/* GDK - The GIMP Drawing Kit * Copyright (C) 2000 Red Hat, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ /* * Modified by the GTK+ Team and others 1997-2000. See the AUTHORS * file for a list of people on the GTK+ Team. See the ChangeLog * files for a list of changes. These files are distributed with * GTK+ at ftp://ftp.gtk.org/pub/gtk/. */ #include #include #include #include #include #include #include #include "gdk.h" #include "gdkx.h" #include "gdkprivate-x11.h" #include "gdkinternals.h" #include "gdkdisplay-x11.h" #include "gdkkeysyms.h" #include "gdkalias.h" #ifdef HAVE_XKB #include /* OSF-4.0 is apparently missing this macro */ # ifndef XkbKeySymEntry # define XkbKeySymEntry(d,k,sl,g) \ (XkbKeySym(d,k,((XkbKeyGroupsWidth(d,k)*(g))+(sl)))) # endif #endif /* HAVE_XKB */ typedef struct _GdkKeymapX11 GdkKeymapX11; typedef struct _GdkKeymapClass GdkKeymapX11Class; #define GDK_TYPE_KEYMAP_X11 (gdk_keymap_x11_get_type ()) #define GDK_KEYMAP_X11(object) (G_TYPE_CHECK_INSTANCE_CAST ((object), GDK_TYPE_KEYMAP_X11, GdkKeymapX11)) #define GDK_IS_KEYMAP_X11(object) (G_TYPE_CHECK_INSTANCE_TYPE ((object), GDK_TYPE_KEYMAP_X11)) typedef struct _DirectionCacheEntry DirectionCacheEntry; struct _DirectionCacheEntry { guint serial; Atom group_atom; PangoDirection direction; }; struct _GdkKeymapX11 { GdkKeymap parent_instance; gint min_keycode; gint max_keycode; KeySym* keymap; gint keysyms_per_keycode; XModifierKeymap* mod_keymap; guint lock_keysym; GdkModifierType group_switch_mask; GdkModifierType num_lock_mask; GdkModifierType modmap[8]; gboolean sun_keypad; PangoDirection current_direction; gboolean have_direction; guint current_serial; #ifdef HAVE_XKB XkbDescPtr xkb_desc; /* We cache the directions */ Atom current_group_atom; guint current_cache_serial; /* A cache of size four should be more than enough, people usually * have two groups around, and the xkb limit is four. It still * works correct for more than four groups. It's just the * cache. */ DirectionCacheEntry group_direction_cache[4]; #endif }; #define KEYMAP_USE_XKB(keymap) GDK_DISPLAY_X11 ((keymap)->display)->use_xkb #define KEYMAP_XDISPLAY(keymap) GDK_DISPLAY_XDISPLAY ((keymap)->display) static GType gdk_keymap_x11_get_type (void); static void gdk_keymap_x11_class_init (GdkKeymapX11Class *klass); static void gdk_keymap_x11_init (GdkKeymapX11 *keymap); static void gdk_keymap_x11_finalize (GObject *object); static GdkKeymapClass *parent_class = NULL; static GType gdk_keymap_x11_get_type (void) { static GType object_type = 0; if (!object_type) { static const GTypeInfo object_info = { sizeof (GdkKeymapClass), (GBaseInitFunc) NULL, (GBaseFinalizeFunc) NULL, (GClassInitFunc) gdk_keymap_x11_class_init, NULL, /* class_finalize */ NULL, /* class_data */ sizeof (GdkKeymapX11), 0, /* n_preallocs */ (GInstanceInitFunc) gdk_keymap_x11_init, }; object_type = g_type_register_static (GDK_TYPE_KEYMAP, g_intern_static_string ("GdkKeymapX11"), &object_info, 0); } return object_type; } static void gdk_keymap_x11_class_init (GdkKeymapX11Class *klass) { GObjectClass *object_class = G_OBJECT_CLASS (klass); parent_class = g_type_class_peek_parent (klass); object_class->finalize = gdk_keymap_x11_finalize; } static void gdk_keymap_x11_init (GdkKeymapX11 *keymap) { keymap->min_keycode = 0; keymap->max_keycode = 0; keymap->keymap = NULL; keymap->keysyms_per_keycode = 0; keymap->mod_keymap = NULL; keymap->num_lock_mask = 0; keymap->sun_keypad = FALSE; keymap->group_switch_mask = 0; keymap->lock_keysym = GDK_Caps_Lock; keymap->have_direction = FALSE; keymap->current_serial = 0; #ifdef HAVE_XKB keymap->xkb_desc = NULL; keymap->current_group_atom = 0; keymap->current_cache_serial = 0; #endif } static void gdk_keymap_x11_finalize (GObject *object) { GdkKeymapX11 *keymap_x11 = GDK_KEYMAP_X11 (object); if (keymap_x11->keymap) XFree (keymap_x11->keymap); if (keymap_x11->mod_keymap) XFreeModifiermap (keymap_x11->mod_keymap); #ifdef HAVE_XKB if (keymap_x11->xkb_desc) XkbFreeClientMap (keymap_x11->xkb_desc, 0, True); #endif G_OBJECT_CLASS (parent_class)->finalize (object); } static inline void update_keyrange (GdkKeymapX11 *keymap_x11) { if (keymap_x11->max_keycode == 0) XDisplayKeycodes (KEYMAP_XDISPLAY (GDK_KEYMAP (keymap_x11)), &keymap_x11->min_keycode, &keymap_x11->max_keycode); } #ifdef HAVE_XKB static void update_modmap (Display *display, GdkKeymapX11 *keymap_x11) { static struct { const gchar *name; Atom atom; GdkModifierType mask; } vmods[] = { { "Meta", 0, GDK_META_MASK }, { "Super", 0, GDK_SUPER_MASK }, { "Hyper", 0, GDK_HYPER_MASK }, { NULL, 0, 0 } }; gint i, j, k; if (!vmods[0].atom) for (i = 0; vmods[i].name; i++) vmods[i].atom = XInternAtom (display, vmods[i].name, FALSE); for (i = 0; i < 8; i++) keymap_x11->modmap[i] = 1 << i; for (i = 0; i < XkbNumVirtualMods; i++) { for (j = 0; vmods[j].atom; j++) { if (keymap_x11->xkb_desc->names->vmods[i] == vmods[j].atom) { for (k = 0; k < 8; k++) { if (keymap_x11->xkb_desc->server->vmods[i] & (1 << k)) keymap_x11->modmap[k] |= vmods[j].mask; } } } } } static XkbDescPtr get_xkb (GdkKeymapX11 *keymap_x11) { GdkDisplayX11 *display_x11 = GDK_DISPLAY_X11 (GDK_KEYMAP (keymap_x11)->display); Display *xdisplay = display_x11->xdisplay; update_keyrange (keymap_x11); if (keymap_x11->xkb_desc == NULL) { keymap_x11->xkb_desc = XkbGetMap (xdisplay, XkbKeySymsMask | XkbKeyTypesMask | XkbModifierMapMask | XkbVirtualModsMask, XkbUseCoreKbd); if (keymap_x11->xkb_desc == NULL) { g_error ("Failed to get keymap"); return NULL; } XkbGetNames (xdisplay, XkbGroupNamesMask | XkbVirtualModNamesMask, keymap_x11->xkb_desc); update_modmap (xdisplay, keymap_x11); } else if (keymap_x11->current_serial != display_x11->keymap_serial) { XkbGetUpdatedMap (xdisplay, XkbKeySymsMask | XkbKeyTypesMask | XkbModifierMapMask | XkbVirtualModsMask, keymap_x11->xkb_desc); XkbGetNames (xdisplay, XkbGroupNamesMask | XkbVirtualModNamesMask, keymap_x11->xkb_desc); update_modmap (xdisplay, keymap_x11); } keymap_x11->current_serial = display_x11->keymap_serial; return keymap_x11->xkb_desc; } #endif /* HAVE_XKB */ /* Whether we were able to turn on detectable-autorepeat using * XkbSetDetectableAutorepeat. If FALSE, we'll fall back * to checking the next event with XPending(). */ /** * gdk_keymap_get_for_display: * @display: the #GdkDisplay. * @returns: the #GdkKeymap attached to @display. * * Returns the #GdkKeymap attached to @display. * * Since: 2.2 **/ GdkKeymap* gdk_keymap_get_for_display (GdkDisplay *display) { GdkDisplayX11 *display_x11; g_return_val_if_fail (GDK_IS_DISPLAY (display), NULL); display_x11 = GDK_DISPLAY_X11 (display); if (!display_x11->keymap) display_x11->keymap = g_object_new (gdk_keymap_x11_get_type (), NULL); display_x11->keymap->display = display; return display_x11->keymap; } /* Find the index of the group/level pair within the keysyms for a key. * We round up the number of keysyms per keycode to the next even number, * otherwise we lose a whole group of keys */ #define KEYSYM_INDEX(keymap_impl, group, level) \ (2 * ((group) % (gint)((keymap_impl->keysyms_per_keycode + 1) / 2)) + (level)) #define KEYSYM_IS_KEYPAD(s) (((s) >= 0xff80 && (s) <= 0xffbd) || \ ((s) >= 0x11000000 && (s) <= 0x1100ffff)) static gint get_symbol (const KeySym *syms, GdkKeymapX11 *keymap_x11, gint group, gint level) { gint index; index = KEYSYM_INDEX(keymap_x11, group, level); if (index >= keymap_x11->keysyms_per_keycode) return NoSymbol; return syms[index]; } static void set_symbol (KeySym *syms, GdkKeymapX11 *keymap_x11, gint group, gint level, KeySym sym) { gint index; index = KEYSYM_INDEX(keymap_x11, group, level); if (index >= keymap_x11->keysyms_per_keycode) return; syms[index] = sym; } static void update_keymaps (GdkKeymapX11 *keymap_x11) { GdkDisplayX11 *display_x11 = GDK_DISPLAY_X11 (GDK_KEYMAP (keymap_x11)->display); Display *xdisplay = display_x11->xdisplay; #ifdef HAVE_XKB g_assert (!KEYMAP_USE_XKB (GDK_KEYMAP (keymap_x11))); #endif if (keymap_x11->keymap == NULL || keymap_x11->current_serial != display_x11->keymap_serial) { gint i; gint map_size; gint keycode; keymap_x11->current_serial = display_x11->keymap_serial; update_keyrange (keymap_x11); if (keymap_x11->keymap) XFree (keymap_x11->keymap); if (keymap_x11->mod_keymap) XFreeModifiermap (keymap_x11->mod_keymap); keymap_x11->keymap = XGetKeyboardMapping (xdisplay, keymap_x11->min_keycode, keymap_x11->max_keycode - keymap_x11->min_keycode + 1, &keymap_x11->keysyms_per_keycode); /* GDK_ISO_Left_Tab, as usually configured through XKB, really messes * up the whole idea of "consumed modifiers" because shift is consumed. * However, Tab is not usually GDK_ISO_Left_Tab without XKB, * we we fudge the map here. */ keycode = keymap_x11->min_keycode; while (keycode <= keymap_x11->max_keycode) { KeySym *syms = keymap_x11->keymap + (keycode - keymap_x11->min_keycode) * keymap_x11->keysyms_per_keycode; /* Check both groups */ for (i = 0 ; i < 2 ; i++) { if (get_symbol (syms, keymap_x11, i, 0) == GDK_Tab) set_symbol (syms, keymap_x11, i, 1, GDK_ISO_Left_Tab); } /* * If there is one keysym and the key symbol has upper and lower * case variants fudge the keymap */ if (get_symbol (syms, keymap_x11, 0, 1) == 0) { guint lower; guint upper; gdk_keyval_convert_case (get_symbol (syms, keymap_x11, 0, 0), &lower, &upper); if (lower != upper) { set_symbol (syms, keymap_x11, 0, 0, lower); set_symbol (syms, keymap_x11, 0, 1, upper); } } ++keycode; } keymap_x11->mod_keymap = XGetModifierMapping (xdisplay); keymap_x11->lock_keysym = GDK_VoidSymbol; keymap_x11->group_switch_mask = 0; keymap_x11->num_lock_mask = 0; for (i = 0; i < 8; i++) keymap_x11->modmap[i] = 1 << i; /* There are 8 sets of modifiers, with each set containing * max_keypermod keycodes. */ map_size = 8 * keymap_x11->mod_keymap->max_keypermod; for (i = 0; i < map_size; i++) { /* Get the key code at this point in the map. */ gint keycode = keymap_x11->mod_keymap->modifiermap[i]; gint j; KeySym *syms; guint mask; /* Ignore invalid keycodes. */ if (keycode < keymap_x11->min_keycode || keycode > keymap_x11->max_keycode) continue; syms = keymap_x11->keymap + (keycode - keymap_x11->min_keycode) * keymap_x11->keysyms_per_keycode; mask = 0; for (j = 0; j < keymap_x11->keysyms_per_keycode; j++) { if (syms[j] == GDK_Meta_L || syms[j] == GDK_Meta_R) mask |= GDK_META_MASK; else if (syms[j] == GDK_Hyper_L || syms[j] == GDK_Hyper_R) mask |= GDK_HYPER_MASK; else if (syms[j] == GDK_Super_L || syms[j] == GDK_Super_R) mask |= GDK_SUPER_MASK; } keymap_x11->modmap[i/keymap_x11->mod_keymap->max_keypermod] |= mask; /* The fourth modifier, GDK_MOD1_MASK is 1 << 3. * Each group of max_keypermod entries refers to the same modifier. */ mask = 1 << (i / keymap_x11->mod_keymap->max_keypermod); switch (mask) { case GDK_LOCK_MASK: /* Get the Lock keysym. If any keysym bound to the Lock modifier * is Caps_Lock, we will interpret the modifier as Caps_Lock; * otherwise, if any is bound to Shift_Lock, we will interpret * the modifier as Shift_Lock. Otherwise, the lock modifier * has no effect. */ for (j = 0; j < keymap_x11->keysyms_per_keycode; j++) { if (syms[j] == GDK_Caps_Lock) keymap_x11->lock_keysym = GDK_Caps_Lock; else if (syms[j] == GDK_Shift_Lock && keymap_x11->lock_keysym == GDK_VoidSymbol) keymap_x11->lock_keysym = GDK_Shift_Lock; } break; case GDK_CONTROL_MASK: case GDK_SHIFT_MASK: case GDK_MOD1_MASK: /* Some keyboard maps are known to map Mode_Switch as an * extra Mod1 key. In circumstances like that, it won't be * used to switch groups. */ break; default: /* Find the Mode_Switch and Num_Lock modifiers. */ for (j = 0; j < keymap_x11->keysyms_per_keycode; j++) { if (syms[j] == GDK_Mode_switch) { /* This modifier swaps groups */ keymap_x11->group_switch_mask |= mask; } else if (syms[j] == GDK_Num_Lock) { /* This modifier is used for Num_Lock */ keymap_x11->num_lock_mask |= mask; } } break; } } /* Hack: The Sun X server puts the keysym to use when the Num Lock * modifier is on in the third element of the keysym array, instead * of the second. */ if ((strcmp (ServerVendor (xdisplay), "Sun Microsystems, Inc.") == 0) && (keymap_x11->keysyms_per_keycode > 2)) keymap_x11->sun_keypad = TRUE; else keymap_x11->sun_keypad = FALSE; } } static const KeySym* get_keymap (GdkKeymapX11 *keymap_x11) { update_keymaps (keymap_x11); return keymap_x11->keymap; } #define GET_EFFECTIVE_KEYMAP(keymap) get_effective_keymap ((keymap), G_STRFUNC) static GdkKeymap * get_effective_keymap (GdkKeymap *keymap, const char *function) { if (!keymap) { GDK_NOTE (MULTIHEAD, g_message ("reverting to default display keymap in %s", function)); return gdk_keymap_get_default (); } return keymap; } #if HAVE_XKB static PangoDirection get_direction (XkbDescRec *xkb, gint group) { gint code; gint rtl_minus_ltr = 0; /* total number of RTL keysyms minus LTR ones */ for (code = xkb->min_key_code; code <= xkb->max_key_code; code++) { gint width = XkbKeyGroupWidth (xkb, code, group); gint level; for (level = 0; level < width; level++) { KeySym sym = XkbKeySymEntry (xkb, code, level, group); PangoDirection dir = pango_unichar_direction (gdk_keyval_to_unicode (sym)); switch (dir) { case PANGO_DIRECTION_RTL: rtl_minus_ltr++; break; case PANGO_DIRECTION_LTR: rtl_minus_ltr--; break; default: break; } } } if (rtl_minus_ltr > 0) return PANGO_DIRECTION_RTL; else return PANGO_DIRECTION_LTR; } static void update_direction (GdkKeymapX11 *keymap_x11, gint group) { XkbDescRec *xkb = get_xkb (keymap_x11); Atom group_atom; group_atom = xkb->names->groups[group]; /* a group change? */ if (!keymap_x11->have_direction || keymap_x11->current_group_atom != group_atom) { gboolean cache_hit = FALSE; DirectionCacheEntry *cache = keymap_x11->group_direction_cache; PangoDirection direction = PANGO_DIRECTION_NEUTRAL; gint i; if (keymap_x11->have_direction) { /* lookup in cache */ for (i = 0; i < G_N_ELEMENTS (keymap_x11->group_direction_cache); i++) { if (cache[i].group_atom == group_atom) { cache_hit = TRUE; cache[i].serial = keymap_x11->current_cache_serial++; /* freshen */ direction = cache[i].direction; group_atom = cache[i].group_atom; break; } } } else { /* initialize cache */ for (i = 0; i < G_N_ELEMENTS (keymap_x11->group_direction_cache); i++) { cache[i].group_atom = 0; cache[i].serial = keymap_x11->current_cache_serial; } keymap_x11->current_cache_serial++; } /* insert in cache */ if (!cache_hit) { gint oldest = 0; direction = get_direction (xkb, group); /* remove the oldest entry */ for (i = 0; i < G_N_ELEMENTS (keymap_x11->group_direction_cache); i++) { if (cache[i].serial < cache[oldest].serial) oldest = i; } cache[oldest].group_atom = group_atom; cache[oldest].direction = direction; cache[oldest].serial = keymap_x11->current_cache_serial++; } keymap_x11->current_group_atom = group_atom; keymap_x11->have_direction = TRUE; keymap_x11->current_direction = direction; } } /* keep this in sync with the XkbSelectEventDetails() call * in gdk_display_open() */ void _gdk_keymap_state_changed (GdkDisplay *display, XEvent *xevent) { GdkDisplayX11 *display_x11 = GDK_DISPLAY_X11 (display); XkbEvent *xkb_event = (XkbEvent *)xevent; if (display_x11->keymap) { GdkKeymapX11 *keymap_x11 = GDK_KEYMAP_X11 (display_x11->keymap); gboolean had_direction; PangoDirection direction; had_direction = keymap_x11->have_direction; direction = keymap_x11->current_direction; update_direction (keymap_x11, xkb_event->state.locked_group); if (!had_direction || direction != keymap_x11->current_direction) g_signal_emit_by_name (keymap_x11, "direction_changed"); } } #endif /* HAVE_XKB */ void _gdk_keymap_keys_changed (GdkDisplay *display) { GdkDisplayX11 *display_x11 = GDK_DISPLAY_X11 (display); ++display_x11->keymap_serial; if (display_x11->keymap) g_signal_emit_by_name (display_x11->keymap, "keys_changed", 0); } PangoDirection gdk_keymap_get_direction (GdkKeymap *keymap) { keymap = GET_EFFECTIVE_KEYMAP (keymap); #if HAVE_XKB if (KEYMAP_USE_XKB (keymap)) { GdkKeymapX11 *keymap_x11 = GDK_KEYMAP_X11 (keymap); if (!keymap_x11->have_direction) { GdkDisplay *display = GDK_KEYMAP (keymap_x11)->display; XkbStateRec state_rec; XkbGetState (GDK_DISPLAY_XDISPLAY (display), XkbUseCoreKbd, &state_rec); update_direction (keymap_x11, XkbGroupLock (&state_rec)); } return keymap_x11->current_direction; } else #endif /* HAVE_XKB */ return PANGO_DIRECTION_NEUTRAL; } /** * gdk_keymap_get_entries_for_keyval: * @keymap: a #GdkKeymap, or %NULL to use the default keymap * @keyval: a keyval, such as %GDK_a, %GDK_Up, %GDK_Return, etc. * @keys: return location for an array of #GdkKeymapKey * @n_keys: return location for number of elements in returned array * * Obtains a list of keycode/group/level combinations that will * generate @keyval. Groups and levels are two kinds of keyboard mode; * in general, the level determines whether the top or bottom symbol * on a key is used, and the group determines whether the left or * right symbol is used. On US keyboards, the shift key changes the * keyboard level, and there are no groups. A group switch key might * convert a keyboard between Hebrew to English modes, for example. * #GdkEventKey contains a %group field that indicates the active * keyboard group. The level is computed from the modifier mask. * The returned array should be freed * with g_free(). * * Return value: %TRUE if keys were found and returned **/ gboolean gdk_keymap_get_entries_for_keyval (GdkKeymap *keymap, guint keyval, GdkKeymapKey **keys, gint *n_keys) { GArray *retval; GdkKeymapX11 *keymap_x11; g_return_val_if_fail (keymap == NULL || GDK_IS_KEYMAP (keymap), FALSE); g_return_val_if_fail (keys != NULL, FALSE); g_return_val_if_fail (n_keys != NULL, FALSE); g_return_val_if_fail (keyval != 0, FALSE); keymap = GET_EFFECTIVE_KEYMAP (keymap); keymap_x11 = GDK_KEYMAP_X11 (keymap); retval = g_array_new (FALSE, FALSE, sizeof (GdkKeymapKey)); #ifdef HAVE_XKB if (KEYMAP_USE_XKB (keymap)) { /* See sec 15.3.4 in XKB docs */ XkbDescRec *xkb = get_xkb (keymap_x11); gint keycode; keycode = keymap_x11->min_keycode; while (keycode <= keymap_x11->max_keycode) { gint max_shift_levels = XkbKeyGroupsWidth (xkb, keycode); /* "key width" */ gint group = 0; gint level = 0; gint total_syms = XkbKeyNumSyms (xkb, keycode); gint i = 0; KeySym *entry; /* entry is an array with all syms for group 0, all * syms for group 1, etc. and for each group the * shift level syms are in order */ entry = XkbKeySymsPtr (xkb, keycode); while (i < total_syms) { /* check out our cool loop invariant */ g_assert (i == (group * max_shift_levels + level)); if (entry[i] == keyval) { /* Found a match */ GdkKeymapKey key; key.keycode = keycode; key.group = group; key.level = level; g_array_append_val (retval, key); g_assert (XkbKeySymEntry (xkb, keycode, level, group) == keyval); } ++level; if (level == max_shift_levels) { level = 0; ++group; } ++i; } ++keycode; } } else #endif { const KeySym *map = get_keymap (keymap_x11); gint keycode; keycode = keymap_x11->min_keycode; while (keycode <= keymap_x11->max_keycode) { const KeySym *syms = map + (keycode - keymap_x11->min_keycode) * keymap_x11->keysyms_per_keycode; gint i = 0; while (i < keymap_x11->keysyms_per_keycode) { if (syms[i] == keyval) { /* found a match */ GdkKeymapKey key; key.keycode = keycode; /* The "classic" non-XKB keymap has 2 levels per group */ key.group = i / 2; key.level = i % 2; g_array_append_val (retval, key); } ++i; } ++keycode; } } if (retval->len > 0) { *keys = (GdkKeymapKey*) retval->data; *n_keys = retval->len; } else { *keys = NULL; *n_keys = 0; } g_array_free (retval, retval->len > 0 ? FALSE : TRUE); return *n_keys > 0; } /** * gdk_keymap_get_entries_for_keycode: * @keymap: a #GdkKeymap or %NULL to use the default keymap * @hardware_keycode: a keycode * @keys: return location for array of #GdkKeymapKey, or NULL * @keyvals: return location for array of keyvals, or NULL * @n_entries: length of @keys and @keyvals * * Returns the keyvals bound to @hardware_keycode. * The Nth #GdkKeymapKey in @keys is bound to the Nth * keyval in @keyvals. Free the returned arrays with g_free(). * When a keycode is pressed by the user, the keyval from * this list of entries is selected by considering the effective * keyboard group and level. See gdk_keymap_translate_keyboard_state(). * * Returns: %TRUE if there were any entries **/ gboolean gdk_keymap_get_entries_for_keycode (GdkKeymap *keymap, guint hardware_keycode, GdkKeymapKey **keys, guint **keyvals, gint *n_entries) { GdkKeymapX11 *keymap_x11; GArray *key_array; GArray *keyval_array; g_return_val_if_fail (keymap == NULL || GDK_IS_KEYMAP (keymap), FALSE); g_return_val_if_fail (n_entries != NULL, FALSE); keymap = GET_EFFECTIVE_KEYMAP (keymap); keymap_x11 = GDK_KEYMAP_X11 (keymap); update_keyrange (keymap_x11); if (hardware_keycode < keymap_x11->min_keycode || hardware_keycode > keymap_x11->max_keycode) { if (keys) *keys = NULL; if (keyvals) *keyvals = NULL; *n_entries = 0; return FALSE; } if (keys) key_array = g_array_new (FALSE, FALSE, sizeof (GdkKeymapKey)); else key_array = NULL; if (keyvals) keyval_array = g_array_new (FALSE, FALSE, sizeof (guint)); else keyval_array = NULL; #ifdef HAVE_XKB if (KEYMAP_USE_XKB (keymap)) { /* See sec 15.3.4 in XKB docs */ XkbDescRec *xkb = get_xkb (keymap_x11); gint max_shift_levels; gint group = 0; gint level = 0; gint total_syms; gint i = 0; KeySym *entry; max_shift_levels = XkbKeyGroupsWidth (xkb, hardware_keycode); /* "key width" */ total_syms = XkbKeyNumSyms (xkb, hardware_keycode); /* entry is an array with all syms for group 0, all * syms for group 1, etc. and for each group the * shift level syms are in order */ entry = XkbKeySymsPtr (xkb, hardware_keycode); while (i < total_syms) { /* check out our cool loop invariant */ g_assert (i == (group * max_shift_levels + level)); if (key_array) { GdkKeymapKey key; key.keycode = hardware_keycode; key.group = group; key.level = level; g_array_append_val (key_array, key); } if (keyval_array) g_array_append_val (keyval_array, entry[i]); ++level; if (level == max_shift_levels) { level = 0; ++group; } ++i; } } else #endif { const KeySym *map = get_keymap (keymap_x11); const KeySym *syms; gint i = 0; syms = map + (hardware_keycode - keymap_x11->min_keycode) * keymap_x11->keysyms_per_keycode; while (i < keymap_x11->keysyms_per_keycode) { if (key_array) { GdkKeymapKey key; key.keycode = hardware_keycode; /* The "classic" non-XKB keymap has 2 levels per group */ key.group = i / 2; key.level = i % 2; g_array_append_val (key_array, key); } if (keyval_array) g_array_append_val (keyval_array, syms[i]); ++i; } } *n_entries = 0; if (keys) { *n_entries = key_array->len; *keys = (GdkKeymapKey*) g_array_free (key_array, FALSE); } if (keyvals) { *n_entries = keyval_array->len; *keyvals = (guint*) g_array_free (keyval_array, FALSE); } return *n_entries > 0; } /** * gdk_keymap_lookup_key: * @keymap: a #GdkKeymap or %NULL to use the default keymap * @key: a #GdkKeymapKey with keycode, group, and level initialized * * Looks up the keyval mapped to a keycode/group/level triplet. * If no keyval is bound to @key, returns 0. For normal user input, * you want to use gdk_keymap_translate_keyboard_state() instead of * this function, since the effective group/level may not be * the same as the current keyboard state. * * Return value: a keyval, or 0 if none was mapped to the given @key **/ guint gdk_keymap_lookup_key (GdkKeymap *keymap, const GdkKeymapKey *key) { GdkKeymapX11 *keymap_x11; g_return_val_if_fail (keymap == NULL || GDK_IS_KEYMAP (keymap), 0); g_return_val_if_fail (key != NULL, 0); g_return_val_if_fail (key->group < 4, 0); keymap = GET_EFFECTIVE_KEYMAP (keymap); keymap_x11 = GDK_KEYMAP_X11 (keymap); #ifdef HAVE_XKB if (KEYMAP_USE_XKB (keymap)) { XkbDescRec *xkb = get_xkb (keymap_x11); return XkbKeySymEntry (xkb, key->keycode, key->level, key->group); } else #endif { const KeySym *map = get_keymap (keymap_x11); const KeySym *syms = map + (key->keycode - keymap_x11->min_keycode) * keymap_x11->keysyms_per_keycode; return get_symbol (syms, keymap_x11, key->group, key->level); } } #ifdef HAVE_XKB /* This is copied straight from XFree86 Xlib, to: * - add the group and level return. * - change the interpretation of mods_rtrn as described * in the docs for gdk_keymap_translate_keyboard_state() * It's unchanged for ease of diff against the Xlib sources; don't * reformat it. */ static Bool MyEnhancedXkbTranslateKeyCode(register XkbDescPtr xkb, KeyCode key, register unsigned int mods, unsigned int * mods_rtrn, KeySym * keysym_rtrn, unsigned int * group_rtrn, unsigned int * level_rtrn) { XkbKeyTypeRec *type; int col,nKeyGroups; unsigned preserve,effectiveGroup; KeySym *syms; if (mods_rtrn!=NULL) *mods_rtrn = 0; nKeyGroups= XkbKeyNumGroups(xkb,key); if ((!XkbKeycodeInRange(xkb,key))||(nKeyGroups==0)) { if (keysym_rtrn!=NULL) *keysym_rtrn = NoSymbol; return False; } syms = XkbKeySymsPtr(xkb,key); /* find the offset of the effective group */ col = 0; effectiveGroup= XkbGroupForCoreState(mods); if ( effectiveGroup>=nKeyGroups ) { unsigned groupInfo= XkbKeyGroupInfo(xkb,key); switch (XkbOutOfRangeGroupAction(groupInfo)) { default: effectiveGroup %= nKeyGroups; break; case XkbClampIntoRange: effectiveGroup = nKeyGroups-1; break; case XkbRedirectIntoRange: effectiveGroup = XkbOutOfRangeGroupNumber(groupInfo); if (effectiveGroup>=nKeyGroups) effectiveGroup= 0; break; } } col= effectiveGroup*XkbKeyGroupsWidth(xkb,key); type = XkbKeyKeyType(xkb,key,effectiveGroup); preserve= 0; if (type->map) { /* find the column (shift level) within the group */ register int i; register XkbKTMapEntryPtr entry; /* ---- Begin section modified for GDK ---- */ int found = 0; for (i=0,entry=type->map;imap_count;i++,entry++) { if (mods_rtrn) { int bits = 0; unsigned long tmp = entry->mods.mask; while (tmp) { if ((tmp & 1) == 1) bits++; tmp >>= 1; } /* We always add one-modifiers levels to mods_rtrn since * they can't wipe out bits in the state unless the * level would be triggered. But return other modifiers * */ if (bits == 1 || (mods&type->mods.mask)==entry->mods.mask) *mods_rtrn |= entry->mods.mask; } if (!found&&entry->active&&((mods&type->mods.mask)==entry->mods.mask)) { col+= entry->level; if (type->preserve) preserve= type->preserve[i].mask; if (level_rtrn) *level_rtrn = entry->level; found = 1; } } /* ---- End section modified for GDK ---- */ } if (keysym_rtrn!=NULL) *keysym_rtrn= syms[col]; if (mods_rtrn) { /* ---- Begin section modified for GDK ---- */ *mods_rtrn &= ~preserve; /* ---- End section modified for GDK ---- */ /* ---- Begin stuff GDK comments out of the original Xlib version ---- */ /* This is commented out because xkb_info is a private struct */ #if 0 /* The Motif VTS doesn't get the help callback called if help * is bound to Shift+, and it appears as though it * is XkbTranslateKeyCode that is causing the problem. The * core X version of XTranslateKey always OR's in ShiftMask * and LockMask for mods_rtrn, so this "fix" keeps this behavior * and solves the VTS problem. */ if ((xkb->dpy)&&(xkb->dpy->xkb_info)&& (xkb->dpy->xkb_info->xlib_ctrls&XkbLC_AlwaysConsumeShiftAndLock)) { *mods_rtrn|= (ShiftMask|LockMask); } #endif /* ---- End stuff GDK comments out of the original Xlib version ---- */ } /* ---- Begin stuff GDK adds to the original Xlib version ---- */ if (group_rtrn) *group_rtrn = effectiveGroup; /* ---- End stuff GDK adds to the original Xlib version ---- */ return (syms[col] != NoSymbol); } #endif /* HAVE_XKB */ /* Translates from keycode/state to keysymbol using the traditional interpretation * of the keyboard map. See section 12.7 of the Xlib reference manual */ static guint translate_keysym (GdkKeymapX11 *keymap_x11, guint hardware_keycode, gint group, GdkModifierType state, guint *effective_group, guint *effective_level) { const KeySym *map = get_keymap (keymap_x11); const KeySym *syms = map + (hardware_keycode - keymap_x11->min_keycode) * keymap_x11->keysyms_per_keycode; #define SYM(k,g,l) get_symbol (syms, k,g,l) GdkModifierType shift_modifiers; gint shift_level; guint tmp_keyval; gint num_lock_index; shift_modifiers = GDK_SHIFT_MASK; if (keymap_x11->lock_keysym == GDK_Shift_Lock) shift_modifiers |= GDK_LOCK_MASK; /* Fall back to the first group if the passed in group is empty */ if (!