gtk2/gsk/gskrendernodeimpl.c

6346 lines
180 KiB
C

/* GSK - The GTK Scene Kit
*
* Copyright 2016 Endless
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include "gskrendernodeprivate.h"
#include "gskcairoblurprivate.h"
#include "gskdebugprivate.h"
#include "gskdiffprivate.h"
#include "gskrendererprivate.h"
#include "gskroundedrectprivate.h"
#include "gsktransformprivate.h"
#include "gdk/gdktextureprivate.h"
#include "gdk/gdkmemoryformatprivate.h"
#include "gdk/gdkprivate.h"
#include <hb-ot.h>
/* maximal number of rectangles we keep in a diff region before we throw
* the towel and just use the bounding box of the parent node.
* Meant to avoid performance corner cases.
*/
#define MAX_RECTS_IN_DIFF 30
static inline void
gsk_cairo_rectangle (cairo_t *cr,
const graphene_rect_t *rect)
{
cairo_rectangle (cr,
rect->origin.x, rect->origin.y,
rect->size.width, rect->size.height);
}
static void
rectangle_init_from_graphene (cairo_rectangle_int_t *cairo,
const graphene_rect_t *graphene)
{
cairo->x = floorf (graphene->origin.x);
cairo->y = floorf (graphene->origin.y);
cairo->width = ceilf (graphene->origin.x + graphene->size.width) - cairo->x;
cairo->height = ceilf (graphene->origin.y + graphene->size.height) - cairo->y;
}
/* {{{ GSK_COLOR_NODE */
/**
* GskColorNode:
*
* A render node for a solid color.
*/
struct _GskColorNode
{
GskRenderNode render_node;
GdkRGBA color;
};
static void
gsk_color_node_draw (GskRenderNode *node,
cairo_t *cr)
{
GskColorNode *self = (GskColorNode *) node;
gdk_cairo_set_source_rgba (cr, &self->color);
gsk_cairo_rectangle (cr, &node->bounds);
cairo_fill (cr);
}
static void
gsk_color_node_diff (GskRenderNode *node1,
GskRenderNode *node2,
cairo_region_t *region)
{
GskColorNode *self1 = (GskColorNode *) node1;
GskColorNode *self2 = (GskColorNode *) node2;
if (graphene_rect_equal (&node1->bounds, &node2->bounds) &&
gdk_rgba_equal (&self1->color, &self2->color))
return;
gsk_render_node_diff_impossible (node1, node2, region);
}
/**
* gsk_color_node_get_color:
* @node: (type GskColorNode): a `GskRenderNode`
*
* Retrieves the color of the given @node.
*
* Returns: (transfer none): the color of the node
*/
const GdkRGBA *
gsk_color_node_get_color (const GskRenderNode *node)
{
GskColorNode *self = (GskColorNode *) node;
g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_COLOR_NODE), NULL);
return &self->color;
}
/**
* gsk_color_node_new:
* @rgba: a `GdkRGBA` specifying a color
* @bounds: the rectangle to render the color into
*
* Creates a `GskRenderNode` that will render the color specified by @rgba into
* the area given by @bounds.
*
* Returns: (transfer full) (type GskColorNode): A new `GskRenderNode`
*/
GskRenderNode *
gsk_color_node_new (const GdkRGBA *rgba,
const graphene_rect_t *bounds)
{
GskColorNode *self;
GskRenderNode *node;
g_return_val_if_fail (rgba != NULL, NULL);
g_return_val_if_fail (bounds != NULL, NULL);
self = gsk_render_node_alloc (GSK_COLOR_NODE);
node = (GskRenderNode *) self;
node->offscreen_for_opacity = FALSE;
self->color = *rgba;
graphene_rect_init_from_rect (&node->bounds, bounds);
return node;
}
/* }}} */
/* {{{ GSK_LINEAR_GRADIENT_NODE */
/**
* GskRepeatingLinearGradientNode:
*
* A render node for a repeating linear gradient.
*/
/**
* GskLinearGradientNode:
*
* A render node for a linear gradient.
*/
struct _GskLinearGradientNode
{
GskRenderNode render_node;
graphene_point_t start;
graphene_point_t end;
gsize n_stops;
GskColorStop *stops;
};
static void
gsk_linear_gradient_node_finalize (GskRenderNode *node)
{
GskLinearGradientNode *self = (GskLinearGradientNode *) node;
GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_LINEAR_GRADIENT_NODE));
g_free (self->stops);
parent_class->finalize (node);
}
static void
gsk_linear_gradient_node_draw (GskRenderNode *node,
cairo_t *cr)
{
GskLinearGradientNode *self = (GskLinearGradientNode *) node;
cairo_pattern_t *pattern;
gsize i;
pattern = cairo_pattern_create_linear (self->start.x, self->start.y,
self->end.x, self->end.y);
if (gsk_render_node_get_node_type (node) == GSK_REPEATING_LINEAR_GRADIENT_NODE)
cairo_pattern_set_extend (pattern, CAIRO_EXTEND_REPEAT);
for (i = 0; i < self->n_stops; i++)
{
cairo_pattern_add_color_stop_rgba (pattern,
self->stops[i].offset,
self->stops[i].color.red,
self->stops[i].color.green,
self->stops[i].color.blue,
self->stops[i].color.alpha);
}
cairo_set_source (cr, pattern);
cairo_pattern_destroy (pattern);
gsk_cairo_rectangle (cr, &node->bounds);
cairo_fill (cr);
}
static void
gsk_linear_gradient_node_diff (GskRenderNode *node1,
GskRenderNode *node2,
cairo_region_t *region)
{
GskLinearGradientNode *self1 = (GskLinearGradientNode *) node1;
GskLinearGradientNode *self2 = (GskLinearGradientNode *) node2;
if (graphene_point_equal (&self1->start, &self2->start) &&
graphene_point_equal (&self1->end, &self2->end) &&
self1->n_stops == self2->n_stops)
{
gsize i;
for (i = 0; i < self1->n_stops; i++)
{
GskColorStop *stop1 = &self1->stops[i];
GskColorStop *stop2 = &self2->stops[i];
if (stop1->offset == stop2->offset &&
gdk_rgba_equal (&stop1->color, &stop2->color))
continue;
gsk_render_node_diff_impossible (node1, node2, region);
return;
}
return;
}
gsk_render_node_diff_impossible (node1, node2, region);
}
/**
* gsk_linear_gradient_node_new:
* @bounds: the rectangle to render the linear gradient into
* @start: the point at which the linear gradient will begin
* @end: the point at which the linear gradient will finish
* @color_stops: (array length=n_color_stops): a pointer to an array of
* `GskColorStop` defining the gradient. The offsets of all color stops
* must be increasing. The first stop's offset must be >= 0 and the last
* stop's offset must be <= 1.
