops_draw (builder, NULL), node, builder); } else { render_fallback_node (self, node, builder); } } static inline gboolean rounded_inner_rect_contains_rect (const GskRoundedRect *rounded, const graphene_rect_t *rect) { const graphene_rect_t *rounded_bounds = &rounded->bounds; graphene_rect_t inner; float offset_x, offset_y; /* TODO: This is pretty conservative and we could to further, more * fine-grained checks to avoid offscreen drawing. */ offset_x = MAX (rounded->corner[GSK_CORNER_TOP_LEFT].width, rounded->corner[GSK_CORNER_BOTTOM_LEFT].width); offset_y = MAX (rounded->corner[GSK_CORNER_TOP_LEFT].height, rounded->corner[GSK_CORNER_TOP_RIGHT].height); inner.origin.x = rounded_bounds->origin.x + offset_x; inner.origin.y = rounded_bounds->origin.y + offset_y; inner.size.width = rounded_bounds->size.width - offset_x - MAX (rounded->corner[GSK_CORNER_TOP_RIGHT].width, rounded->corner[GSK_CORNER_BOTTOM_RIGHT].width); inner.size.height = rounded_bounds->size.height - offset_y - MAX (rounded->corner[GSK_CORNER_BOTTOM_LEFT].height, rounded->corner[GSK_CORNER_BOTTOM_RIGHT].height); return graphene_rect_contains_rect (&inner, rect); } /* Current clip is NOT rounded but new one is definitely! */ static inline bool intersect_rounded_rectilinear (const graphene_rect_t *non_rounded, const GskRoundedRect *rounded, GskRoundedRect *result) { bool corners[4]; /* Intersects with top left corner? */ corners[0] = rounded_rect_has_corner (rounded, 0) && graphene_rect_intersects (non_rounded, &rounded_rect_corner (rounded, 0)); /* top right? */ corners[1] = rounded_rect_has_corner (rounded, 1) && graphene_rect_intersects (non_rounded, &rounded_rect_corner (rounded, 1)); /* bottom right? */ corners[2] = rounded_rect_has_corner (rounded, 2) && graphene_rect_intersects (non_rounded, &rounded_rect_corner (rounded, 2)); /* bottom left */ corners[3] = rounded_rect_has_corner (rounded, 3) && graphene_rect_intersects (non_rounded, &rounded_rect_corner (rounded, 3)); if (corners[0] && !_graphene_rect_contains_rect (non_rounded, &rounded_rect_corner (rounded, 0))) return false; if (corners[1] && !_graphene_rect_contains_rect (non_rounded, &rounded_rect_corner (rounded, 1))) return false; if (corners[2] && !_graphene_rect_contains_rect (non_rounded, &rounded_rect_corner (rounded, 2))) return false; if (corners[3] && !_graphene_rect_contains_rect (non_rounded, &rounded_rect_corner (rounded, 3))) return false; /* We do intersect with at least one of the corners, but in such a way that the * intersection between the two clips can still be represented by a single rounded * rect in a trivial way. do that. */ graphene_rect_intersection (non_rounded, &rounded->bounds, &result->bounds); for (int i = 0; i < 4; i++) { if (corners[i]) result->corner[i] = rounded->corner[i]; else result->corner[i].width = result->corner[i].height = 0; } return true; } /* This code intersects the current (maybe rounded) clip with the new * non-rounded clip */ static inline void render_clipped_child (GskGLRenderer *self, RenderOpBuilder *builder, const graphene_rect_t *clip, GskRenderNode *child) { graphene_rect_t transformed_clip; GskRoundedRect intersection; ops_transform_bounds_modelview (builder, clip, &transformed_clip); if (builder->clip_is_rectilinear) { memset (&intersection, 0, sizeof (GskRoundedRect)); graphene_rect_intersection (&transformed_clip, &builder->current_clip->bounds, &intersection.bounds); ops_push_clip (builder, &intersection); gsk_gl_renderer_add_render_ops (self, child, builder); ops_pop_clip (builder); } else if (intersect_rounded_rectilinear (&transformed_clip, builder->current_clip, &intersection)) { ops_push_clip (builder, &intersection); gsk_gl_renderer_add_render_ops (self, child, builder); ops_pop_clip (builder); } else { /* well fuck */ const float scale_x = builder->scale_x; const float scale_y = builder->scale_y; gboolean is_offscreen; TextureRegion region; GskRoundedRect scaled_clip; memset (&scaled_clip, 0, sizeof (GskRoundedRect)); scaled_clip.bounds.origin.x = clip->origin.x * scale_x; scaled_clip.bounds.origin.y = clip->origin.y * scale_y; scaled_clip.bounds.size.width = clip->size.width * scale_x; scaled_clip.bounds.size.height = clip->size.height * scale_y; ops_push_clip (builder, &scaled_clip); if (!add_offscreen_ops (self, builder, &child->bounds, child, ®ion, &is_offscreen, RESET_OPACITY | FORCE_OFFSCREEN)) g_assert_not_reached (); ops_pop_clip (builder); ops_set_program (builder, &self->programs->blit_program); ops_set_texture (builder, region.texture_id); load_offscreen_vertex_data (ops_draw (builder, NULL), child, builder); } } static inline void render_clip_node (GskGLRenderer *self, GskRenderNode *node, RenderOpBuilder *builder) { const graphene_rect_t *clip = gsk_clip_node_peek_clip (node); GskRenderNode *child = gsk_clip_node_get_child (node); render_clipped_child (self, builder, clip, child); } static inline void render_rounded_clip_node (GskGLRenderer *self, GskRenderNode *node, RenderOpBuilder *builder) { const float scale_x = builder->scale_x; const float scale_y = builder->scale_y; const GskRoundedRect *clip = gsk_rounded_clip_node_peek_clip (node); GskRenderNode *child = gsk_rounded_clip_node_get_child (node); GskRoundedRect transformed_clip; gboolean need_offscreen; int i; if (node_is_invisible (child)) return; ops_transform_bounds_modelview (builder, &clip->bounds, &transformed_clip.bounds); for (i = 0; i < 4; i ++) { transformed_clip.corner[i].width = clip->corner[i].width * scale_x; transformed_clip.corner[i].height = clip->corner[i].height * scale_y; } if (builder->clip_is_rectilinear) { GskRoundedRect intersected_clip; if (intersect_rounded_rectilinear (&builder->current_clip->bounds, &transformed_clip, &intersected_clip)) { ops_push_clip (builder, &intersected_clip); gsk_gl_renderer_add_render_ops (self, child, builder); ops_pop_clip (builder); return; } } /* After this point we are really working with a new and a current clip * which both have rounded corners. */ if (!ops_has_clip (builder)) need_offscreen = FALSE; else if (rounded_inner_rect_contains_rect (builder->current_clip, &transformed_clip.bounds)) need_offscreen = FALSE; else need_offscreen = TRUE; if (!need_offscreen) { /* If they don't intersect at all, we can simply set * the new clip and add the render ops */ /* If the new clip entirely contains the current clip, the intersection is simply * the current clip, so we can ignore the new one */ if (rounded_inner_rect_contains_rect (&transformed_clip, &builder->current_clip->bounds)) { gsk_gl_renderer_add_render_ops (self, child, builder); return; } /* TODO: Intersect current and new clip */ ops_push_clip (builder, &transformed_clip); gsk_gl_renderer_add_render_ops (self, child, builder); ops_pop_clip (builder); } else { GskRoundedRect scaled_clip; gboolean is_offscreen; TextureRegion region; /* NOTE: We are *not* transforming the clip by the current modelview here. * We instead draw the untransformed clip to a texture and then transform * that texture. * * We do, however, apply the scale factor to the child clip of course. */ scaled_clip.bounds.origin.x = clip->bounds.origin.x * scale_x; scaled_clip.bounds.origin.y = clip->bounds.origin.y * scale_y; scaled_clip.bounds.size.width = clip->bounds.size.width * scale_x; scaled_clip.bounds.size.height = clip->bounds.size.height * scale_y; /* Increase corner radius size by scale factor */ for (i = 0; i < 4; i ++) { scaled_clip.corner[i].width = clip->corner[i].width * scale_x; scaled_clip.corner[i].height = clip->corner[i].height * scale_y; } ops_push_clip (builder, &scaled_clip); if (!add_offscreen_ops (self, builder, &node->bounds, child, ®ion, &is_offscreen, FORCE_OFFSCREEN | RESET_OPACITY)) g_assert_not_reached (); ops_pop_clip (builder); ops_set_program (builder, &self->programs->blit_program); ops_set_texture (builder, region.texture_id); load_offscreen_vertex_data (ops_draw (builder, NULL), node, builder); } } static inline void render_color_matrix_node (GskGLRenderer *self, GskRenderNode *node, RenderOpBuilder *builder) { GskRenderNode *child = gsk_color_matrix_node_get_child (node); TextureRegion region; gboolean is_offscreen; if (node_is_invisible (child)) return; if (!add_offscreen_ops (self, builder, &node->bounds, child, ®ion, &is_offscreen, RESET_CLIP | RESET_OPACITY)) g_assert_not_reached (); ops_set_program (builder, &self->programs->color_matrix_program); ops_set_color_matrix (builder, gsk_color_matrix_node_peek_color_matrix (node), gsk_color_matrix_node_peek_color_offset (node)); ops_set_texture (builder, region.texture_id); load_vertex_data_with_region (ops_draw (builder, NULL), node, builder, ®ion, is_offscreen); } static inline int blur_texture (GskGLRenderer *self, RenderOpBuilder *builder, const TextureRegion *region, const int texture_to_blur_width, const int texture_to_blur_height, float blur_radius) { int pass1_texture_id, pass1_render_target; int pass2_texture_id, pass2_render_target; int prev_render_target; graphene_matrix_t prev_projection; graphene_rect_t prev_viewport; graphene_matrix_t item_proj; OpBlur *op; g_assert (blur_radius > 0); gsk_gl_driver_create_render_target (self->gl_driver, texture_to_blur_width, texture_to_blur_height, GL_NEAREST, GL_NEAREST, &pass1_texture_id, &pass1_render_target); gsk_gl_driver_create_render_target (self->gl_driver, texture_to_blur_width, texture_to_blur_height, GL_NEAREST, GL_NEAREST, &pass2_texture_id, &pass2_render_target); graphene_matrix_init_ortho (&item_proj, 0, texture_to_blur_width, 0, texture_to_blur_height, ORTHO_NEAR_PLANE, ORTHO_FAR_PLANE); graphene_matrix_scale (&item_proj, 1, -1, 1); prev_projection = ops_set_projection (builder, &item_proj); ops_set_modelview (builder, NULL); prev_viewport = ops_set_viewport (builder, &GRAPHENE_RECT_INIT (0, 0, texture_to_blur_width, texture_to_blur_height)); ops_push_clip (builder, &GSK_ROUNDED_RECT_INIT (0, 0, texture_to_blur_width, texture_to_blur_height)); prev_render_target = ops_set_render_target (builder, pass1_render_target); ops_begin (builder, OP_CLEAR); ops_set_program (builder, &self->programs->blur_program); op = ops_begin (builder, OP_CHANGE_BLUR); op->size.width = texture_to_blur_width; op->size.height = texture_to_blur_height; op->radius = blur_radius; op->dir[0] = 1; op->dir[1] = 0; ops_set_texture (builder, region->texture_id); ops_draw (builder, (GskQuadVertex[GL_N_VERTICES]) { { { 0, }, { region->x, region->y2 }, }, { { 0, texture_to_blur_height }, { region->x, region->y }, }, { { texture_to_blur_width, }, { region->x2, region->y2 }, }, { { texture_to_blur_width, texture_to_blur_height }, { region->x2, region->y }, }, { { 0, texture_to_blur_height }, { region->x, region->y }, }, { { texture_to_blur_width, }, { region->x2, region->y2 }, }, }); #if 0 { static int k; ops_dump_framebuffer (builder, g_strdup_printf ("pass1_%d.png", k++), texture_to_blur_width, texture_to_blur_height); } #endif op = ops_begin (builder, OP_CHANGE_BLUR); op->size.width = texture_to_blur_width; op->size.height = texture_to_blur_height; op->radius = blur_radius; op->dir[0] = 0; op->dir[1] = 1; ops_set_texture (builder, pass1_texture_id); ops_set_render_target (builder, pass2_render_target); ops_begin (builder, OP_CLEAR); ops_draw (builder, (GskQuadVertex[GL_N_VERTICES]) { /* render pass 2 */ { { 0, }, { 0, 1 }, }, { { 0, texture_to_blur_height }, { 0, 0 }, }, { { texture_to_blur_width, }, { 1, 1 }, }, { { texture_to_blur_width, texture_to_blur_height }, { 1, 0 }, }, { { 0, texture_to_blur_height }, { 0, 0 }, }, { { texture_to_blur_width, }, { 1, 1 }, }, }); #if 0 { static int k; ops_dump_framebuffer (builder, g_strdup_printf ("blurred%d.png", k++), texture_to_blur_width, texture_to_blur_height); } #endif ops_set_render_target (builder, prev_render_target); ops_set_viewport (builder, &prev_viewport); ops_set_projection (builder, &prev_projection); ops_pop_modelview (builder); ops_pop_clip (builder); return pass2_texture_id; } static inline void blur_node (GskGLRenderer *self, GskRenderNode *node, RenderOpBuilder *builder, float blur_radius, guint extra_flags, TextureRegion *out_region, float *out_vertex_data[4]) /* min, max, min, max */ { const float scale = ops_get_scale (builder); const float blur_extra = blur_radius * 2.0; /* 2.0 = shader radius_multiplier */ float texture_width, texture_height; gboolean is_offscreen; TextureRegion region; int blurred_texture_id; g_assert (blur_radius > 0); /* Increase texture size for the given blur radius and scale it */ texture_width = ceilf ((node->bounds.size.width + blur_extra)); texture_height = ceilf ((node->bounds.size.height + blur_extra)); if (!add_offscreen_ops (self, builder, &GRAPHENE_RECT_INIT (node->bounds.origin.x - (blur_extra / 2.0), node->bounds.origin.y - (blur_extra /2.0), texture_width, texture_height), node, ®ion, &is_offscreen, RESET_CLIP | RESET_OPACITY | FORCE_OFFSCREEN | extra_flags)) g_assert_not_reached (); blurred_texture_id = blur_texture (self, builder, ®ion, texture_width * scale, texture_height * scale, blur_radius * scale); init_full_texture_region (out_region, blurred_texture_id); if (out_vertex_data) { *out_vertex_data[0] = builder->dx + node->bounds.origin.x - (blur_extra / 2.0); *out_vertex_data[1] = builder->dx + node->bounds.origin.x + node->bounds.size.width + (blur_extra / 2.0); *out_vertex_data[2] = builder->dy + node->bounds.origin.y - (blur_extra / 2.0); *out_vertex_data[3] = builder->dy + node->bounds.origin.y + node->bounds.size.height + (blur_extra / 2.0); } } static inline void render_blur_node (GskGLRenderer *self, GskRenderNode *node, RenderOpBuilder *builder) { const float blur_radius = gsk_blur_node_get_radius (node); GskRenderNode *child = gsk_blur_node_get_child (node); TextureRegion blurred_region; GskTextureKey key; if (node_is_invisible (child)) return; if (blur_radius <= 0) { gsk_gl_renderer_add_render_ops (self, child, builder); return; } key.pointer = node; key.scale = ops_get_scale (builder); key.filter = GL_NEAREST; blurred_region.texture_id = gsk_gl_driver_get_texture_for_key (self->gl_driver, &key); if (blurred_region.texture_id == 0) blur_node (self, child, builder, blur_radius, 0, &blurred_region, NULL); g_assert (blurred_region.texture_id != 0); /* Draw the result */ ops_set_program (builder, &self->programs->blit_program); ops_set_texture (builder, blurred_region.texture_id); load_offscreen_vertex_data (ops_draw (builder, NULL), node, builder); /* Render result to screen */ /* Add to cache for the blur node */ gsk_gl_driver_set_texture_for_key (self->gl_driver, &key, blurred_region.texture_id); } static inline void render_unblurred_inset_shadow_node (GskGLRenderer *self, GskRenderNode *node, RenderOpBuilder *builder) { const float blur_radius = gsk_inset_shadow_node_get_blur_radius (node); const float dx = gsk_inset_shadow_node_get_dx (node); const float dy = gsk_inset_shadow_node_get_dy (node); const float spread = gsk_inset_shadow_node_get_spread (node); g_assert (blur_radius == 0); ops_set_program (builder, &self->programs->inset_shadow_program); ops_set_inset_shadow (builder, transform_rect (self, builder, gsk_inset_shadow_node_peek_outline (node)), spread, gsk_inset_shadow_node_peek_color (node), dx, dy); load_vertex_data (ops_draw (builder, NULL), node, builder); } static inline void render_inset_shadow_node (GskGLRenderer *self, GskRenderNode *node, RenderOpBuilder *builder) { const float scale = ops_get_scale (builder); const float blur_radius = gsk_inset_shadow_node_get_blur_radius (node); const float blur_extra = blur_radius * 2.0; /* 2.0 = shader radius_multiplier */ const float dx = gsk_inset_shadow_node_get_dx (node); const float dy = gsk_inset_shadow_node_get_dy (node); const GskRoundedRect *node_outline = gsk_inset_shadow_node_peek_outline (node); float texture_width; float texture_height; int blurred_texture_id; GskTextureKey key; g_assert (blur_radius > 0); texture_width = ceilf ((node_outline->bounds.size.width + blur_extra) * scale); texture_height = ceilf ((node_outline->bounds.size.height + blur_extra) * scale); key.pointer = node; key.scale = scale; key.filter = GL_NEAREST; blurred_texture_id = gsk_gl_driver_get_texture_for_key (self->gl_driver, &key); if (blurred_texture_id == 0) { const float spread = gsk_inset_shadow_node_get_spread (node) + (blur_extra / 2.0); GskRoundedRect outline_to_blur; int render_target, texture_id; int prev_render_target; graphene_matrix_t prev_projection; graphene_rect_t prev_viewport; graphene_matrix_t item_proj; int i; /* TODO: In the following code, we have to be careful about where we apply the scale. * We're manually scaling stuff (e.g. the outline) so we can later use texture_width * and texture_height (which are already scaled) as the geometry and keep the modelview * at a scale of 1. That's kinda complicated though... */ /* Outline of what we actually want to blur later. * Spread grows inside, so we don't need to account for that. But the blur will need * to read outside of the inset shadow, so we need to draw some color in there. */ outline_to_blur = *node_outline; gsk_rounded_rect_shrink (&outline_to_blur, - blur_extra / 2.0, - blur_extra / 2.0, - blur_extra / 2.0, - blur_extra / 2.0); /* Fit to our texture */ outline_to_blur.bounds.origin.x = 0; outline_to_blur.bounds.origin.y = 0; outline_to_blur.bounds.size.width *= scale; outline_to_blur.bounds.size.height *= scale; for (i = 0; i < 4; i ++) { outline_to_blur.corner[i].width *= scale; outline_to_blur.corner[i].height *= scale; } gsk_gl_driver_create_render_target (self->gl_driver, texture_width, texture_height, GL_NEAREST, GL_NEAREST, &texture_id, &render_target); graphene_matrix_init_ortho (&item_proj, 0, texture_width, 0, texture_height, ORTHO_NEAR_PLANE, ORTHO_FAR_PLANE); graphene_matrix_scale (&item_proj, 1, -1, 1); prev_projection = ops_set_projection (builder, &item_proj); ops_set_modelview (builder, NULL); prev_viewport = ops_set_viewport (builder, &GRAPHENE_RECT_INIT (0, 0, texture_width, texture_height)); ops_push_clip (builder, &GSK_ROUNDED_RECT_INIT (0, 0, texture_width, texture_height)); prev_render_target = ops_set_render_target (builder, render_target); ops_begin (builder, OP_CLEAR); /* Actual inset shadow outline drawing */ ops_set_program (builder, &self->programs->inset_shadow_program); ops_set_inset_shadow (builder, transform_rect (self, builder, &outline_to_blur), spread * scale, gsk_inset_shadow_node_peek_color (node), dx * scale, dy * scale); ops_draw (builder, (GskQuadVertex[GL_N_VERTICES]) { { { 0, 0 }, { 0, 1 }, }, { { 0, texture_height }, { 0, 0 }, }, { { texture_width, 0 }, { 1, 1 }, }, { { texture_width, texture_height }, { 1, 0 }, }, { { 0, texture_height }, { 0, 0 }, }, { { texture_width, 0 }, { 1, 1 }, }, }); ops_set_render_target (builder, prev_render_target); ops_set_viewport (builder, &prev_viewport); ops_set_projection (builder, &prev_projection); ops_pop_modelview (builder); ops_pop_clip (builder); blurred_texture_id = blur_texture (self, builder, &(TextureRegion) { texture_id, 0, 0, 1, 1 }, texture_width, texture_height, blur_radius * scale); } g_assert (blurred_texture_id != 0); /* Blur the rendered unblurred inset shadow */ /* Use a clip to cut away the unwanted parts outside of the original outline */ { const gboolean needs_clip = !gsk_rounded_rect_is_rectilinear (node_outline); const float tx1 = blur_extra / 2.0 * scale / texture_width; const float tx2 = 1.0 - tx1; const float ty1 = blur_extra / 2.0 * scale / texture_height; const float ty2 = 1.0 - ty1; gsk_gl_driver_set_texture_for_key (self->gl_driver, &key, blurred_texture_id); if (needs_clip) { const GskRoundedRect node_clip = transform_rect (self, builder, node_outline); ops_push_clip (builder, &node_clip); } ops_set_program (builder, &self->programs->blit_program); ops_set_texture (builder, blurred_texture_id); load_vertex_data_with_region (ops_draw (builder, NULL), node, builder, &(TextureRegion) { 0, tx1, ty1, tx2, ty2 }, TRUE); if (needs_clip) ops_pop_clip (builder); } } static inline void render_unblurred_outset_shadow_node (GskGLRenderer *self, GskRenderNode *node, RenderOpBuilder *builder) { const GskRoundedRect *outline = gsk_outset_shadow_node_peek_outline (node); const float spread = gsk_outset_shadow_node_get_spread (node); const float dx = gsk_outset_shadow_node_get_dx (node); const float dy = gsk_outset_shadow_node_get_dy (node); ops_set_program (builder, &self->programs->unblurred_outset_shadow_program); ops_set_unblurred_outset_shadow (builder, transform_rect (self, builder, outline), spread, gsk_outset_shadow_node_peek_color (node), dx, dy); load_vertex_data (ops_draw (builder, NULL), node, builder); } static GdkRGBA COLOR_WHITE = { 1, 1, 1, 1 }; static