(SYM (keymap_x11, group, 0) || SYM (keymap_x11, group, 1)) && (SYM (keymap_x11, 0, 0) || SYM (keymap_x11, 0, 1))) group = 0; /* Hack: On Sun, the Num Lock modifier uses the third element in the * keysym array, and Mode_Switch does not apply for a keypad key. */ if (keymap_x11->sun_keypad) { num_lock_index = 2; if (group != 0) { gint i; for (i = 0; i < keymap_x11->keysyms_per_keycode; i++) if (KEYSYM_IS_KEYPAD (SYM (keymap_x11, 0, i))) group = 0; } } else num_lock_index = 1; if ((state & keymap_x11->num_lock_mask) && KEYSYM_IS_KEYPAD (SYM (keymap_x11, group, num_lock_index))) { /* Shift, Shift_Lock cancel Num_Lock */ shift_level = (state & shift_modifiers) ? 0 : num_lock_index; if (!SYM (keymap_x11, group, shift_level) && SYM (keymap_x11, group, 0)) shift_level = 0; tmp_keyval = SYM (keymap_x11, group, shift_level); } else { /* Fall back to the first level if no symbol for the level * we were passed. */ shift_level = (state & shift_modifiers) ? 1 : 0; if (!SYM (keymap_x11, group, shift_level) && SYM (keymap_x11, group, 0)) shift_level = 0; tmp_keyval = SYM (keymap_x11, group, shift_level); if (keymap_x11->lock_keysym == GDK_Caps_Lock && (state & GDK_LOCK_MASK) != 0) { guint upper = gdk_keyval_to_upper (tmp_keyval); if (upper != tmp_keyval) tmp_keyval = upper; } } if (effective_group) *effective_group = group; if (effective_level) *effective_level = shift_level; return tmp_keyval; #undef SYM } /** * gdk_keymap_translate_keyboard_state: * @keymap: a #GdkKeymap, or %NULL to use the default * @hardware_keycode: a keycode * @state: a modifier state * @group: active keyboard group * @keyval: return location for keyval * @effective_group: return location for effective group * @level: return location for level * @consumed_modifiers: return location for modifiers that were used to determine the group or level * * * Translates the contents of a #GdkEventKey into a keyval, effective * group, and level. Modifiers that affected the translation and * are thus unavailable for application use are returned in * @consumed_modifiers. See gdk_keyval_get_keys() for an explanation of * groups and levels. The @effective_group is the group that was * actually used for the translation; some keys such as Enter are not * affected by the active keyboard group. The @level is derived from * @state. For convenience, #GdkEventKey already contains the translated * keyval, so this function isn't as useful as you might think. * * * @consumed_modifiers gives modifiers that should be masked out * from @state when comparing this key press to a hot key. For * instance, on a US keyboard, the plus * symbol is shifted, so when comparing a key press to a * <Control>plus accelerator <Shift> should * be masked out. * * * /* We want to ignore irrelevant modifiers like ScrollLock */ * #define ALL_ACCELS_MASK (GDK_CONTROL_MASK | GDK_SHIFT_MASK | GDK_MOD1_MASK) * gdk_keymap_translate_keyboard_state (keymap, event->hardware_keycode, * event->state, event->group, * &keyval, NULL, NULL, &consumed); * if (keyval == GDK_PLUS && * (event->state & ~consumed & ALL_ACCELS_MASK) == GDK_CONTROL_MASK) * /* Control was pressed */ * * * An older interpretation @consumed_modifiers was that it contained * all modifiers that might affect the translation of the key; * this allowed accelerators to be stored with irrelevant consumed * modifiers, by doing: * * /* XXX Don't do this XXX */ * if (keyval == accel_keyval && * (event->state & ~consumed & ALL_ACCELS_MASK) == (accel_mods & ~consumed)) * /* Accelerator was pressed */ * * * However, this did not work if multi-modifier combinations were * used in the keymap, since, for instance, <Control> * would be masked out even if only <Control><Alt> * was used in the keymap. To support this usage as well as well as * possible, all single modifier combinations * that could affect the key for any combination of modifiers will * be returned in @consumed_modifiers; multi-modifier combinations * are returned only when actually found in @state. When you store * accelerators, you should always store them with consumed modifiers * removed. Store <Control>plus, * not <Control><Shift>plus, * * * Return value: %TRUE if there was a keyval bound to the keycode/state/group **/ gboolean gdk_keymap_translate_keyboard_state (GdkKeymap *keymap, guint hardware_keycode, GdkModifierType state, gint group, guint *keyval, gint *effective_group, gint *level, GdkModifierType *consumed_modifiers) { GdkKeymapX11 *keymap_x11; KeySym tmp_keyval = NoSymbol; guint tmp_modifiers; g_return_val_if_fail (keymap == NULL || GDK_IS_KEYMAP (keymap), FALSE); g_return_val_if_fail (group < 4, FALSE); keymap = GET_EFFECTIVE_KEYMAP (keymap); keymap_x11 = GDK_KEYMAP_X11 (keymap); if (keyval) *keyval = NoSymbol; if (effective_group) *effective_group = 0; if (level) *level = 0; if (consumed_modifiers) *consumed_modifiers = 0; update_keyrange (keymap_x11); if (hardware_keycode < keymap_x11->min_keycode || hardware_keycode > keymap_x11->max_keycode) return FALSE; #ifdef HAVE_XKB if (KEYMAP_USE_XKB (keymap)) { XkbDescRec *xkb = get_xkb (keymap_x11); /* replace bits 13 and 14 with the provided group */ state &= ~(1 << 13 | 1 << 14); state |= group << 13; MyEnhancedXkbTranslateKeyCode (xkb, hardware_keycode, state, &tmp_modifiers, &tmp_keyval, effective_group, level); if (state & ~tmp_modifiers & LockMask) tmp_keyval = gdk_keyval_to_upper (tmp_keyval); /* We need to augment the consumed modifiers with LockMask, since * we handle that ourselves, and also with the group bits */ tmp_modifiers |= LockMask | 1 << 13 | 1 << 14; } else #endif { GdkModifierType bit; tmp_modifiers = 0; /* We see what modifiers matter by trying the translation with * and without each possible modifier */ for (bit = GDK_SHIFT_MASK; bit < GDK_BUTTON1_MASK; bit <<= 1) { /* Handling of the group here is a bit funky; a traditional * X keyboard map can have more than two groups, but no way * of accessing the extra groups is defined. We allow a * caller to pass in any group to this function, but we * only can represent switching between group 0 and 1 in * consumed modifiers. */ if (translate_keysym (keymap_x11, hardware_keycode, (bit == keymap_x11->group_switch_mask) ? 0 : group, state & ~bit, NULL, NULL) != translate_keysym (keymap_x11, hardware_keycode, (bit == keymap_x11->group_switch_mask) ? 1 : group, state | bit, NULL, NULL)) tmp_modifiers |= bit; } tmp_keyval = translate_keysym (keymap_x11, hardware_keycode, group, state, level, effective_group); } if (consumed_modifiers) *consumed_modifiers = tmp_modifiers; if (keyval) *keyval = tmp_keyval; return tmp_keyval != NoSymbol; } /* Key handling not part of the keymap */ gchar* gdk_keyval_name (guint keyval) { switch (keyval) { case GDK_Page_Up: return "Page_Up"; case GDK_Page_Down: return "Page_Down"; case GDK_KP_Page_Up: return "KP_Page_Up"; case GDK_KP_Page_Down: return "KP_Page_Down"; } return XKeysymToString (keyval); } guint gdk_keyval_from_name (const gchar *keyval_name) { g_return_val_if_fail (keyval_name != NULL, 0); return XStringToKeysym (keyval_name); } #ifdef HAVE_XCONVERTCASE void gdk_keyval_convert_case (guint symbol, guint *lower, guint *upper) { KeySym xlower = 0; KeySym xupper = 0; /* Check for directly encoded 24-bit UCS characters: */ if ((symbol & 0xff000000) == 0x01000000) { if (lower) *lower = gdk_unicode_to_keyval (g_unichar_tolower (symbol & 0x00ffffff)); if (upper) *upper = gdk_unicode_to_keyval (g_unichar_toupper (symbol & 0x00ffffff)); return; } if (symbol) XConvertCase (symbol, &xlower, &xupper); if (lower) *lower = xlower; if (upper) *upper = xupper; } #endif /* HAVE_XCONVERTCASE */ gint _gdk_x11_get_group_for_state (GdkDisplay *display, GdkModifierType state) { GdkDisplayX11 *display_x11 = GDK_DISPLAY_X11 (display); #ifdef HAVE_XKB if (display_x11->use_xkb) { return XkbGroupForCoreState (state); } else #endif { GdkKeymapX11 *keymap_impl = GDK_KEYMAP_X11 (gdk_keymap_get_for_display (display)); update_keymaps (keymap_impl); return (state & keymap_impl->group_switch_mask) ? 1 : 0; } } void _gdk_keymap_add_virtual_modifiers (GdkKeymap *keymap, GdkModifierType *modifiers) { GdkKeymapX11 *keymap_x11; int i; keymap = GET_EFFECTIVE_KEYMAP (keymap); keymap_x11 = GDK_KEYMAP_X11 (keymap); for (i = 3; i < 8; i++) { if ((1 << i) & *modifiers) { if (keymap_x11->modmap[i] & GDK_MOD1_MASK) *modifiers |= GDK_MOD1_MASK; else if (keymap_x11->modmap[i] & GDK_SUPER_MASK) *modifiers |= GDK_SUPER_MASK; else if (keymap_x11->modmap[i] & GDK_HYPER_MASK) *modifiers |= GDK_HYPER_MASK; else if (keymap_x11->modmap[i] & GDK_META_MASK) *modifiers |= GDK_META_MASK; } } } gboolean _gdk_keymap_key_is_modifier (GdkKeymap *keymap, guint keycode) { GdkKeymapX11 *keymap_x11; gint i; keymap = GET_EFFECTIVE_KEYMAP (keymap); keymap_x11 = GDK_KEYMAP_X11 (keymap); if (keycode < keymap_x11->min_keycode || keycode > keymap_x11->max_keycode) return FALSE; #ifdef HAVE_XKB if (KEYMAP_USE_XKB (keymap)) { XkbDescRec *xkb = get_xkb (keymap_x11); if (xkb->map->modmap[keycode] != 0) return TRUE; } else #endif { for (i = 0; i < 8 * keymap_x11->mod_keymap->max_keypermod; i++) { if (keycode == keymap_x11->mod_keymap->modifiermap[i]) return TRUE; } } return FALSE; } #define __GDK_KEYS_X11_C__ #include "gdkaliasdef.c"