* @n_color_stops: the number of elements in @color_stops
*
* Creates a `GskRenderNode` that will create a linear gradient from the given
* points and color stops, and render that into the area given by @bounds.
*
* Returns: (transfer full) (type GskLinearGradientNode): A new `GskRenderNode`
*/
GskRenderNode *
gsk_linear_gradient_node_new (const graphene_rect_t *bounds,
const graphene_point_t *start,
const graphene_point_t *end,
const GskColorStop *color_stops,
gsize n_color_stops)
{
GskLinearGradientNode *self;
GskRenderNode *node;
gsize i;
g_return_val_if_fail (bounds != NULL, NULL);
g_return_val_if_fail (start != NULL, NULL);
g_return_val_if_fail (end != NULL, NULL);
g_return_val_if_fail (color_stops != NULL, NULL);
g_return_val_if_fail (n_color_stops >= 2, NULL);
g_return_val_if_fail (color_stops[0].offset >= 0, NULL);
for (i = 1; i < n_color_stops; i++)
g_return_val_if_fail (color_stops[i].offset >= color_stops[i - 1].offset, NULL);
g_return_val_if_fail (color_stops[n_color_stops - 1].offset <= 1, NULL);
self = gsk_render_node_alloc (GSK_LINEAR_GRADIENT_NODE);
node = (GskRenderNode *) self;
node->offscreen_for_opacity = FALSE;
graphene_rect_init_from_rect (&node->bounds, bounds);
graphene_point_init_from_point (&self->start, start);
graphene_point_init_from_point (&self->end, end);
self->n_stops = n_color_stops;
self->stops = g_malloc_n (n_color_stops, sizeof (GskColorStop));
memcpy (self->stops, color_stops, n_color_stops * sizeof (GskColorStop));
return node;
}
/**
* gsk_repeating_linear_gradient_node_new:
* @bounds: the rectangle to render the linear gradient into
* @start: the point at which the linear gradient will begin
* @end: the point at which the linear gradient will finish
* @color_stops: (array length=n_color_stops): a pointer to an array of
* `GskColorStop` defining the gradient. The offsets of all color stops
* must be increasing. The first stop's offset must be >= 0 and the last
* stop's offset must be <= 1.
* @n_color_stops: the number of elements in @color_stops
*
* Creates a `GskRenderNode` that will create a repeating linear gradient
* from the given points and color stops, and render that into the area
* given by @bounds.
*
* Returns: (transfer full) (type GskRepeatingLinearGradientNode): A new `GskRenderNode`
*/
GskRenderNode *
gsk_repeating_linear_gradient_node_new (const graphene_rect_t *bounds,
const graphene_point_t *start,
const graphene_point_t *end,
const GskColorStop *color_stops,
gsize n_color_stops)
{
GskLinearGradientNode *self;
GskRenderNode *node;
gsize i;
g_return_val_if_fail (bounds != NULL, NULL);
g_return_val_if_fail (start != NULL, NULL);
g_return_val_if_fail (end != NULL, NULL);
g_return_val_if_fail (color_stops != NULL, NULL);
g_return_val_if_fail (n_color_stops >= 2, NULL);
g_return_val_if_fail (color_stops[0].offset >= 0, NULL);
for (i = 1; i < n_color_stops; i++)
g_return_val_if_fail (color_stops[i].offset >= color_stops[i - 1].offset, NULL);
g_return_val_if_fail (color_stops[n_color_stops - 1].offset <= 1, NULL);
self = gsk_render_node_alloc (GSK_REPEATING_LINEAR_GRADIENT_NODE);
node = (GskRenderNode *) self;
node->offscreen_for_opacity = FALSE;
graphene_rect_init_from_rect (&node->bounds, bounds);
graphene_point_init_from_point (&self->start, start);
graphene_point_init_from_point (&self->end, end);
self->stops = g_malloc_n (n_color_stops, sizeof (GskColorStop));
memcpy (self->stops, color_stops, n_color_stops * sizeof (GskColorStop));
self->n_stops = n_color_stops;
return node;
}
/**
* gsk_linear_gradient_node_get_start:
* @node: (type GskLinearGradientNode): a `GskRenderNode` for a linear gradient
*
* Retrieves the initial point of the linear gradient.
*
* Returns: (transfer none): the initial point
*/
const graphene_point_t *
gsk_linear_gradient_node_get_start (const GskRenderNode *node)
{
const GskLinearGradientNode *self = (const GskLinearGradientNode *) node;
return &self->start;
}
/**
* gsk_linear_gradient_node_get_end:
* @node: (type GskLinearGradientNode): a `GskRenderNode` for a linear gradient
*
* Retrieves the final point of the linear gradient.
*
* Returns: (transfer none): the final point
*/
const graphene_point_t *
gsk_linear_gradient_node_get_end (const GskRenderNode *node)
{
const GskLinearGradientNode *self = (const GskLinearGradientNode *) node;
return &self->end;
}
/**
* gsk_linear_gradient_node_get_n_color_stops:
* @node: (type GskLinearGradientNode): a `GskRenderNode` for a linear gradient
*
* Retrieves the number of color stops in the gradient.