inline void render_outset_shadow_node (GskGLRenderer *self, GskRenderNode *node, RenderOpBuilder *builder) { const float scale = ops_get_scale (builder); const GskRoundedRect *outline = gsk_outset_shadow_node_peek_outline (node); const GdkRGBA *color = gsk_outset_shadow_node_peek_color (node); const float blur_radius = gsk_outset_shadow_node_get_blur_radius (node); const float blur_extra = blur_radius * 2.0f; /* 2.0 = shader radius_multiplier */ const int extra_blur_pixels = (int) ceilf(blur_extra / 2.0 * scale); const float spread = gsk_outset_shadow_node_get_spread (node); const float dx = gsk_outset_shadow_node_get_dx (node); const float dy = gsk_outset_shadow_node_get_dy (node); GskRoundedRect scaled_outline; int texture_width, texture_height; OpOutsetShadow *shadow; int blurred_texture_id; int cached_tid; bool do_slicing; /* scaled_outline is the minimal outline we need to draw the given drop shadow, * enlarged by the spread and offset by the blur radius. */ scaled_outline = *outline; if (outline->bounds.size.width < blur_extra || outline->bounds.size.height < blur_extra) { do_slicing = false; gsk_rounded_rect_shrink (&scaled_outline, -spread, -spread, -spread, -spread); } else { /* Shrink our outline to the minimum size that can still hold all the border radii */ gsk_rounded_rect_shrink_to_minimum (&scaled_outline); /* Increase by the spread */ gsk_rounded_rect_shrink (&scaled_outline, -spread, -spread, -spread, -spread); /* Grow bounds but don't grow corners */ graphene_rect_inset (&scaled_outline.bounds, - blur_extra / 2.0, - blur_extra / 2.0); /* For the center part, we add a few pixels */ scaled_outline.bounds.size.width += SHADOW_EXTRA_SIZE; scaled_outline.bounds.size.height += SHADOW_EXTRA_SIZE; do_slicing = true; } texture_width = (int)ceil ((scaled_outline.bounds.size.width + blur_extra) * scale); texture_height = (int)ceil ((scaled_outline.bounds.size.height + blur_extra) * scale); scaled_outline.bounds.origin.x = extra_blur_pixels; scaled_outline.bounds.origin.y = extra_blur_pixels; scaled_outline.bounds.size.width = texture_width - (extra_blur_pixels * 2); scaled_outline.bounds.size.height = texture_height - (extra_blur_pixels * 2); for (int i = 0; i < 4; i ++) { scaled_outline.corner[i].width *= scale; scaled_outline.corner[i].height *= scale; } cached_tid = gsk_gl_shadow_cache_get_texture_id (&self->shadow_cache, self->gl_driver, &scaled_outline, blur_radius); if (cached_tid == 0) { int texture_id, render_target; int prev_render_target; graphene_matrix_t prev_projection; graphene_rect_t prev_viewport; graphene_matrix_t item_proj; gsk_gl_driver_create_render_target (self->gl_driver, texture_width, texture_height, GL_NEAREST, GL_NEAREST, &texture_id, &render_target); if (gdk_gl_context_has_debug (self->gl_context)) { gdk_gl_context_label_object_printf (self->gl_context, GL_TEXTURE, texture_id, "Outset Shadow Temp %d", texture_id); gdk_gl_context_label_object_printf (self->gl_context, GL_FRAMEBUFFER, render_target, "Outset Shadow FB Temp %d", render_target); } ops_set_program (builder, &self->programs->color_program); graphene_matrix_init_ortho (&item_proj, 0, texture_width, 0, texture_height, ORTHO_NEAR_PLANE, ORTHO_FAR_PLANE); graphene_matrix_scale (&item_proj, 1, -1, 1); prev_render_target = ops_set_render_target (builder, render_target); ops_begin (builder, OP_CLEAR); prev_projection = ops_set_projection (builder, &item_proj); ops_set_modelview (builder, NULL); prev_viewport = ops_set_viewport (builder, &GRAPHENE_RECT_INIT (0, 0, texture_width, texture_height)); /* Draw outline */ ops_push_clip (builder, &scaled_outline); ops_set_color (builder, &COLOR_WHITE); ops_draw (builder, (GskQuadVertex[GL_N_VERTICES]) { { { 0, }, { 0, 1 }, }, { { 0, texture_height }, { 0, 0 }, }, { { texture_width, }, { 1, 1 }, }, { { texture_width, texture_height }, { 1, 0 }, }, { { 0, texture_height }, { 0, 0 }, }, { { texture_width, }, { 1, 1 }, }, }); ops_pop_clip (builder); ops_set_viewport (builder, &prev_viewport); ops_pop_modelview (builder); ops_set_projection (builder, &prev_projection); ops_set_render_target (builder, prev_render_target); /* Now blur the outline */ blurred_texture_id = blur_texture (self, builder, &(TextureRegion) { texture_id, 0, 0, 1, 1 }, texture_width, texture_height, blur_radius * scale); gsk_gl_driver_mark_texture_permanent (self->gl_driver, blurred_texture_id); gsk_gl_shadow_cache_commit (&self->shadow_cache, &scaled_outline, blur_radius, blurred_texture_id); } else { blurred_texture_id = cached_tid; } if (!do_slicing) { const float min_x = floorf (builder->dx + outline->bounds.origin.x - spread - (blur_extra / 2.0) + dx); const float min_y = floorf (builder->dy + outline->bounds.origin.y - spread - (blur_extra / 2.0) + dy); float x1, x2, y1, y2, tx1, tx2, ty1, ty2; ops_set_program (builder, &self->programs->outset_shadow_program); ops_set_color (builder, color); ops_set_texture (builder, blurred_texture_id); shadow = ops_begin (builder, OP_CHANGE_OUTSET_SHADOW); shadow->outline.value = transform_rect (self, builder, outline); shadow->outline.send = TRUE; tx1 = 0; tx2 = 1; ty1 = 0; ty2 = 1; x1 = min_x; x2 = min_x + texture_width / scale; y1 = min_y; y2 = min_y + texture_height / scale; ops_draw (builder, (GskQuadVertex[GL_N_VERTICES]) { { { x1, y1 }, { tx1, ty2 }, }, { { x1, y2 }, { tx1, ty1 }, }, { { x2, y1 }, { tx2, ty2 }, }, { { x2, y2 }, { tx2, ty1 }, }, { { x1, y2 }, { tx1, ty1 }, }, { { x2, y1 }, { tx2, ty2 }, }, }); return; } ops_set_program (builder, &self->programs->outset_shadow_program); ops_set_color (builder, color); ops_set_texture (builder, blurred_texture_id); shadow = ops_begin (builder, OP_CHANGE_OUTSET_SHADOW); shadow->outline.value = transform_rect (self, builder, outline); shadow->outline.send = TRUE; { const float min_x = floorf (builder->dx + outline->bounds.origin.x - spread - (blur_extra / 2.0) + dx); const float min_y = floorf (builder->dy + outline->bounds.origin.y - spread - (blur_extra / 2.0) + dy); const float max_x = ceilf (builder->dx + outline->bounds.origin.x + outline->bounds.size.width + (blur_extra / 2.0) + dx + spread); const float max_y = ceilf (builder->dy + outline->bounds.origin.y + outline->bounds.size.height + (blur_extra / 2.0) + dy + spread); float x1, x2, y1, y2, tx1, tx2, ty1, ty2; cairo_rectangle_int_t slices[9]; TextureRegion tregs[9]; /* TODO: The slicing never changes and could just go into the cache */ nine_slice_rounded_rect (&scaled_outline, slices); nine_slice_grow (slices, extra_blur_pixels); nine_slice_to_texture_coords (slices, texture_width, texture_height, tregs); /* Our texture coordinates MUST be scaled, while the actual vertex coords * MUST NOT be scaled. */ /* Top left */ if (slice_is_visible (&slices[NINE_SLICE_TOP_LEFT])) { x1 = min_x; x2 = min_x + (slices[NINE_SLICE_TOP_LEFT].width / scale); y1 = min_y; y2 = min_y + (slices[NINE_SLICE_TOP_LEFT].height / scale); tx1 = tregs[NINE_SLICE_TOP_LEFT].x; tx2 = tregs[NINE_SLICE_TOP_LEFT].x2; ty1 = tregs[NINE_SLICE_TOP_LEFT].y; ty2 = tregs[NINE_SLICE_TOP_LEFT].y2; ops_draw (builder, (GskQuadVertex[GL_N_VERTICES]) { { { x1, y1 }, { tx1, ty2 }, }, { { x1, y2 }, { tx1, ty1 }, }, { { x2, y1 }, { tx2, ty2 }, }, { { x2, y2 }, { tx2, ty1 }, }, { { x1, y2 }, { tx1, ty1 }, }, { { x2, y1 }, { tx2, ty2 }, }, }); } /* Top center */ if (slice_is_visible (&slices[NINE_SLICE_TOP_CENTER])) { x1 = min_x + (slices[NINE_SLICE_TOP_LEFT].width / scale); x2 = max_x - (slices[NINE_SLICE_TOP_RIGHT].width / scale); y1 = min_y; y2 = min_y + (slices[NINE_SLICE_TOP_CENTER].height / scale); tx1 = tregs[NINE_SLICE_TOP_CENTER].x; tx2 = tregs[NINE_SLICE_TOP_CENTER].x2; ty1 = tregs[NINE_SLICE_TOP_CENTER].y; ty2 = tregs[NINE_SLICE_TOP_CENTER].y2; ops_draw (builder, (GskQuadVertex[GL_N_VERTICES]) { { { x1, y1 }, { tx1, ty2 }, }, { { x1, y2 }, { tx1, ty1 }, }, { { x2, y1 }, { tx2, ty2 }, }, { { x2, y2 }, { tx2, ty1 }, }, { { x1, y2 }, { tx1, ty1 }, }, { { x2, y1 }, { tx2, ty2 }, }, }); } /* Top right */ if (slice_is_visible (&slices[NINE_SLICE_TOP_RIGHT])) { x1 = max_x - (slices[NINE_SLICE_TOP_RIGHT].width / scale); x2 = max_x; y1 = min_y; y2 = min_y + (slices[NINE_SLICE_TOP_RIGHT].height / scale); tx1 = tregs[NINE_SLICE_TOP_RIGHT].x; tx2 = tregs[NINE_SLICE_TOP_RIGHT].x2; ty1 = tregs[NINE_SLICE_TOP_RIGHT].y; ty2 = tregs[NINE_SLICE_TOP_RIGHT].y2; ops_draw (builder, (GskQuadVertex[GL_N_VERTICES]) { { { x1, y1 }, { tx1, ty2 }, }, { { x1, y2 }, { tx1, ty1 }, }, { { x2, y1 }, { tx2, ty2 }, }, { { x2, y2 }, { tx2, ty1 }, }, { { x1, y2 }, { tx1, ty1 }, }, { { x2, y1 }, { tx2, ty2 }, }, }); } /* Bottom right */ if (slice_is_visible (&slices[NINE_SLICE_BOTTOM_RIGHT])) { x1 = max_x - (slices[NINE_SLICE_BOTTOM_RIGHT].width / scale); x2 = max_x; y1 = max_y - (slices[NINE_SLICE_BOTTOM_RIGHT].height / scale); y2 = max_y; tx1 = tregs[NINE_SLICE_BOTTOM_RIGHT].x; tx2 = tregs[NINE_SLICE_BOTTOM_RIGHT].x2; ty1 = tregs[NINE_SLICE_BOTTOM_RIGHT].y; ty2 = tregs[NINE_SLICE_BOTTOM_RIGHT].y2; ops_draw (builder, (GskQuadVertex[GL_N_VERTICES]) { { { x1, y1 }, { tx1, ty2 }, }, { { x1, y2 }, { tx1, ty1 }, }, { { x2, y1 }, { tx2, ty2 }, }, { { x2, y2 }, { tx2, ty1 }, }, { { x1, y2 }, { tx1, ty1 }, }, { { x2, y1 }, { tx2, ty2 }, }, }); } /* Bottom left */ if (slice_is_visible (&slices[NINE_SLICE_BOTTOM_LEFT])) { x1 = min_x; x2 = min_x + (slices[NINE_SLICE_BOTTOM_LEFT].width / scale); y1 = max_y - (slices[NINE_SLICE_BOTTOM_LEFT].height / scale); y2 = max_y; tx1 = tregs[NINE_SLICE_BOTTOM_LEFT].x; tx2 = tregs[NINE_SLICE_BOTTOM_LEFT].x2; ty1 = tregs[NINE_SLICE_BOTTOM_LEFT].y; ty2 = tregs[NINE_SLICE_BOTTOM_LEFT].y2; ops_draw (builder, (GskQuadVertex[GL_N_VERTICES]) { { { x1, y1 }, { tx1, ty2 }, }, { { x1, y2 }, { tx1, ty1 }, }, { { x2, y1 }, { tx2, ty2 }, }, { { x2, y2 }, { tx2, ty1 }, }, { { x1, y2 }, { tx1, ty1 }, }, { { x2, y1 }, { tx2, ty2 }, }, }); } /* Left side */ if (slice_is_visible (&slices[NINE_SLICE_LEFT_CENTER])) { x1 = min_x; x2 = min_x + (slices[NINE_SLICE_LEFT_CENTER].width / scale); y1 = min_y + (slices[NINE_SLICE_TOP_LEFT].height / scale); y2 = max_y - (slices[NINE_SLICE_BOTTOM_LEFT].height / scale); tx1 = tregs[NINE_SLICE_LEFT_CENTER].x; tx2 = tregs[NINE_SLICE_LEFT_CENTER].x2; ty1 = tregs[NINE_SLICE_LEFT_CENTER].y; ty2 = tregs[NINE_SLICE_LEFT_CENTER].y2; ops_draw (builder, (GskQuadVertex[GL_N_VERTICES]) { { { x1, y1 }, { tx1, ty2 }, }, { { x1, y2 }, { tx1, ty1 }, }, { { x2, y1 }, { tx2, ty2 }, }, { { x2, y2 }, { tx2, ty1 }, }, { { x1, y2 }, { tx1, ty1 }, }, { { x2, y1 }, { tx2, ty2 }, }, }); } /* Right side */ if (slice_is_visible (&slices[NINE_SLICE_RIGHT_CENTER])) { x1 = max_x - (slices[NINE_SLICE_RIGHT_CENTER].width / scale); x2 = max_x; y1 = min_y + (slices[NINE_SLICE_TOP_RIGHT].height / scale); y2 = max_y - (slices[NINE_SLICE_BOTTOM_RIGHT].height / scale); tx1 = tregs[NINE_SLICE_RIGHT_CENTER].x; tx2 = tregs[NINE_SLICE_RIGHT_CENTER].x2; ty1 = tregs[NINE_SLICE_RIGHT_CENTER].y; ty2 = tregs[NINE_SLICE_RIGHT_CENTER].y2; ops_draw (builder, (GskQuadVertex[GL_N_VERTICES]) { { { x1, y1 }, { tx1, ty2 }, }, { { x1, y2 }, { tx1, ty1 }, }, { { x2, y1 }, { tx2, ty2 }, }, { { x2, y2 }, { tx2, ty1 }, }, { { x1, y2 }, { tx1, ty1 }, }, { { x2, y1 }, { tx2, ty2 }, }, }); } /* Bottom side */ if (slice_is_visible (&slices[NINE_SLICE_BOTTOM_CENTER])) { x1 = min_x + (slices[NINE_SLICE_BOTTOM_LEFT].width / scale); x2 = max_x - (slices[NINE_SLICE_BOTTOM_RIGHT].width / scale); y1 = max_y - (slices[NINE_SLICE_BOTTOM_CENTER].height / scale); y2 = max_y; tx1 = tregs[NINE_SLICE_BOTTOM_CENTER].x; tx2 = tregs[NINE_SLICE_BOTTOM_CENTER].x2; ty1 = tregs[NINE_SLICE_BOTTOM_CENTER].y; ty2 = tregs[NINE_SLICE_BOTTOM_CENTER].y2; ops_draw (builder, (GskQuadVertex[GL_N_VERTICES]) { { { x1, y1 }, { tx1, ty2 }, }, { { x1, y2 }, { tx1, ty1 }, }, { { x2, y1 }, { tx2, ty2 }, }, { { x2, y2 }, { tx2, ty1 }, }, { { x1, y2 }, { tx1, ty1 }, }, { { x2, y1 }, { tx2, ty2 }, }, }); } /* Middle */ if (slice_is_visible (&slices[NINE_SLICE_CENTER])) { x1 = min_x + (slices[NINE_SLICE_LEFT_CENTER].width / scale); x2 = max_x - (slices[NINE_SLICE_RIGHT_CENTER].width / scale); y1 = min_y + (slices[NINE_SLICE_TOP_CENTER].height / scale); y2 = max_y - (slices[NINE_SLICE_BOTTOM_CENTER].height / scale); tx1 = tregs[NINE_SLICE_CENTER].x; tx2 = tregs[NINE_SLICE_CENTER].x2; ty1 = tregs[NINE_SLICE_CENTER].y; ty2 = tregs[NINE_SLICE_CENTER].y2; ops_draw (builder, (GskQuadVertex[GL_N_VERTICES]) { { { x1, y1 }, { tx1, ty2 }, }, { { x1, y2 }, { tx1, ty1 }, }, { { x2, y1 }, { tx2, ty2 }, }, { { x2, y2 }, { tx2, ty1 }, }, { { x1, y2 }, { tx1, ty1 }, }, { { x2, y1 }, { tx2, ty2 }, }, }); } } } static inline void render_shadow_node (GskGLRenderer *self, GskRenderNode *node, RenderOpBuilder *builder) { const gsize n_shadows = gsk_shadow_node_get_n_shadows (node); GskRenderNode *original_child = gsk_shadow_node_get_child (node); GskRenderNode *shadow_child = original_child; guint i; /* Shadow nodes recolor every pixel of the source texture, but leave the alpha in tact. * If the child is a color matrix node that doesn't touch the alpha, we can throw that away. */ if (gsk_render_node_get_node_type (shadow_child) == GSK_COLOR_MATRIX_NODE && !color_matrix_modifies_alpha (shadow_child)) { shadow_child = gsk_color_matrix_node_get_child (shadow_child); } for (i = 0; i < n_shadows; i ++) { const GskShadow *shadow = gsk_shadow_node_peek_shadow (node, i); const float dx = shadow->dx; const float dy = shadow->dy; TextureRegion region; gboolean is_offscreen; float min_x; float min_y; float max_x; float max_y; if (shadow->radius == 0 && gsk_render_node_get_node_type (shadow_child) == GSK_TEXT_NODE) { ops_offset (builder, dx, dy); render_text_node (self, shadow_child, builder, &shadow->color, TRUE); ops_offset (builder, - dx, - dy); continue; } if (gdk_rgba_is_clear (&shadow->color)) continue; if (node_is_invisible (shadow_child)) continue; if (shadow->radius > 0) { blur_node (self, shadow_child, builder, shadow->radius, NO_CACHE_PLZ, ®ion, (float*[4]){&min_x, &max_x, &min_y, &max_y}); is_offscreen = TRUE; } else if (dx == 0 && dy == 0) { continue; /* Invisible anyway */ } else { if (!add_offscreen_ops (self, builder, &shadow_child->bounds, shadow_child, ®ion, &is_offscreen, RESET_CLIP | RESET_OPACITY | NO_CACHE_PLZ)) g_assert_not_reached (); min_x = builder->dx + shadow_child->bounds.origin.x; min_y = builder->dy + shadow_child->bounds.origin.y; max_x = min_x + shadow_child->bounds.size.width; max_y = min_y + shadow_child->bounds.size.height; } ops_set_program (builder, &self->programs->coloring_program); ops_set_color (builder, &shadow->color); ops_set_texture (builder, region.texture_id); if (is_offscreen) { const GskQuadVertex offscreen_vertex_data[GL_N_VERTICES] = { { { dx + min_x, dy + min_y }, { region.x, region.y2 }, }, { { dx + min_x, dy + max_y }, { region.x, region.y }, }, { { dx + max_x, dy + min_y }, { region.x2, region.y2 }, }, { { dx + max_x, dy + max_y }, { region.x2, region.y }, }, { { dx + min_x, dy + max_y }, { region.x, region.y }, }, { { dx + max_x, dy + min_y }, { region.x2, region.y2 }, }, }; ops_draw (builder, offscreen_vertex_data); } else { const GskQuadVertex onscreen_vertex_data[GL_N_VERTICES] = { { { dx + min_x, dy + min_y }, { region.x, region.y }, }, { { dx + min_x, dy + max_y }, { region.x, region.y2 }, }, { { dx + max_x, dy + min_y }, { region.x2, region.y }, }, { { dx + max_x, dy + max_y }, { region.x2, region.y2 }, }, { { dx + min_x, dy + max_y }, { region.x, region.y2 }, }, { { dx + max_x, dy + min_y }, { region.x2, region.y }, }, }; ops_draw (builder, onscreen_vertex_data); } } /* Now draw the child normally */ gsk_gl_renderer_add_render_ops (self, original_child, builder); } static inline void render_cross_fade_node (GskGLRenderer *self, GskRenderNode *node, RenderOpBuilder *builder) { GskRenderNode *start_node = gsk_cross_fade_node_get_start_child (node); GskRenderNode *end_node = gsk_cross_fade_node_get_end_child (node); const float progress = gsk_cross_fade_node_get_progress (node); TextureRegion start_region; TextureRegion end_region; gboolean is_offscreen1, is_offscreen2; OpCrossFade *op; if (progress <= 0) { gsk_gl_renderer_add_render_ops (self, start_node, builder); return; } else if (progress >= 1) { gsk_gl_renderer_add_render_ops (self, end_node, builder); return; } /* TODO: We create 2 textures here as big as the cross-fade node, but both the * start and the end node might be a lot smaller than that. */ if (!add_offscreen_ops (self, builder, &node->bounds, start_node, &start_region, &is_offscreen1, FORCE_OFFSCREEN | RESET_CLIP | RESET_OPACITY)) { gsk_gl_renderer_add_render_ops (self, end_node, builder); return; } if (!add_offscreen_ops (self, builder, &node->bounds, end_node, &end_region, &is_offscreen2, FORCE_OFFSCREEN | RESET_CLIP | RESET_OPACITY)) { const float prev_opacity = ops_set_opacity (builder, builder->current_opacity * progress); gsk_gl_renderer_add_render_ops (self, start_node, builder); ops_set_opacity (builder, prev_opacity); return; } ops_set_program (builder, &self->programs->cross_fade_program); op = ops_begin (builder, OP_CHANGE_CROSS_FADE); op->progress = progress; op->source2 = end_region.texture_id; ops_set_texture (builder, start_region.texture_id); load_offscreen_vertex_data (ops_draw (builder, NULL), node, builder); } static inline void render_blend_node (GskGLRenderer *self, GskRenderNode *node, RenderOpBuilder *builder) { GskRenderNode *top_child = gsk_blend_node_get_top_child (node); GskRenderNode *bottom_child = gsk_blend_node_get_bottom_child (node); TextureRegion top_region; TextureRegion bottom_region; gboolean is_offscreen1, is_offscreen2; OpBlend *op; /* TODO: We create 2 textures here as big as the blend node, but both the * start and the end node might be a lot smaller than that. */ if (!add_offscreen_ops (self, builder, &node->bounds, bottom_child, &bottom_region, &is_offscreen1, FORCE_OFFSCREEN | RESET_CLIP)) { gsk_gl_renderer_add_render_ops (self, top_child, builder); return; } if (!add_offscreen_ops (self, builder, &node->bounds, top_child, &top_region, &is_offscreen2, FORCE_OFFSCREEN | RESET_CLIP)) { load_vertex_data_with_region (ops_draw (builder, NULL), node, builder, &bottom_region, TRUE); return; } ops_set_program (builder, &self->programs->blend_program); ops_set_texture (builder, bottom_region.texture_id); op = ops_begin (builder, OP_CHANGE_BLEND); op->source2 = top_region.texture_id; op->mode = gsk_blend_node_get_blend_mode (node); load_offscreen_vertex_data (ops_draw (builder, NULL), node, builder); } static inline void render_repeat_node (GskGLRenderer *self, GskRenderNode *node, RenderOpBuilder *builder) { GskRenderNode *child = gsk_repeat_node_get_child (node); const graphene_rect_t *child_bounds = gsk_repeat_node_peek_child_bounds (node); TextureRegion region; gboolean is_offscreen; OpRepeat *op; if (node_is_invisible (child)) return; if (!graphene_rect_equal (child_bounds, &child->bounds)) { /* TODO: Implement these repeat nodes. */ render_fallback_node (self, node, builder); return; } /* If the size of the repeat node is smaller than the size of the * child node, we don't repeat at all and can just draw that part * of the child texture... */ if (graphene_rect_contains_rect (child_bounds, &node->bounds)) { render_clipped_child (self, builder, &node->bounds, child); return; } /* Draw the entire child on a texture */ if (!add_offscreen_ops (self, builder, &child->bounds, child, ®ion, &is_offscreen, RESET_CLIP | RESET_OPACITY)) g_assert_not_reached (); ops_set_program (builder, &self->programs->repeat_program); ops_set_texture (builder, region.texture_id); op = ops_begin (builder, OP_CHANGE_REPEAT); op->child_bounds[0] = (node->bounds.origin.x - child_bounds->origin.x) / child_bounds->size.width; op->child_bounds[1] = (node->bounds.origin.y - child_bounds->origin.y) / child_bounds->size.height; op->child_bounds[2] = node->bounds.size.width / child_bounds->size.width; op->child_bounds[3] = node->bounds.size.height / child_bounds->size.height; op->texture_rect[0] = region.x; op->texture_rect[2] = region.x2; if (is_offscreen) { op->texture_rect[1] = region.y2; op->texture_rect[3] = region.y; } else { op->texture_rect[1] = region.y; op->texture_rect[3] = region.y2; } load_vertex_data_with_region (ops_draw (builder, NULL), node, builder, ®ion, is_offscreen); } static inline void apply_viewport_op (const Program *program, const OpViewport *op) { OP_PRINT (" -> New Viewport: %f, %f, %f, %f", op->viewport.origin.x, op->viewport.origin.y, op->viewport.size.width, op->viewport.size.height); glUniform4f (program->viewport_location, op->viewport.origin.x, op->viewport.origin.y, op->viewport.size.width, op->viewport.size.height); glViewport (0, 