*
* Returns: the number of color stops
*/
gsize
gsk_linear_gradient_node_get_n_color_stops (const GskRenderNode *node)
{
const GskLinearGradientNode *self = (const GskLinearGradientNode *) node;
return self->n_stops;
}
/**
* gsk_linear_gradient_node_get_color_stops:
* @node: (type GskLinearGradientNode): a `GskRenderNode` for a linear gradient
* @n_stops: (out) (optional): the number of color stops in the returned array
*
* Retrieves the color stops in the gradient.
*
* Returns: (array length=n_stops): the color stops in the gradient
*/
const GskColorStop *
gsk_linear_gradient_node_get_color_stops (const GskRenderNode *node,
gsize *n_stops)
{
const GskLinearGradientNode *self = (const GskLinearGradientNode *) node;
if (n_stops != NULL)
*n_stops = self->n_stops;
return self->stops;
}
/* }}} */
/* {{{ GSK_RADIAL_GRADIENT_NODE */
/**
* GskRepeatingRadialGradientNode:
*
* A render node for a repeating radial gradient.
*/
/**
* GskRadialGradientNode:
*
* A render node for a radial gradient.
*/
struct _GskRadialGradientNode
{
GskRenderNode render_node;
graphene_point_t center;
float hradius;
float vradius;
float start;
float end;
gsize n_stops;
GskColorStop *stops;
};
static void
gsk_radial_gradient_node_finalize (GskRenderNode *node)
{
GskRadialGradientNode *self = (GskRadialGradientNode *) node;
GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_RADIAL_GRADIENT_NODE));
g_free (self->stops);
parent_class->finalize (node);
}
static void
gsk_radial_gradient_node_draw (GskRenderNode *node,
cairo_t *cr)
{
GskRadialGradientNode *self = (GskRadialGradientNode *) node;
cairo_pattern_t *pattern;
gsize i;
pattern = cairo_pattern_create_radial (0, 0, self->hradius * self->start,
0, 0, self->hradius * self->end);
if (self->hradius != self->vradius)
{
cairo_matrix_t matrix;
cairo_matrix_init_scale (&matrix, 1.0, self->hradius / self->vradius);
cairo_pattern_set_matrix (pattern, &matrix);
}
if (gsk_render_node_get_node_type (node) == GSK_REPEATING_RADIAL_GRADIENT_NODE)
cairo_pattern_set_extend (pattern, CAIRO_EXTEND_REPEAT);
else
cairo_pattern_set_extend (pattern, CAIRO_EXTEND_PAD);
for (i = 0; i < self->n_stops; i++)
cairo_pattern_add_color_stop_rgba (pattern,
self->stops[i].offset,
self->stops[i].color.red,
self->stops[i].color.green,
self->stops[i].color.blue,
self->stops[i].color.alpha);
gsk_cairo_rectangle (cr, &node->bounds);
cairo_translate (cr, self->center.x, self->center.y);
cairo_set_source (cr, pattern);
cairo_fill (cr);
cairo_pattern_destroy (pattern);
}
static void
gsk_radial_gradient_node_diff (GskRenderNode *node1,
GskRenderNode *node2,
cairo_region_t *region)
{
GskRadialGradientNode *self1 = (GskRadialGradientNode *) node1;
GskRadialGradientNode *self2 = (GskRadialGradientNode *) node2;
if (graphene_point_equal (&self1->center, &self2->center) &&
self1->hradius == self2->hradius &&
self1->vradius == self2->vradius &&
self1->start == self2->start &&
self1->end == self2->end &&
self1->n_stops == self2->n_stops)
{
gsize i;
for (i = 0; i < self1->n_stops; i++)
{
GskColorStop *stop1 = &self1->stops[i];
GskColorStop *stop2 = &self2->stops[i];
if (stop1->offset == stop2->offset &&
gdk_rgba_equal (&stop1->color, &stop2->color))
continue;
gsk_render_node_diff_impossible (node1, node2, region);
return;
}
return;
}
gsk_render_node_diff_impossible (node1, node2, region);
}
/**
* gsk_radial_gradient_node_new:
* @bounds: the bounds of the node
* @center: the center of the gradient
* @hradius: the horizontal radius
* @vradius: the vertical radius
* @start: a percentage >= 0 that defines the start of the gradient around @center
* @end: a percentage >= 0 that defines the end of the gradient around @center
* @color_stops: (array length=n_color_stops): a pointer to an array of
* `GskColorStop` defining the gradient. The offsets of all color stops
* must be increasing. The first stop's offset must be >= 0 and the last
* stop's offset must be <= 1.
* @n_color_stops: the number of elements in @color_stops
*
* Creates a `GskRenderNode` that draws a radial gradient.
*
* The radial gradient
* starts around @center. The size of the gradient is dictated by @hradius
* in horizontal orientation and by @vradius in vertical orientation.
*
* Returns: (transfer full) (type GskRadialGradientNode): A new `GskRenderNode`
*/
GskRenderNode *
gsk_radial_gradient_node_new (const graphene_rect_t *bounds,
const graphene_point_t *center,
float hradius,
float vradius,
float start,
float end,
const GskColorStop *color_stops,
gsize n_color_stops)
{
GskRadialGradientNode *self;
GskRenderNode *node;
gsize i;
g_return_val_if_fail (bounds != NULL, NULL);
g_return_val_if_fail (center != NULL, NULL);
g_return_val_if_fail (hradius > 0., NULL);
g_return_val_if_fail (vradius > 0., NULL);
g_return_val_if_fail (start >= 0., NULL);
g_return_val_if_fail (end >= 0., NULL);
g_return_val_if_fail (end > start, NULL);
g_return_val_if_fail (color_stops != NULL, NULL);
g_return_val_if_fail (n_color_stops >= 2, NULL);
g_return_val_if_fail (color_stops[0].offset >= 0, NULL);
for (i = 1; i < n_color_stops; i++)
g_return_val_if_fail (color_stops[i].offset >= color_stops[i - 1].offset, NULL);
g_return_val_if_fail (color_stops[n_color_stops - 1].offset <= 1, NULL);
self = gsk_render_node_alloc (GSK_RADIAL_GRADIENT_NODE);
node = (GskRenderNode *) self;
node->offscreen_for_opacity = FALSE;
graphene_rect_init_from_rect (&node->bounds, bounds);
graphene_point_init_from_point (&self->center, center);
self->hradius = hradius;
self->vradius = vradius;
self->start = start;
self->end = end;
self->n_stops = n_color_stops;
self->stops = g_malloc_n (n_color_stops, sizeof (GskColorStop));
memcpy (self->stops, color_stops, n_color_stops * sizeof (GskColorStop));
return node;
}
/**
* gsk_repeating_radial_gradient_node_new:
* @bounds: the bounds of the node
* @center: the center of the gradient
* @hradius: the horizontal radius
* @vradius: the vertical radius
* @start: a percentage >= 0 that defines the start of the gradient around @center
* @end: a percentage >= 0 that defines the end of the gradient around @center
* @color_stops: (array length=n_color_stops): a pointer to an array of
* `GskColorStop` defining the gradient. The offsets of all color stops
* must be increasing. The first stop's offset must be >= 0 and the last
* stop's offset must be <= 1.
* @n_color_stops: the number of elements in @color_stops
*
* Creates a `GskRenderNode` that draws a repeating radial gradient.
*
* The radial gradient starts around @center. The size of the gradient
* is dictated by @hradius in horizontal orientation and by @vradius
* in vertical orientation.
*
* Returns: (transfer full) (type GskRepeatingRadialGradientNode): A new `GskRenderNode`
*/
GskRenderNode *
gsk_repeating_radial_gradient_node_new (const graphene_rect_t *bounds,
const graphene_point_t *center,
float hradius,
float vradius,
float start,
float end,
const GskColorStop *color_stops,
gsize n_color_stops)
{
GskRadialGradientNode *self;
GskRenderNode *node;
gsize i;
g_return_val_if_fail (bounds != NULL, NULL);
g_return_val_if_fail (center != NULL, NULL);
g_return_val_if_fail (hradius > 0., NULL);
g_return_val_if_fail (vradius > 0., NULL);
g_return_val_if_fail (start >= 0., NULL);
g_return_val_if_fail (end >= 0., NULL);
g_return_val_if_fail (end > start, NULL);
g_return_val_if_fail (color_stops != NULL, NULL);
g_return_val_if_fail (n_color_stops >= 2, NULL);
g_return_val_if_fail (color_stops[0].offset >= 0, NULL);
for (i = 1; i < n_color_stops; i++)
g_return_val_if_fail (color_stops[i].offset >= color_stops[i - 1].offset, NULL);
g_return_val_if_fail (color_stops[n_color_stops - 1].offset <= 1, NULL);
self = gsk_render_node_alloc (GSK_REPEATING_RADIAL_GRADIENT_NODE);
node = (GskRenderNode *) self;
node->offscreen_for_opacity = FALSE;
graphene_rect_init_from_rect (&node->bounds, bounds);
graphene_point_init_from_point (&self->center, center);
self->hradius = hradius;
self->vradius = vradius;
self->start = start;
self->end = end;
self->n_stops = n_color_stops;
self->stops = g_malloc_n (n_color_stops, sizeof (GskColorStop));
memcpy (self->stops, color_stops, n_color_stops * sizeof (GskColorStop));
return node;
}
/**
* gsk_radial_gradient_node_get_n_color_stops:
* @node: (type GskRadialGradientNode): a `GskRenderNode` for a radial gradient
*
* Retrieves the number of color stops in the gradient.
*
* Returns: the number of color stops
*/
gsize
gsk_radial_gradient_node_get_n_color_stops (const GskRenderNode *node)
{
const GskRadialGradientNode *self = (const GskRadialGradientNode *) node;
return self->n_stops;
}
/**
* gsk_radial_gradient_node_get_color_stops:
* @node: (type GskRadialGradientNode): a `GskRenderNode` for a radial gradient
* @n_stops: (out) (optional): the number of color stops in the returned array
*
* Retrieves the color stops in the gradient.
*
* Returns: (array length=n_stops): the color stops in the gradient
*/
const GskColorStop *
gsk_radial_gradient_node_get_color_stops (const GskRenderNode *node,
gsize *n_stops)
{
const GskRadialGradientNode *self = (const GskRadialGradientNode *) node;
if (n_stops != NULL)
*n_stops = self->n_stops;
return self->stops;
}
/**
* gsk_radial_gradient_node_get_center:
* @node: (type GskRadialGradientNode): a `GskRenderNode` for a radial gradient
*
* Retrieves the center pointer for the gradient.
*
* Returns: the center point for the gradient
*/
const graphene_point_t *
gsk_radial_gradient_node_get_center (const GskRenderNode *node)
{
const GskRadialGradientNode *self = (const GskRadialGradientNode *) node;
return &self->center;
}
/**
* gsk_radial_gradient_node_get_hradius:
* @node: (type GskRadialGradientNode): a `GskRenderNode` for a radial gradient
*
* Retrieves the horizontal radius for the gradient.
*
* Returns: the horizontal radius for the gradient
*/
float
gsk_radial_gradient_node_get_hradius (const GskRenderNode *node)
{
const GskRadialGradientNode *self = (const GskRadialGradientNode *) node;
return self->hradius;
}
/**
* gsk_radial_gradient_node_get_vradius:
* @node: (type GskRadialGradientNode): a `GskRenderNode` for a radial gradient
*
* Retrieves the vertical radius for the gradient.