0, op->viewport.size.width, op->viewport.size.height); } static inline void apply_modelview_op (const Program *program, const OpMatrix *op) { float mat[16]; OP_PRINT (" -> Modelview"); graphene_matrix_to_float (&op->matrix, mat); glUniformMatrix4fv (program->modelview_location, 1, GL_FALSE, mat); } static inline void apply_projection_op (const Program *program, const OpMatrix *op) { float mat[16]; OP_PRINT (" -> Projection"); graphene_matrix_to_float (&op->matrix, mat); glUniformMatrix4fv (program->projection_location, 1, GL_FALSE, mat); } static inline void apply_program_op (const Program *program, const OpProgram *op) { OP_PRINT (" -> Program: %d", op->program->index); glUseProgram (op->program->id); } static inline void apply_render_target_op (GskGLRenderer *self, const Program *program, const OpRenderTarget *op) { OP_PRINT (" -> Render Target: %d", op->render_target_id); glBindFramebuffer (GL_FRAMEBUFFER, op->render_target_id); if (op->render_target_id != 0) glDisable (GL_SCISSOR_TEST); else gsk_gl_renderer_setup_render_mode (self); /* Reset glScissor etc. */ } static inline void apply_color_op (const Program *program, const OpColor *op) { OP_PRINT (" -> Color: (%f, %f, %f, %f)", op->rgba->red, op->rgba->green, op->rgba->blue, op->rgba->alpha); glUniform4fv (program->color.color_location, 1, (float *)op->rgba); } static inline void apply_opacity_op (const Program *program, const OpOpacity *op) { OP_PRINT (" -> Opacity %f", op->opacity); glUniform1f (program->alpha_location, op->opacity); } static inline void apply_source_texture_op (const Program *program, const OpTexture *op) { g_assert(op->texture_id != 0); OP_PRINT (" -> New texture: %d", op->texture_id); /* Use texture unit 0 for the source */ glUniform1i (program->source_location, 0); glActiveTexture (GL_TEXTURE0); glBindTexture (GL_TEXTURE_2D, op->texture_id); } static inline void apply_color_matrix_op (const Program *program, const OpColorMatrix *op) { float mat[16]; OP_PRINT (" -> Color Matrix"); graphene_matrix_to_float (op->matrix, mat); glUniformMatrix4fv (program->color_matrix.color_matrix_location, 1, GL_FALSE, mat); if (op->offset.send) { float vec[4]; graphene_vec4_to_float (op->offset.value, vec); glUniform4fv (program->color_matrix.color_offset_location, 1, vec); } } static inline void apply_clip_op (const Program *program, const OpClip *op) { int count; if (op->send_corners) { OP_PRINT (" -> Clip: %s", gsk_rounded_rect_to_string (&op->clip)); count = 3; } else { OP_PRINT (" -> clip: %f, %f, %f, %f", op->clip.bounds.origin.x, op->clip.bounds.origin.y, op->clip.bounds.size.width, op->clip.bounds.size.height); count = 1; } glUniform4fv (program->clip_rect_location, count, (float *)&op->clip.bounds); } static inline void apply_inset_shadow_op (const Program *program, const OpShadow *op) { OP_PRINT (" -> inset shadow. Color: %s, Offset: (%f, %f), Spread: %f, Outline: %s", op->color.send ? gdk_rgba_to_string (op->color.value) : "don't send", op->offset.send ? op->offset.value[0] : -1337.0, op->offset.send ? op->offset.value[1] : -1337.0, op->spread.send ? op->spread.value : -1337.0, op->outline.send ? gsk_rounded_rect_to_string (&op->outline.value) : "don't send"); if (op->outline.send) { if (op->outline.send_corners) glUniform4fv (program->inset_shadow.outline_rect_location, 3, (float *)&op->outline.value); else glUniform4fv (program->inset_shadow.outline_rect_location, 1, (float *)&op->outline.value); } if (op->color.send) glUniform4fv (program->inset_shadow.color_location, 1, (float *)op->color.value); if (op->spread.send) glUniform1f (program->inset_shadow.spread_location, op->spread.value); if (op->offset.send) glUniform2fv (program->inset_shadow.offset_location, 1, op->offset.value); } static inline void apply_unblurred_outset_shadow_op (const Program *program, const OpShadow *op) { OP_PRINT (" -> unblurred outset shadow"); if (op->outline.send) { if (op->outline.send_corners) glUniform4fv (program->unblurred_outset_shadow.outline_rect_location, 3, (float *)&op->outline.value); else glUniform4fv (program->unblurred_outset_shadow.outline_rect_location, 1, (float *)&op->outline.value); } if (op->color.send) glUniform4fv (program->unblurred_outset_shadow.color_location, 1, (float *)op->color.value); if (op->spread.send) glUniform1f (program->unblurred_outset_shadow.spread_location, op->spread.value); if (op->offset.send) glUniform2fv (program->unblurred_outset_shadow.offset_location, 1, op->offset.value); } static inline void apply_outset_shadow_op (const Program *program, const OpOutsetShadow *op) { OP_PRINT (" -> outset shadow"); glUniform4fv (program->outset_shadow.outline_rect_location, 3, (float *)&op->outline.value.bounds); } static inline void apply_linear_gradient_op (const Program *program, const OpLinearGradient *op) { OP_PRINT (" -> Linear gradient"); if (op->n_color_stops.send) glUniform1i (program->linear_gradient.num_color_stops_location, op->n_color_stops.value); if (op->color_stops.send) glUniform1fv (program->linear_gradient.color_stops_location, op->n_color_stops.value * 5, (float *)op->color_stops.value); glUniform2f (program->linear_gradient.start_point_location, op->start_point[0], op->start_point[1]); glUniform2f (program->linear_gradient.end_point_location, op->end_point[0], op->end_point[1]); } static inline void apply_radial_gradient_op (const Program *program, const OpRadialGradient *op) { OP_PRINT (" -> Radial gradient"); if (op->n_color_stops.send) glUniform1i (program->radial_gradient.num_color_stops_location, op->n_color_stops.value); if (op->color_stops.send) glUniform1fv (program->radial_gradient.color_stops_location, op->n_color_stops.value * 5, (float *)op->color_stops.value); glUniform1f (program->radial_gradient.start_location, op->start); glUniform1f (program->radial_gradient.end_location, op->end); glUniform2f (program->radial_gradient.radius_location, op->radius[0], op->radius[1]); glUniform2f (program->radial_gradient.center_location, op->center[0], op->center[1]); } static inline void apply_border_op (const Program *program, const OpBorder *op) { OP_PRINT (" -> Border Outline"); glUniform4fv (program->border.outline_rect_location, 3, (float *)&op->outline.bounds); } static inline void apply_border_width_op (const Program *program, const OpBorder *op) { OP_PRINT (" -> Border width (%f, %f, %f, %f)", op->widths[0], op->widths[1], op->widths[2], op->widths[3]); glUniform4fv (program->border.widths_location, 1, op->widths); } static inline void apply_border_color_op (const Program *program, const OpBorder *op) { OP_PRINT (" -> Border color: %s", gdk_rgba_to_string (op->color)); glUniform4fv (program->border.color_location, 1, (float *)op->color); } static inline void apply_blur_op (const Program *program, const OpBlur *op) { OP_PRINT (" -> Blur"); glUniform1f (program->blur.blur_radius_location, op->radius); glUniform2f (program->blur.blur_size_location, op->size.width, op->size.height); glUniform2f (program->blur.blur_dir_location, op->dir[0], op->dir[1]); } static inline void apply_cross_fade_op (const Program *program, const OpCrossFade *op) { OP_PRINT (" -> Cross fade"); /* End texture id */ glUniform1i (program->cross_fade.source2_location, 1); glActiveTexture (GL_TEXTURE0 + 1); glBindTexture (GL_TEXTURE_2D, op->source2); /* progress */ glUniform1f (program->cross_fade.progress_location, op->progress); } static inline void apply_blend_op (const Program *program, const OpBlend *op) { /* End texture id */ glUniform1i (program->blend.source2_location, 1); glActiveTexture (GL_TEXTURE0 + 1); glBindTexture (GL_TEXTURE_2D, op->source2); /* progress */ glUniform1i (program->blend.mode_location, op->mode); } static inline void apply_repeat_op (const Program *program, const OpRepeat *op) { glUniform4fv (program->repeat.child_bounds_location, 1, op->child_bounds); glUniform4fv (program->repeat.texture_rect_location, 1, op->texture_rect); } static void gsk_gl_renderer_dispose (GObject *gobject) { GskGLRenderer *self = GSK_GL_RENDERER (gobject); ops_free (&self->op_builder); G_OBJECT_CLASS (gsk_gl_renderer_parent_class)->dispose (gobject); } static GskGLRendererPrograms * gsk_gl_renderer_programs_new (void) { GskGLRendererPrograms *programs; int i; programs = g_new0 (GskGLRendererPrograms, 1); programs->ref_count = 1; for (i = 0; i < GL_N_PROGRAMS; i ++) { programs->state[i].opacity = 1.0f; } return programs; } static GskGLRendererPrograms * gsk_gl_renderer_programs_ref (GskGLRendererPrograms *programs) { programs->ref_count++; return programs; } /* Must be called with the context current */ static void gsk_gl_renderer_programs_unref (GskGLRendererPrograms *programs) { int i; programs->ref_count--; if (programs->ref_count == 0) { for (i = 0; i < GL_N_PROGRAMS; i ++) { if (programs->programs[i].id > 0) glDeleteProgram (programs->programs[i].id); gsk_transform_unref (programs->state[i].modelview); } g_free (programs); } } static GskGLRendererPrograms * gsk_gl_renderer_create_programs (GskGLRenderer *self, GError **error) { GskGLShaderBuilder shader_builder; GskGLRendererPrograms *programs = NULL; int i; static const struct { const char *resource_path; const char *name; } program_definitions[] = { { "/org/gtk/libgsk/glsl/blend.glsl", "blend" }, { "/org/gtk/libgsk/glsl/blit.glsl", "blit" }, { "/org/gtk/libgsk/glsl/blur.glsl", "blur" }, { "/org/gtk/libgsk/glsl/border.glsl", "border" }, { "/org/gtk/libgsk/glsl/color_matrix.glsl", "color matrix" }, { "/org/gtk/libgsk/glsl/color.glsl", "color" }, { "/org/gtk/libgsk/glsl/coloring.glsl", "coloring" }, { "/org/gtk/libgsk/glsl/cross_fade.glsl", "cross fade" }, { "/org/gtk/libgsk/glsl/inset_shadow.glsl", "inset shadow" }, { "/org/gtk/libgsk/glsl/linear_gradient.glsl", "linear gradient" }, { "/org/gtk/libgsk/glsl/radial_gradient.glsl", "radial gradient" }, { "/org/gtk/libgsk/glsl/outset_shadow.glsl", "outset shadow" }, { "/org/gtk/libgsk/glsl/repeat.glsl", "repeat" }, { "/org/gtk/libgsk/glsl/unblurred_outset_shadow.glsl", "unblurred_outset shadow" }, }; gsk_gl_shader_builder_init (&shader_builder, "/org/gtk/libgsk/glsl/preamble.glsl", "/org/gtk/libgsk/glsl/preamble.vs.glsl", "/org/gtk/libgsk/glsl/preamble.fs.glsl"); g_assert (G_N_ELEMENTS (program_definitions) == GL_N_PROGRAMS); #ifdef G_ENABLE_DEBUG if (GSK_RENDERER_DEBUG_CHECK (GSK_RENDERER (self), SHADERS)) shader_builder.debugging = TRUE; #endif if (gdk_gl_context_get_use_es (self->gl_context)) { gsk_gl_shader_builder_set_glsl_version (&shader_builder, SHADER_VERSION_GLES); shader_builder.gles = TRUE; } else if (gdk_gl_context_is_legacy (self->gl_context)) { int maj, min; gdk_gl_context_get_version (self->gl_context, &maj, &min); if (maj == 3) gsk_gl_shader_builder_set_glsl_version (&shader_builder, SHADER_VERSION_GL3_LEGACY); else gsk_gl_shader_builder_set_glsl_version (&shader_builder, SHADER_VERSION_GL2_LEGACY); shader_builder.legacy = TRUE; } else { gsk_gl_shader_builder_set_glsl_version (&shader_builder, SHADER_VERSION_GL3); shader_builder.gl3 = TRUE; } programs = gsk_gl_renderer_programs_new (); for (i = 0; i < GL_N_PROGRAMS; i ++) { Program *prog = &programs->programs[i]; prog->index = i; prog->id = gsk_gl_shader_builder_create_program (&shader_builder, program_definitions[i].resource_path, error); if (prog->id < 0) { g_clear_pointer (&programs, gsk_gl_renderer_programs_unref); goto out; } INIT_COMMON_UNIFORM_LOCATION (prog, alpha); INIT_COMMON_UNIFORM_LOCATION (prog, source); INIT_COMMON_UNIFORM_LOCATION (prog, clip_rect); INIT_COMMON_UNIFORM_LOCATION (prog, viewport); INIT_COMMON_UNIFORM_LOCATION (prog, projection); INIT_COMMON_UNIFORM_LOCATION (prog, modelview); } /* color */ INIT_PROGRAM_UNIFORM_LOCATION (color, color); /* coloring */ INIT_PROGRAM_UNIFORM_LOCATION (coloring, color); /* color matrix */ INIT_PROGRAM_UNIFORM_LOCATION (color_matrix, color_matrix); INIT_PROGRAM_UNIFORM_LOCATION (color_matrix, color_offset); /* linear gradient */ INIT_PROGRAM_UNIFORM_LOCATION (linear_gradient, color_stops); INIT_PROGRAM_UNIFORM_LOCATION (linear_gradient, num_color_stops); INIT_PROGRAM_UNIFORM_LOCATION (linear_gradient, start_point); INIT_PROGRAM_UNIFORM_LOCATION (linear_gradient, end_point); /* radial gradient */ INIT_PROGRAM_UNIFORM_LOCATION (radial_gradient, color_stops); INIT_PROGRAM_UNIFORM_LOCATION (radial_gradient, num_color_stops); INIT_PROGRAM_UNIFORM_LOCATION (radial_gradient, center); INIT_PROGRAM_UNIFORM_LOCATION (radial_gradient, start); INIT_PROGRAM_UNIFORM_LOCATION (radial_gradient, end); INIT_PROGRAM_UNIFORM_LOCATION (radial_gradient, radius); /* blur */ INIT_PROGRAM_UNIFORM_LOCATION (blur, blur_radius); INIT_PROGRAM_UNIFORM_LOCATION (blur, blur_size); INIT_PROGRAM_UNIFORM_LOCATION (blur, blur_dir); /* inset shadow */ INIT_PROGRAM_UNIFORM_LOCATION (inset_shadow, color); INIT_PROGRAM_UNIFORM_LOCATION (inset_shadow, spread); INIT_PROGRAM_UNIFORM_LOCATION (inset_shadow, offset); INIT_PROGRAM_UNIFORM_LOCATION (inset_shadow, outline_rect); /* outset shadow */ INIT_PROGRAM_UNIFORM_LOCATION (outset_shadow, color); INIT_PROGRAM_UNIFORM_LOCATION (outset_shadow, outline_rect); /* unblurred outset shadow */ INIT_PROGRAM_UNIFORM_LOCATION (unblurred_outset_shadow, color); INIT_PROGRAM_UNIFORM_LOCATION (unblurred_outset_shadow, spread); INIT_PROGRAM_UNIFORM_LOCATION (unblurred_outset_shadow, offset); INIT_PROGRAM_UNIFORM_LOCATION (unblurred_outset_shadow, outline_rect); /* border */ INIT_PROGRAM_UNIFORM_LOCATION (border, color); INIT_PROGRAM_UNIFORM_LOCATION (border, widths); INIT_PROGRAM_UNIFORM_LOCATION (border, outline_rect); /* cross fade */ INIT_PROGRAM_UNIFORM_LOCATION (cross_fade, progress); INIT_PROGRAM_UNIFORM_LOCATION (cross_fade, source2); /* blend */ INIT_PROGRAM_UNIFORM_LOCATION (blend, source2); INIT_PROGRAM_UNIFORM_LOCATION (blend, mode); /* repeat */ INIT_PROGRAM_UNIFORM_LOCATION (repeat, child_bounds); INIT_PROGRAM_UNIFORM_LOCATION (repeat, texture_rect); /* We initialize the alpha uniform here, since the default value is important. * We can't do it in the shader like a reasonable person would because that doesn't * work in gles. */ for (i = 0; i < GL_N_PROGRAMS; i++) { glUseProgram(programs->programs[i].id); glUniform1f (programs->programs[i].alpha_location, 1.0); } out: gsk_gl_shader_builder_finish (&shader_builder); if (error && !(*error) && !programs) g_set_error (error, GDK_GL_ERROR, GDK_GL_ERROR_COMPILATION_FAILED, "Failed to compile all shader programs"); /* Probably, eh. */ return programs; } static GskGLRendererPrograms * get_programs_for_display (GskGLRenderer *self, GdkDisplay *display, GError **error) { GskGLRendererPrograms *programs; if (g_getenv ("GSK_NO_SHARED_PROGRAMS")) return gsk_gl_renderer_create_programs (self, error); programs = (GskGLRendererPrograms *)g_object_get_data (G_OBJECT (display), "gsk-gl-programs"); if (programs == NULL) { programs = gsk_gl_renderer_create_programs (self, error); if (programs) g_object_set_data_full (G_OBJECT (display), "gsk-gl-programs", programs, (GDestroyNotify) gsk_gl_renderer_programs_unref); } if (programs) return gsk_gl_renderer_programs_ref (programs); return NULL; } static GskGLTextureAtlases * get_texture_atlases_for_display (GdkDisplay *display) { GskGLTextureAtlases *atlases; if (g_getenv ("GSK_NO_SHARED_CACHES")) return gsk_gl_texture_atlases_new (); atlases = (GskGLTextureAtlases*)g_object_get_data (G_OBJECT (display), "gsk-gl-texture-atlases"); if (atlases == NULL) { atlases = gsk_gl_texture_atlases_new (); g_object_set_data_full (G_OBJECT (display), "gsk-gl-texture-atlases", atlases, (GDestroyNotify) gsk_gl_texture_atlases_unref); } return gsk_gl_texture_atlases_ref (atlases); } static GskGLGlyphCache * get_glyph_cache_for_display (GdkDisplay *display, GskGLTextureAtlases *atlases) { GskGLGlyphCache *glyph_cache; if (g_getenv ("GSK_NO_SHARED_CACHES")) return gsk_gl_glyph_cache_new (display, atlases); glyph_cache = (GskGLGlyphCache*)g_object_get_data (G_OBJECT (display), "gsk-gl-glyph-cache"); if (glyph_cache == NULL) { glyph_cache = gsk_gl_glyph_cache_new (display, atlases); g_object_set_data_full (G_OBJECT (display), "gsk-gl-glyph-cache", glyph_cache, (GDestroyNotify) gsk_gl_glyph_cache_unref); } return gsk_gl_glyph_cache_ref (glyph_cache); } static GskGLIconCache * get_icon_cache_for_display (GdkDisplay *display, GskGLTextureAtlases *atlases) { GskGLIconCache *icon_cache; if (g_getenv ("GSK_NO_SHARED_CACHES")) return gsk_gl_icon_cache_new (display, atlases); icon_cache = (GskGLIconCache*)g_object_get_data (G_OBJECT (display), "gsk-gl-icon-cache"); if (icon_cache == NULL) { icon_cache = gsk_gl_icon_cache_new (display, atlases); g_object_set_data_full (G_OBJECT (display), "gsk-gl-icon-cache", icon_cache, (GDestroyNotify) gsk_gl_icon_cache_unref); } return gsk_gl_icon_cache_ref (icon_cache); } static gboolean gsk_gl_renderer_realize (GskRenderer *renderer, GdkSurface *surface, GError **error) { GskGLRenderer *self = GSK_GL_RENDERER (renderer); gint64 before G_GNUC_UNUSED; before = GDK_PROFILER_CURRENT_TIME; /* If we didn't get a GdkGLContext before realization, try creating * one now, for our exclusive use. */ if (self->gl_context == NULL) { self->gl_context = gdk_surface_create_gl_context (surface, error); if (self->gl_context == NULL) return FALSE; } if (!gdk_gl_context_realize (self->gl_context, error)) return FALSE; gdk_gl_context_make_current (self->gl_context); g_assert (self->gl_driver == NULL); self->gl_profiler = gsk_gl_profiler_new (self->gl_context); self->gl_driver = gsk_gl_driver_new (self->gl_context); GSK_RENDERER_NOTE (renderer, OPENGL, g_message ("Creating buffers and programs")); self->programs = get_programs_for_display (self, gdk_surface_get_display (surface), error); if (self->programs == NULL) return FALSE; self->op_builder.programs = self->programs; self->atlases = get_texture_atlases_for_display (gdk_surface_get_display (surface)); self->glyph_cache = get_glyph_cache_for_display (gdk_surface_get_display (surface), self->atlases); self->icon_cache = get_icon_cache_for_display (gdk_surface_get_display (surface), self->atlases); gsk_gl_shadow_cache_init (&self->shadow_cache); gdk_profiler_end_mark (before, "gl renderer realize", NULL); return TRUE; } static void gsk_gl_renderer_unrealize (GskRenderer *renderer) { GskGLRenderer *self = GSK_GL_RENDERER (renderer); if (self->gl_context == NULL) return; gdk_gl_context_make_current (self->gl_context); /* We don't need to iterate to destroy the associated GL resources, * as they will be dropped when we finalize the GskGLDriver */ ops_reset (&self->op_builder); self->op_builder.programs = NULL; g_clear_pointer (&self->programs, gsk_gl_renderer_programs_unref); g_clear_pointer (&self->glyph_cache, gsk_gl_glyph_cache_unref); g_clear_pointer (&self->icon_cache, gsk_gl_icon_cache_unref); g_clear_pointer (&self->atlases, gsk_gl_texture_atlases_unref); gsk_gl_shadow_cache_free (&self->shadow_cache, self->gl_driver); g_clear_object (&self->gl_profiler); g_clear_object (&self->gl_driver); if (self->gl_context == gdk_gl_context_get_current ()) gdk_gl_context_clear_current (); g_clear_object (&self->gl_context); } static void gsk_gl_renderer_clear_tree (GskGLRenderer *self) { if (self->gl_context == NULL) return; gdk_gl_context_make_current (self->gl_context); ops_reset (&self->op_builder); #ifdef G_ENABLE_DEBUG int removed_textures = gsk_gl_driver_collect_textures (self->gl_driver); GSK_RENDERER_NOTE (GSK_RENDERER (self), OPENGL, g_message ("Collected: %d textures", removed_textures)); #else gsk_gl_driver_collect_textures (self->gl_driver); #endif } static void gsk_gl_renderer_clear (GskGLRenderer *self) { GSK_RENDERER_NOTE (GSK_RENDERER (self), OPENGL, g_message ("Clearing viewport")); glClearColor (0, 0, 0, 0); glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT); } static void gsk_gl_renderer_setup_render_mode (GskGLRenderer *self) { if (self->render_region == NULL) { glDisable (GL_SCISSOR_TEST); } else { GdkSurface *surface = gsk_renderer_get_surface (GSK_RENDERER (self)); cairo_rectangle_int_t extents; int surface_height; g_assert (cairo_region_num_rectangles (self->render_region) == 1); surface_height = gdk_surface_get_height (surface) * self->scale_factor; cairo_region_get_rectangle (self->render_region, 0, &extents); glEnable (GL_SCISSOR_TEST); glScissor (extents.x * self->scale_factor, surface_height - (extents.height * self->scale_factor) - (extents.y * self->scale_factor), extents.width * self->scale_factor, extents.height * self->scale_factor); } } static void gsk_gl_renderer_add_render_ops (GskGLRenderer *self, GskRenderNode *node, RenderOpBuilder *builder) { /* This can still happen, even if the render nodes are created using * GtkSnapshot, so let's just be safe. */ if (node_is_invisible (node)) return; /* Check