*
* Returns: the vertical radius for the gradient
*/
float
gsk_radial_gradient_node_get_vradius (const GskRenderNode *node)
{
const GskRadialGradientNode *self = (const GskRadialGradientNode *) node;
return self->vradius;
}
/**
* gsk_radial_gradient_node_get_start:
* @node: (type GskRadialGradientNode): a `GskRenderNode` for a radial gradient
*
* Retrieves the start value for the gradient.
*
* Returns: the start value for the gradient
*/
float
gsk_radial_gradient_node_get_start (const GskRenderNode *node)
{
const GskRadialGradientNode *self = (const GskRadialGradientNode *) node;
return self->start;
}
/**
* gsk_radial_gradient_node_get_end:
* @node: (type GskRadialGradientNode): a `GskRenderNode` for a radial gradient
*
* Retrieves the end value for the gradient.
*
* Returns: the end value for the gradient
*/
float
gsk_radial_gradient_node_get_end (const GskRenderNode *node)
{
const GskRadialGradientNode *self = (const GskRadialGradientNode *) node;
return self->end;
}
/* }}} */
/* {{{ GSK_CONIC_GRADIENT_NODE */
/**
* GskConicGradientNode:
*
* A render node for a conic gradient.
*/
struct _GskConicGradientNode
{
GskRenderNode render_node;
graphene_point_t center;
float rotation;
float angle;
gsize n_stops;
GskColorStop *stops;
};
static void
gsk_conic_gradient_node_finalize (GskRenderNode *node)
{
GskConicGradientNode *self = (GskConicGradientNode *) node;
GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_CONIC_GRADIENT_NODE));
g_free (self->stops);
parent_class->finalize (node);
}
#define DEG_TO_RAD(x) ((x) * (G_PI / 180.f))
static void
_cairo_mesh_pattern_set_corner_rgba (cairo_pattern_t *pattern,
guint corner_num,
const GdkRGBA *rgba)
{
cairo_mesh_pattern_set_corner_color_rgba (pattern, corner_num, rgba->red, rgba->green, rgba->blue, rgba->alpha);
}
static void
project (double angle,
double radius,
double *x_out,
double *y_out)
{
double x, y;
#ifdef HAVE_SINCOS
sincos (angle, &y, &x);
#else
x = cos (angle);
y = sin (angle);
#endif
*x_out = radius * x;
*y_out = radius * y;
}
static void
gsk_conic_gradient_node_add_patch (cairo_pattern_t *pattern,
float radius,
float start_angle,
const GdkRGBA *start_color,
float end_angle,
const GdkRGBA *end_color)
{
double x, y;
cairo_mesh_pattern_begin_patch (pattern);
cairo_mesh_pattern_move_to (pattern, 0, 0);
project (start_angle, radius, &x, &y);
cairo_mesh_pattern_line_to (pattern, x, y);
project (end_angle, radius, &x, &y);
cairo_mesh_pattern_line_to (pattern, x, y);
cairo_mesh_pattern_line_to (pattern, 0, 0);
_cairo_mesh_pattern_set_corner_rgba (pattern, 0, start_color);
_cairo_mesh_pattern_set_corner_rgba (pattern, 1, start_color);
_cairo_mesh_pattern_set_corner_rgba (pattern, 2, end_color);
_cairo_mesh_pattern_set_corner_rgba (pattern, 3, end_color);
cairo_mesh_pattern_end_patch (pattern);
}
static void
gdk_rgba_color_interpolate (GdkRGBA *dest,
const GdkRGBA *src1,
const GdkRGBA *src2,
double progress)
{
double alpha = src1->alpha * (1.0 - progress) + src2->alpha * progress;
dest->alpha = alpha;
if (alpha == 0)
{
dest->red = src1->red * (1.0 - progress) + src2->red * progress;
dest->green = src1->green * (1.0 - progress) + src2->green * progress;
dest->blue = src1->blue * (1.0 - progress) + src2->blue * progress;
}
else
{
dest->red = (src1->red * src1->alpha * (1.0 - progress) + src2->red * src2->alpha * progress) / alpha;
dest->green = (src1->green * src1->alpha * (1.0 - progress) + src2->green * src2->alpha * progress) / alpha;
dest->blue = (src1->blue * src1->alpha * (1.0 - progress) + src2->blue * src2->alpha * progress) / alpha;
}
}
static void
gsk_conic_gradient_node_draw (GskRenderNode *node,
cairo_t *cr)
{
GskConicGradientNode *self = (GskConicGradientNode *) node;
cairo_pattern_t *pattern;
graphene_point_t corner;
float radius;
gsize i;
pattern = cairo_pattern_create_mesh ();
graphene_rect_get_top_right (&node->bounds, &corner);
radius = graphene_point_distance (&self->center, &corner, NULL, NULL);
graphene_rect_get_bottom_right (&node->bounds, &corner);
radius = MAX (radius, graphene_point_distance (&self->center, &corner, NULL, NULL));
graphene_rect_get_bottom_left (&node->bounds, &corner);
radius = MAX (radius, graphene_point_distance (&self->center, &corner, NULL, NULL));
graphene_rect_get_top_left (&node->bounds, &corner);
radius = MAX (radius, graphene_point_distance (&self->center, &corner, NULL, NULL));
for (i = 0; i <= self->n_stops; i++)
{
GskColorStop *stop1 = &self->stops[MAX (i, 1) - 1];
GskColorStop *stop2 = &self->stops[MIN (i, self->n_stops - 1)];
double offset1 = i > 0 ? stop1->offset : 0;
double offset2 = i < self->n_stops ? stop2->offset : 1;
double start_angle, end_angle;
offset1 = offset1 * 360 + self->rotation - 90;
offset2 = offset2 * 360 + self->rotation - 90;
for (start_angle = offset1; start_angle < offset2; start_angle = end_angle)
{
GdkRGBA start_color, end_color;
end_angle = (floor (start_angle / 45) + 1) * 45;
end_angle = MIN (end_angle, offset2);
gdk_rgba_color_interpolate (&start_color,
&stop1->color,
&stop2->color,
(start_angle - offset1) / (offset2 - offset1));
gdk_rgba_color_interpolate (&end_color,
&stop1->color,
&stop2->color,
(end_angle - offset1) / (offset2 - offset1));
gsk_conic_gradient_node_add_patch (pattern,
radius,
DEG_TO_RAD (start_angle),
&start_color,
DEG_TO_RAD (end_angle),
&end_color);
}
}
cairo_pattern_set_extend (pattern, CAIRO_EXTEND_PAD);
gsk_cairo_rectangle (cr, &node->bounds);
cairo_translate (cr, self->center.x, self->center.y);
cairo_set_source (cr, pattern);
cairo_fill (cr);
cairo_pattern_destroy (pattern);
}
static void
gsk_conic_gradient_node_diff (GskRenderNode *node1,
GskRenderNode *node2,
cairo_region_t *region)
{
GskConicGradientNode *self1 = (GskConicGradientNode *) node1;
GskConicGradientNode *self2 = (GskConicGradientNode *) node2;
gsize i;
if (!graphene_point_equal (&self1->center, &self2->center) ||
self1->rotation != self2->rotation ||
self1->n_stops != self2->n_stops)
{
gsk_render_node_diff_impossible (node1, node2, region);
return;
}
for (i = 0; i < self1->n_stops; i++)
{
GskColorStop *stop1 = &self1->stops[i];
GskColorStop *stop2 = &self2->stops[i];
if (stop1->offset != stop2->offset ||
!gdk_rgba_equal (&stop1->color, &stop2->color))
{
gsk_render_node_diff_impossible (node1, node2, region);
return;
}
}
}
/**
* gsk_conic_gradient_node_new:
* @bounds: the bounds of the node
* @center: the center of the gradient
* @rotation: the rotation of the gradient in degrees
* @color_stops: (array length=n_color_stops): a pointer to an array of
* `GskColorStop` defining the gradient. The offsets of all color stops
* must be increasing. The first stop's offset must be >= 0 and the last
* stop's offset must be <= 1.
* @n_color_stops: the number of elements in @color_stops
*
* Creates a `GskRenderNode` that draws a conic gradient.
*
* The conic gradient
* starts around @center in the direction of @rotation. A rotation of 0 means
* that the gradient points up. Color stops are then added clockwise.
*
* Returns: (transfer full) (type GskConicGradientNode): A new `GskRenderNode`
*/
GskRenderNode *
gsk_conic_gradient_node_new (const graphene_rect_t *bounds,
const graphene_point_t *center,
float rotation,
const GskColorStop *color_stops,
gsize n_color_stops)
{
GskConicGradientNode *self;
GskRenderNode *node;
gsize i;
g_return_val_if_fail (bounds != NULL, NULL);
g_return_val_if_fail (center != NULL, NULL);
g_return_val_if_fail (color_stops != NULL, NULL);
g_return_val_if_fail (n_color_stops >= 2, NULL);
g_return_val_if_fail (color_stops[0].offset >= 0, NULL);
for (i = 1; i < n_color_stops; i++)
g_return_val_if_fail (color_stops[i].offset >= color_stops[i - 1].offset, NULL);
g_return_val_if_fail (color_stops[n_color_stops - 1].offset <= 1, NULL);
self = gsk_render_node_alloc (GSK_CONIC_GRADIENT_NODE);
node = (GskRenderNode *) self;
node->offscreen_for_opacity = FALSE;
graphene_rect_init_from_rect (&node->bounds, bounds);
graphene_point_init_from_point (&self->center, center);
self->rotation = rotation;
self->n_stops = n_color_stops;
self->stops = g_malloc_n (n_color_stops, sizeof (GskColorStop));
memcpy (self->stops, color_stops, n_color_stops * sizeof (GskColorStop));
self->angle = 90.f - self->rotation;
self->angle = G_PI * self->angle / 180.f;
self->angle = fmodf (self->angle, 2.f * G_PI);
if (self->angle < 0.f)
self->angle += 2.f * G_PI;
return node;
}
/**
* gsk_conic_gradient_node_get_n_color_stops:
* @node: (type GskConicGradientNode): a `GskRenderNode` for a conic gradient
*
* Retrieves the number of color stops in the gradient.
*
* Returns: the number of color stops
*/
gsize
gsk_conic_gradient_node_get_n_color_stops (const GskRenderNode *node)
{
const GskConicGradientNode *self = (const GskConicGradientNode *) node;
return self->n_stops;
}
/**
* gsk_conic_gradient_node_get_color_stops:
* @node: (type GskConicGradientNode): a `GskRenderNode` for a conic gradient
* @n_stops: (out) (optional): the number of color stops in the returned array
*
* Retrieves the color stops in the gradient.
*
* Returns: (array length=n_stops): the color stops in the gradient
*/
const GskColorStop *
gsk_conic_gradient_node_get_color_stops (const GskRenderNode *node,
gsize *n_stops)
{
const GskConicGradientNode *self = (const GskConicGradientNode *) node;
if (n_stops != NULL)
*n_stops = self->n_stops;
return self->stops;
}
/**
* gsk_conic_gradient_node_get_center:
* @node: (type GskConicGradientNode): a `GskRenderNode` for a conic gradient
*
* Retrieves the center pointer for the gradient.
*
* Returns: the center point for the gradient
*/
const graphene_point_t *
gsk_conic_gradient_node_get_center (const GskRenderNode *node)
{
const GskConicGradientNode *self = (const GskConicGradientNode *) node;
return &self->center;
}
/**
* gsk_conic_gradient_node_get_rotation:
* @node: (type GskConicGradientNode): a `GskRenderNode` for a conic gradient
*
* Retrieves the rotation for the gradient in degrees.