whether the render node is entirely out of the current * already transformed clip region */ { graphene_rect_t transformed_node_bounds; ops_transform_bounds_modelview (builder, &node->bounds, &transformed_node_bounds); if (!graphene_rect_intersects (&builder->current_clip->bounds, &transformed_node_bounds)) return; } switch (gsk_render_node_get_node_type (node)) { case GSK_NOT_A_RENDER_NODE: g_assert_not_reached (); case GSK_CONTAINER_NODE: { guint i, p; for (i = 0, p = gsk_container_node_get_n_children (node); i < p; i ++) { GskRenderNode *child = gsk_container_node_get_child (node, i); gsk_gl_renderer_add_render_ops (self, child, builder); } } break; case GSK_DEBUG_NODE: { const char *message = gsk_debug_node_get_message (node); if (message) ops_push_debug_group (builder, message); gsk_gl_renderer_add_render_ops (self, gsk_debug_node_get_child (node), builder); if (message) ops_pop_debug_group (builder); } break; case GSK_COLOR_NODE: render_color_node (self, node, builder); break; case GSK_TEXTURE_NODE: render_texture_node (self, node, builder); break; case GSK_TRANSFORM_NODE: render_transform_node (self, node, builder); break; case GSK_OPACITY_NODE: render_opacity_node (self, node, builder); break; case GSK_LINEAR_GRADIENT_NODE: render_linear_gradient_node (self, node, builder); break; case GSK_RADIAL_GRADIENT_NODE: render_radial_gradient_node (self, node, builder); break; case GSK_CLIP_NODE: render_clip_node (self, node, builder); break; case GSK_ROUNDED_CLIP_NODE: render_rounded_clip_node (self, node, builder); break; case GSK_TEXT_NODE: render_text_node (self, node, builder, gsk_text_node_peek_color (node), FALSE); break; case GSK_COLOR_MATRIX_NODE: render_color_matrix_node (self, node, builder); break; case GSK_BLUR_NODE: render_blur_node (self, node, builder); break; case GSK_INSET_SHADOW_NODE: if (gsk_inset_shadow_node_get_blur_radius (node) > 0) render_inset_shadow_node (self, node, builder); else render_unblurred_inset_shadow_node (self, node, builder); break; case GSK_OUTSET_SHADOW_NODE: if (gsk_outset_shadow_node_get_blur_radius (node) > 0) render_outset_shadow_node (self, node, builder); else render_unblurred_outset_shadow_node (self, node, builder); break; case GSK_SHADOW_NODE: render_shadow_node (self, node, builder); break; case GSK_BORDER_NODE: render_border_node (self, node, builder); break; case GSK_CROSS_FADE_NODE: render_cross_fade_node (self, node, builder); break; case GSK_BLEND_NODE: render_blend_node (self, node, builder); break; case GSK_REPEAT_NODE: render_repeat_node (self, node, builder); break; case GSK_REPEATING_LINEAR_GRADIENT_NODE: case GSK_REPEATING_RADIAL_GRADIENT_NODE: case GSK_CAIRO_NODE: default: { render_fallback_node (self, node, builder); } } } static gboolean add_offscreen_ops (GskGLRenderer *self, RenderOpBuilder *builder, const graphene_rect_t *bounds, GskRenderNode *child_node, TextureRegion *texture_region_out, gboolean *is_offscreen, guint flags) { float scale, width, height, size, scaled_size; const float dx = builder->dx; const float dy = builder->dy; int render_target; int prev_render_target; graphene_matrix_t prev_projection; graphene_rect_t prev_viewport; graphene_matrix_t item_proj; float prev_opacity = 1.0; int texture_id = 0; int max_texture_size; int filter; GskTextureKey key; int cached_id; if (node_is_invisible (child_node)) { /* Just to be safe */ *is_offscreen = FALSE; init_full_texture_region (texture_region_out, 0); return FALSE; } /* We need the child node as a texture. If it already is one, we don't need to draw * it on a framebuffer of course. */ if (gsk_render_node_get_node_type (child_node) == GSK_TEXTURE_NODE && (flags & FORCE_OFFSCREEN) == 0) { GdkTexture *texture = gsk_texture_node_get_texture (child_node); upload_texture (self, texture, texture_region_out); *is_offscreen = FALSE; return TRUE; } if (flags & LINEAR_FILTER) filter = GL_LINEAR; else filter = GL_NEAREST; /* Check if we've already cached the drawn texture. */ key.pointer = child_node; key.scale = ops_get_scale (builder); key.filter = filter; cached_id = gsk_gl_driver_get_texture_for_key (self->gl_driver, &key); if (cached_id != 0) { init_full_texture_region (texture_region_out, cached_id); /* We didn't render it offscreen, but hand out an offscreen texture id */ *is_offscreen = TRUE; return TRUE; } scale = ops_get_scale (builder); width = bounds->size.width; height = bounds->size.height; /* Tweak the scale factor so that the required texture doesn't * exceed the max texture limit. This will render with a lower * resolution, but this is better than clipping. */ size = MAX (width, height); scaled_size = ceilf (size * scale); max_texture_size = gsk_gl_driver_get_max_texture_size (self->gl_driver); if (scaled_size > max_texture_size) scale *= (float) max_texture_size / scaled_size; width = ceilf (width * scale); height = ceilf (height * scale); gsk_gl_driver_create_render_target (self->gl_driver, width, height, filter, filter, &texture_id, &render_target); if (gdk_gl_context_has_debug (self->gl_context)) { gdk_gl_context_label_object_printf (self->gl_context, GL_TEXTURE, texture_id, "Offscreen<%s> %d", g_type_name_from_instance ((GTypeInstance *) child_node), texture_id); gdk_gl_context_label_object_printf (self->gl_context, GL_FRAMEBUFFER, render_target, "Offscreen<%s> FB %d", g_type_name_from_instance ((GTypeInstance *) child_node), render_target); } graphene_matrix_init_ortho (&item_proj, bounds->origin.x * scale, (bounds->origin.x + bounds->size.width) * scale, bounds->origin.y * scale, (bounds->origin.y + bounds->size.height) * scale, ORTHO_NEAR_PLANE, ORTHO_FAR_PLANE); graphene_matrix_scale (&item_proj, 1, -1, 1); prev_render_target = ops_set_render_target (builder, render_target); /* Clear since we use this rendertarget for the first time */ ops_begin (builder, OP_CLEAR); prev_projection = ops_set_projection (builder, &item_proj); ops_set_modelview (builder, gsk_transform_scale (NULL, scale, scale)); prev_viewport = ops_set_viewport (builder, &GRAPHENE_RECT_INIT (bounds->origin.x * scale, bounds->origin.y * scale, width, height)); if (flags & RESET_CLIP) ops_push_clip (builder, &GSK_ROUNDED_RECT_INIT (bounds->origin.x * scale, bounds->origin.y * scale, width, height)); builder->dx = 0; builder->dy = 0; if (flags & RESET_OPACITY) prev_opacity = ops_set_opacity (builder, 1.0); gsk_gl_renderer_add_render_ops (self, child_node, builder); #ifdef G_ENABLE_DEBUG if (G_UNLIKELY (flags & DUMP_FRAMEBUFFER)) { static int k; ops_dump_framebuffer (builder, g_strdup_printf ("%s_%p_%d.png", g_type_name_from_instance ((GTypeInstance *) child_node), child_node, k ++), width, height); } #endif if (flags & RESET_OPACITY) ops_set_opacity (builder, prev_opacity); builder->dx = dx; builder->dy = dy; if (flags & RESET_CLIP) ops_pop_clip (builder); ops_set_viewport (builder, &prev_viewport); ops_pop_modelview (builder); ops_set_projection (builder, &prev_projection); ops_set_render_target (builder, prev_render_target); *is_offscreen = TRUE; init_full_texture_region (texture_region_out, texture_id); if ((flags & NO_CACHE_PLZ) == 0) gsk_gl_driver_set_texture_for_key (self->gl_driver, &key, texture_id); return TRUE; } static void gsk_gl_renderer_render_ops (GskGLRenderer *self) { const Program *program = NULL; const gsize vertex_data_size = self->op_builder.vertices->len * sizeof (GskQuadVertex); const float *vertex_data = (float *)self->op_builder.vertices->data; OpBufferIter iter; OpKind kind; gpointer ptr; GLuint buffer_id, vao_id; #if DEBUG_OPS g_print ("============================================\n"); #endif glGenVertexArrays (1, &vao_id); glBindVertexArray (vao_id); glGenBuffers (1, &buffer_id); glBindBuffer (GL_ARRAY_BUFFER, buffer_id); glBufferData (GL_ARRAY_BUFFER, vertex_data_size, vertex_data, GL_STATIC_DRAW); /* 0 = position location */ glEnableVertexAttribArray (0); glVertexAttribPointer (0, 2, GL_FLOAT, GL_FALSE, sizeof (GskQuadVertex), (void *) G_STRUCT_OFFSET (GskQuadVertex, position)); /* 1 = texture coord location */ glEnableVertexAttribArray (1); glVertexAttribPointer (1, 2, GL_FLOAT, GL_FALSE, sizeof (GskQuadVertex), (void *) G_STRUCT_OFFSET (GskQuadVertex, uv)); op_buffer_iter_init (&iter, ops_get_buffer (&self->op_builder)); while ((ptr = op_buffer_iter_next (&iter, &kind))) { if (kind == OP_NONE) continue; if (program == NULL && kind != OP_PUSH_DEBUG_GROUP && kind != OP_POP_DEBUG_GROUP && kind != OP_CHANGE_PROGRAM && kind != OP_CHANGE_RENDER_TARGET && kind != OP_CLEAR) continue; OP_PRINT ("Op %u: %u", iter.pos - 2, kind); switch (kind) { case OP_CHANGE_PROJECTION: apply_projection_op (program, ptr); break; case OP_CHANGE_MODELVIEW: apply_modelview_op (program, ptr); break; case OP_CHANGE_PROGRAM: { const OpProgram *op = ptr; apply_program_op (program, op); program = op->program; break; } case OP_CHANGE_RENDER_TARGET: apply_render_target_op (self, program, ptr); break; case OP_CLEAR: OP_PRINT ("-> CLEAR"); glClearColor (0, 0, 0, 0); glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT); break; case OP_CHANGE_VIEWPORT: apply_viewport_op (program, ptr); break; case OP_CHANGE_OPACITY: apply_opacity_op (program, ptr); break; case OP_CHANGE_COLOR_MATRIX: apply_color_matrix_op (program, ptr); break; case OP_CHANGE_COLOR: /*g_assert (program == &self->color_program || program == &self->coloring_program ||*/ /*program == &self->shadow_program);*/ apply_color_op (program, ptr); break; case OP_CHANGE_BORDER_COLOR: apply_border_color_op (program, ptr); break; case OP_CHANGE_CLIP: apply_clip_op (program, ptr); break; case OP_CHANGE_SOURCE_TEXTURE: apply_source_texture_op (program, ptr); break; case OP_CHANGE_CROSS_FADE: g_assert (program == &self->programs->cross_fade_program); apply_cross_fade_op (program, ptr); break; case OP_CHANGE_BLEND: g_assert (program == &self->programs->blend_program); apply_blend_op (program, ptr); break; case OP_CHANGE_LINEAR_GRADIENT: apply_linear_gradient_op (program, ptr); break; case OP_CHANGE_RADIAL_GRADIENT: apply_radial_gradient_op (program, ptr); break; case OP_CHANGE_BLUR: apply_blur_op (program, ptr); break; case OP_CHANGE_INSET_SHADOW: apply_inset_shadow_op (program, ptr); break; case OP_CHANGE_OUTSET_SHADOW: apply_outset_shadow_op (program, ptr); break; case OP_CHANGE_BORDER: apply_border_op (program, ptr); break; case OP_CHANGE_BORDER_WIDTH: apply_border_width_op (program, ptr); break; case OP_CHANGE_UNBLURRED_OUTSET_SHADOW: apply_unblurred_outset_shadow_op (program, ptr); break; case OP_CHANGE_REPEAT: apply_repeat_op (program, ptr); break; case OP_DRAW: { const OpDraw *op = ptr; OP_PRINT (" -> draw %ld, size %ld and program %d\n", op->vao_offset, op->vao_size, program->index); glDrawArrays (GL_TRIANGLES, op->vao_offset, op->vao_size); break; } case OP_DUMP_FRAMEBUFFER: { const OpDumpFrameBuffer *op = ptr; dump_framebuffer (op->filename, op->width, op->height); break; } case OP_PUSH_DEBUG_GROUP: { const OpDebugGroup *op = ptr; gdk_gl_context_push_debug_group (self->gl_context, op->text); OP_PRINT (" Debug: %s", op->text); break; } case OP_POP_DEBUG_GROUP: gdk_gl_context_pop_debug_group (self->gl_context); break; case OP_NONE: case OP_LAST: default: g_warn_if_reached (); } OP_PRINT ("\n"); } glDeleteVertexArrays (1, &vao_id); glDeleteBuffers (1, &buffer_id); } static void gsk_gl_renderer_do_render (GskRenderer *renderer, GskRenderNode *root, const graphene_rect_t *viewport, int fbo_id, int scale_factor) { GskGLRenderer *self = GSK_GL_RENDERER (renderer); graphene_matrix_t projection; #ifdef G_ENABLE_DEBUG GskProfiler *profiler; gint64 gpu_time, cpu_time; gint64 start_time G_GNUC_UNUSED; #endif GPtrArray *removed; #ifdef G_ENABLE_DEBUG profiler = gsk_renderer_get_profiler (renderer); #endif if (self->gl_context == NULL) { GSK_RENDERER_NOTE (renderer, OPENGL, g_message ("No valid GL context associated to the renderer")); return; } g_assert (gsk_gl_driver_in_frame (self->gl_driver)); /* Set up the modelview and projection matrices to fit our viewport */ graphene_matrix_init_ortho (&projection, viewport->origin.x, viewport->origin.x + viewport->size.width, viewport->origin.y, viewport->origin.y + viewport->size.height, ORTHO_NEAR_PLANE, ORTHO_FAR_PLANE); graphene_matrix_scale (&projection, 1, -1, 1); removed = g_ptr_array_new (); gsk_gl_texture_atlases_begin_frame (self->atlases, removed); gsk_gl_glyph_cache_begin_frame (self->glyph_cache, self->gl_driver, removed); gsk_gl_icon_cache_begin_frame (self->icon_cache, removed); gsk_gl_shadow_cache_begin_frame (&self->shadow_cache, self->gl_driver); g_ptr_array_unref (removed); ops_set_projection (&self->op_builder, &projection); ops_set_viewport (&self->op_builder, viewport); ops_set_modelview (&self->op_builder, gsk_transform_scale (NULL, scale_factor, scale_factor)); /* Initial clip is self->render_region! */ if (self->render_region != NULL) { graphene_rect_t transformed_render_region; cairo_rectangle_int_t render_extents; cairo_region_get_extents (self->render_region, &render_extents); ops_transform_bounds_modelview (&self->op_builder, &GRAPHENE_RECT_INIT (render_extents.x, render_extents.y, render_extents.width, render_extents.height), &transformed_render_region); ops_push_clip (&self->op_builder, &GSK_ROUNDED_RECT_INIT (transformed_render_region.origin.x, transformed_render_region.origin.y, transformed_render_region.size.width, transformed_render_region.size.height)); } else { ops_push_clip (&self->op_builder, &GSK_ROUNDED_RECT_INIT (viewport->origin.x, viewport->origin.y, viewport->size.width, viewport->size.height)); } if (fbo_id != 0) ops_set_render_target (&self->op_builder, fbo_id); gdk_gl_context_push_debug_group (self->gl_context, "Adding render ops"); gsk_gl_renderer_add_render_ops (self, root, &self->op_builder); gdk_gl_context_pop_debug_group (self->gl_context); /* We correctly reset the state everywhere */ g_assert_cmpint (self->op_builder.current_render_target, ==, fbo_id); ops_pop_modelview (&self->op_builder); ops_pop_clip (&self->op_builder); ops_finish (&self->op_builder); /*g_message ("Ops: %u", self->render_ops->len);*/ /* Now actually draw things... */ #ifdef G_ENABLE_DEBUG gsk_gl_profiler_begin_gpu_region (self->gl_profiler); gsk_profiler_timer_begin (profiler, self->profile_timers.cpu_time); #endif /* Actually do the rendering */ if (fbo_id != 0) glBindFramebuffer (GL_FRAMEBUFFER, fbo_id); glViewport (0, 0, ceilf (viewport->size.width), ceilf (viewport->size.height)); gsk_gl_renderer_setup_render_mode (self); gsk_gl_renderer_clear (self); glEnable (GL_DEPTH_TEST); glDepthFunc (GL_LEQUAL); /* Pre-multiplied alpha! */ glEnable (GL_BLEND); glBlendFunc (GL_ONE, GL_ONE_MINUS_SRC_ALPHA); glBlendEquation (GL_FUNC_ADD); gdk_gl_context_push_debug_group (self->gl_context, "Rendering ops"); gsk_gl_renderer_render_ops (self); gdk_gl_context_pop_debug_group (self->gl_context); #ifdef G_ENABLE_DEBUG gsk_profiler_counter_inc (profiler, self->profile_counters.frames); start_time = gsk_profiler_timer_get_start (profiler, self->profile_timers.cpu_time); cpu_time = gsk_profiler_timer_end (profiler, self->profile_timers.cpu_time); gsk_profiler_timer_set (profiler, self->profile_timers.cpu_time, cpu_time); gpu_time = gsk_gl_profiler_end_gpu_region (self->gl_profiler); gsk_profiler_timer_set (profiler, self->profile_timers.gpu_time, gpu_time); gsk_profiler_push_samples (profiler); gdk_profiler_add_mark (start_time * 1000, cpu_time * 1000, "GL render", ""); #endif } static GdkTexture * gsk_gl_renderer_render_texture (GskRenderer *renderer, GskRenderNode *root, const graphene_rect_t *viewport) { GskGLRenderer *self = GSK_GL_RENDERER (renderer); GdkTexture *texture; int width, height; guint texture_id; guint fbo_id; g_return_val_if_fail (self->gl_context != NULL, NULL); gdk_gl_context_make_current (self->gl_context); gdk_gl_context_push_debug_group_printf (self->gl_context, "Render %s<%p> to texture", g_type_name_from_instance ((GTypeInstance *) root), root); width = ceilf (viewport->size.width); height = ceilf (viewport->size.height); self->scale_factor = gdk_surface_get_scale_factor (gsk_renderer_get_surface (renderer)); /* Prepare our framebuffer */ gsk_gl_driver_begin_frame (self->gl_driver); glGenTextures (1, &texture_id); glBindTexture (GL_TEXTURE_2D, texture_id); if (gdk_gl_context_has_debug (self->gl_context)) gdk_gl_context_label_object_printf (self->gl_context, GL_TEXTURE, texture_id, "Texture %s<%p> %d", g_type_name_from_instance ((GTypeInstance *) root), root, texture_id); if (gdk_gl_context_get_use_es (self->gl_context)) glTexImage2D (GL_TEXTURE_2D, 0, GL_RGBA8, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL); else glTexImage2D (GL_TEXTURE_2D, 0, GL_RGBA8, width, height, 0, GL_BGRA, GL_UNSIGNED_BYTE, NULL); glGenFramebuffers (1, &fbo_id); glBindFramebuffer (GL_FRAMEBUFFER, fbo_id); if (gdk_gl_context_has_debug (self->gl_context)) gdk_gl_context_label_object_printf (self->gl_context, GL_FRAMEBUFFER, fbo_id, "FB %s<%p> %d", g_type_name_from_instance ((GTypeInstance *) root), root, fbo_id); glFramebufferTexture2D (GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, texture_id, 0); g_assert_cmphex (glCheckFramebufferStatus (GL_FRAMEBUFFER), ==, GL_FRAMEBUFFER_COMPLETE); /* Render the actual scene */ gsk_gl_renderer_do_render (renderer, root, viewport, fbo_id, 1); texture = gdk_gl_texture_new (self->gl_context, texture_id, width, height, NULL, NULL); glDeleteFramebuffers (1, &fbo_id); gsk_gl_driver_end_frame (self->gl_driver); gdk_gl_context_pop_debug_group (self->gl_context); gsk_gl_renderer_clear_tree (self); return texture; } static void gsk_gl_renderer_render (GskRenderer *renderer, GskRenderNode *root, const cairo_region_t *update_area) { GskGLRenderer *self = GSK_GL_RENDERER (renderer); graphene_rect_t viewport; const cairo_region_t *damage; GdkRectangle whole_surface; GdkSurface *surface; if (self->gl_context == NULL) return; gdk_gl_context_make_current (self->gl_context); gdk_gl_context_push_debug_group_printf (self->gl_context, "Render root node %p", root); surface = gsk_renderer_get_surface (renderer); whole_surface = (GdkRectangle) { 0, 0, gdk_surface_get_width (surface) * self->scale_factor, gdk_surface_get_height (surface) * self->scale_factor }; gdk_draw_context_begin_frame (GDK_DRAW_CONTEXT (self->gl_context), update_area); damage = gdk_draw_context_get_frame_region (GDK_DRAW_CONTEXT (self->gl_context)); if (cairo_region_contains_rectangle (damage, &whole_surface) == CAIRO_REGION_OVERLAP_IN) { self->render_region = NULL; } else { GdkRectangle extents; cairo_region_get_extents (damage, &extents); if (gdk_rectangle_equal (&extents, &whole_surface)) self->render_region = NULL; else self->render_region = cairo_region_create_rectangle (&extents); } self->scale_factor = gdk_surface_get_scale_factor (surface); gdk_gl_context_make_current (self->gl_context); viewport.origin.x = 0; viewport.origin.y = 0; viewport.size.width = gdk_surface_get_width (surface) * self->scale_factor; viewport.size.height = gdk_surface_get_height (surface) * self->scale_factor; gsk_gl_driver_begin_frame (self->gl_driver); gsk_gl_renderer_do_render (renderer, root, &viewport, 0, self->scale_factor); gsk_gl_driver_end_frame (self->gl_driver); gsk_gl_renderer_clear_tree (self); gdk_draw_context_end_frame (GDK_DRAW_CONTEXT (self->gl_context)); gdk_gl_context_make_current (self->gl_context); gdk_gl_context_pop_debug_group (self->gl_context); g_clear_pointer (&self->render_region, cairo_region_destroy); } static void gsk_gl_renderer_class_init (GskGLRendererClass *klass) { GObjectClass *gobject_class = G_OBJECT_CLASS (klass); GskRendererClass *renderer_class = GSK_RENDERER_CLASS (klass); gobject_class->dispose = gsk_gl_renderer_dispose; renderer_class->realize = gsk_gl_renderer_realize; renderer_class->unrealize = gsk_gl_renderer_unrealize; renderer_class->render = gsk_gl_renderer_render; renderer_class->render_texture = gsk_gl_renderer_render_texture; } static void gsk_gl_renderer_init (GskGLRenderer *self) { gsk_ensure_resources (); ops_init (&self->op_builder); self->op_builder.renderer = self; #ifdef G_ENABLE_DEBUG { GskProfiler *profiler = gsk_renderer_get_profiler (GSK_RENDERER (self)); self->profile_counters.frames = gsk_profiler_add_counter (profiler, "frames", "Frames", FALSE); self->profile_timers.cpu_time = gsk_profiler_add_timer (profiler, "cpu-time", "CPU time", FALSE, TRUE); self->profile_timers.gpu_time = gsk_profiler_add_timer (profiler, "gpu-time", "GPU time", FALSE, TRUE); } #endif } /** * gsk_gl_renderer_new: * * Creates a new #GskRenderer using OpenGL. This is the default renderer * used by GTK. * * Returns: a new GL renderer **/ GskRenderer * gsk_gl_renderer_new (void) { return g_object_new (GSK_TYPE_GL_RENDERER, NULL); }