*
* Returns: the rotation for the gradient
*/
float
gsk_conic_gradient_node_get_rotation (const GskRenderNode *node)
{
const GskConicGradientNode *self = (const GskConicGradientNode *) node;
return self->rotation;
}
/**
* gsk_conic_gradient_node_get_angle:
* @node: (type GskConicGradientNode): a `GskRenderNode` for a conic gradient
*
* Retrieves the angle for the gradient in radians, normalized in [0, 2 * PI].
*
* The angle is starting at the top and going clockwise, as expressed
* in the css specification:
*
* angle = 90 - gsk_conic_gradient_node_get_rotation()
*
* Returns: the angle for the gradient
*
* Since: 4.2
*/
float
gsk_conic_gradient_node_get_angle (const GskRenderNode *node)
{
const GskConicGradientNode *self = (const GskConicGradientNode *) node;
return self->angle;
}
/* }}} */
/* {{{ GSK_BORDER_NODE */
/**
* GskBorderNode:
*
* A render node for a border.
*/
struct _GskBorderNode
{
GskRenderNode render_node;
bool uniform_width: 1;
bool uniform_color: 1;
GskRoundedRect outline;
float border_width[4];
GdkRGBA border_color[4];
};
static void
gsk_border_node_mesh_add_patch (cairo_pattern_t *pattern,
const GdkRGBA *color,
double x0,
double y0,
double x1,
double y1,
double x2,
double y2,
double x3,
double y3)
{
cairo_mesh_pattern_begin_patch (pattern);
cairo_mesh_pattern_move_to (pattern, x0, y0);
cairo_mesh_pattern_line_to (pattern, x1, y1);
cairo_mesh_pattern_line_to (pattern, x2, y2);
cairo_mesh_pattern_line_to (pattern, x3, y3);
cairo_mesh_pattern_set_corner_color_rgba (pattern, 0, color->red, color->green, color->blue, color->alpha);
cairo_mesh_pattern_set_corner_color_rgba (pattern, 1, color->red, color->green, color->blue, color->alpha);
cairo_mesh_pattern_set_corner_color_rgba (pattern, 2, color->red, color->green, color->blue, color->alpha);
cairo_mesh_pattern_set_corner_color_rgba (pattern, 3, color->red, color->green, color->blue, color->alpha);
cairo_mesh_pattern_end_patch (pattern);
}
static void
gsk_border_node_draw (GskRenderNode *node,
cairo_t *cr)
{
GskBorderNode *self = (GskBorderNode *) node;
GskRoundedRect inside;
cairo_save (cr);
gsk_rounded_rect_init_copy (&inside, &self->outline);
gsk_rounded_rect_shrink (&inside,
self->border_width[0], self->border_width[1],
self->border_width[2], self->border_width[3]);
cairo_set_fill_rule (cr, CAIRO_FILL_RULE_EVEN_ODD);
gsk_rounded_rect_path (&self->outline, cr);
gsk_rounded_rect_path (&inside, cr);
if (gdk_rgba_equal (&self->border_color[0], &self->border_color[1]) &&
gdk_rgba_equal (&self->border_color[0], &self->border_color[2]) &&
gdk_rgba_equal (&self->border_color[0], &self->border_color[3]))
{
gdk_cairo_set_source_rgba (cr, &self->border_color[0]);
}
else
{
const graphene_rect_t *bounds = &self->outline.bounds;
/* distance to center "line":
* +-------------------------+
* | |
* | |
* | ---this-line--- |
* | |
* | |
* +-------------------------+
* That line is equidistant from all sides. It's either horizontal
* or vertical, depending on if the rect is wider or taller.
* We use the 4 sides spanned up by connecting the line to the corner
* points to color the regions of the rectangle differently.
* Note that the call to cairo_fill() will add the potential final
* segment by closing the path, so we don't have to care.
*/
cairo_pattern_t *mesh;
cairo_matrix_t mat;
graphene_point_t tl, br;
float scale;
mesh = cairo_pattern_create_mesh ();
cairo_matrix_init_translate (&mat, -bounds->origin.x, -bounds->origin.y);
cairo_pattern_set_matrix (mesh, &mat);
scale = MIN (bounds->size.width / (self->border_width[1] + self->border_width[3]),
bounds->size.height / (self->border_width[0] + self->border_width[2]));
graphene_point_init (&tl,
self->border_width[3] * scale,
self->border_width[0] * scale);
graphene_point_init (&br,
bounds->size.width - self->border_width[1] * scale,
bounds->size.height - self->border_width[2] * scale);
/* Top */
if (self->border_width[0] > 0)
{
gsk_border_node_mesh_add_patch (mesh,
&self->border_color[0],
0, 0,
tl.x, tl.y,
br.x, tl.y,
bounds->size.width, 0);
}
/* Right */
if (self->border_width[1] > 0)
{
gsk_border_node_mesh_add_patch (mesh,
&self->border_color[1],
bounds->size.width, 0,
br.x, tl.y,
br.x, br.y,
bounds->size.width, bounds->size.height);
}
/* Bottom */
if (self->border_width[2] > 0)
{
gsk_border_node_mesh_add_patch (mesh,
&self->border_color[2],
0, bounds->size.height,
tl.x, br.y,
br.x, br.y,
bounds->size.width, bounds->size.height);
}
/* Left */
if (self->border_width[3] > 0)
{
gsk_border_node_mesh_add_patch (mesh,
&self->border_color[3],
0, 0,
tl.x, tl.y,
tl.x, br.y,
0, bounds->size.height);
}
cairo_set_source (cr, mesh);
cairo_pattern_destroy (mesh);
}
cairo_fill (cr);
cairo_restore (cr);
}
static void
gsk_border_node_diff (GskRenderNode *node1,
GskRenderNode *node2,
cairo_region_t *region)
{
GskBorderNode *self1 = (GskBorderNode *) node1;
GskBorderNode *self2 = (GskBorderNode *) node2;
gboolean uniform1 = self1->uniform_width && self1->uniform_color;
gboolean uniform2 = self2->uniform_width && self2->uniform_color;
if (uniform1 &&
uniform2 &&
self1->border_width[0] == self2->border_width[0] &&
gsk_rounded_rect_equal (&self1->outline, &self2->outline) &&
gdk_rgba_equal (&self1->border_color[0], &self2->border_color[0]))
return;
/* Different uniformity -> diff impossible */
if (uniform1 ^ uniform2)
{
gsk_render_node_diff_impossible (node1, node2, region);
return;
}
if (self1->border_width[0] == self2->border_width[0] &&
self1->border_width[1] == self2->border_width[1] &&
self1->border_width[2] == self2->border_width[2] &&
self1->border_width[3] == self2->border_width[3] &&
gdk_rgba_equal (&self1->border_color[0], &self2->border_color[0]) &&
gdk_rgba_equal (&self1->border_color[1], &self2->border_color[1]) &&
gdk_rgba_equal (&self1->border_color[2], &self2->border_color[2]) &&
gdk_rgba_equal (&self1->border_color[3], &self2->border_color[3]) &&
gsk_rounded_rect_equal (&self1->outline, &self2->outline))
return;
gsk_render_node_diff_impossible (node1, node2, region);
}
/**
* gsk_border_node_get_outline:
* @node: (type GskBorderNode): a `GskRenderNode` for a border
*
* Retrieves the outline of the border.
*
* Returns: the outline of the border
*/
const GskRoundedRect *
gsk_border_node_get_outline (const GskRenderNode *node)
{
const GskBorderNode *self = (const GskBorderNode *) node;
return &self->outline;
}
/**
* gsk_border_node_get_widths:
* @node: (type GskBorderNode): a `GskRenderNode` for a border
*
* Retrieves the stroke widths of the border.
*
* Returns: (transfer none) (array fixed-size=4): an array of 4 floats
* for the top, right, bottom and left stroke width of the border,
* respectively
*/
const float *
gsk_border_node_get_widths (const GskRenderNode *node)
{
const GskBorderNode *self = (const GskBorderNode *) node;
return self->border_width;
}
/**
* gsk_border_node_get_colors:
* @node: (type GskBorderNode): a `GskRenderNode` for a border
*
* Retrieves the colors of the border.
*
* Returns: (transfer none): an array of 4 `GdkRGBA` structs
* for the top, right, bottom and left color of the border
*/
const GdkRGBA *
gsk_border_node_get_colors (const GskRenderNode *node)
{
const GskBorderNode *self = (const GskBorderNode *) node;
return self->border_color;
}
/**
* gsk_border_node_new:
* @outline: a `GskRoundedRect` describing the outline of the border
* @border_width: (array fixed-size=4): the stroke width of the border on
* the top, right, bottom and left side respectively.
* @border_color: (array fixed-size=4): the color used on the top, right,
* bottom and left side.
*
* Creates a `GskRenderNode` that will stroke a border rectangle inside the
* given @outline.
*
* The 4 sides of the border can have different widths and colors.
*
* Returns: (transfer full) (type GskBorderNode): A new `GskRenderNode`
*/
GskRenderNode *
gsk_border_node_new (const GskRoundedRect *outline,
const float border_width[4],
const GdkRGBA border_color[4])
{
GskBorderNode *self;
GskRenderNode *node;
g_return_val_if_fail (outline != NULL, NULL);
g_return_val_if_fail (border_width != NULL, NULL);
g_return_val_if_fail (border_color != NULL, NULL);
self = gsk_render_node_alloc (GSK_BORDER_NODE);
node = (GskRenderNode *) self;
node->offscreen_for_opacity = FALSE;
gsk_rounded_rect_init_copy (&self->outline, outline);
memcpy (self->border_width, border_width, sizeof (self->border_width));
memcpy (self->border_color, border_color, sizeof (self->border_color));
if (border_width[0] == border_width[1] &&
border_width[0] == border_width[2] &&
border_width[0] == border_width[3])
self->uniform_width = TRUE;
else
self->uniform_width = FALSE;
if (gdk_rgba_equal (&border_color[0], &border_color[1]) &&
gdk_rgba_equal (&border_color[0], &border_color[2]) &&
gdk_rgba_equal (&border_color[0], &border_color[3]))
self->uniform_color = TRUE;
else
self->uniform_color = FALSE;
graphene_rect_init_from_rect (&node->bounds, &self->outline.bounds);
return node;
}
/* Private */
bool
gsk_border_node_get_uniform (const GskRenderNode *self)
{
const GskBorderNode *node = (const GskBorderNode *)self;
return node->uniform_width && node->uniform_color;
}
bool
gsk_border_node_get_uniform_color (const GskRenderNode *self)
{
const GskBorderNode *node = (const GskBorderNode *)self;
return node->uniform_color;
}
/* }}} */
/* {{{ GSK_TEXTURE_NODE */
/**
* GskTextureNode:
*
* A render node for a `GdkTexture`.
*/
struct _GskTextureNode
{
GskRenderNode render_node;
GdkTexture *texture;
};
static void
gsk_texture_node_finalize (GskRenderNode *node)
{
GskTextureNode *self = (GskTextureNode *) node;
GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_TEXTURE_NODE));
g_clear_object (&self->texture);
parent_class->finalize (node);
}
static void
gsk_texture_node_draw (GskRenderNode *node,
cairo_t *cr)
{
GskTextureNode *self = (GskTextureNode *) node;
cairo_surface_t *surface;
cairo_pattern_t *pattern;
cairo_matrix_t matrix;
surface = gdk_texture_download_surface (self->texture);
pattern = cairo_pattern_create_for_surface (surface);
cairo_pattern_set_extend (pattern, CAIRO_EXTEND_PAD);
cairo_matrix_init_scale (&matrix,
gdk_texture_get_width (self->texture) / node->bounds.size.width,
gdk_texture_get_height (self->texture) / node->bounds.size.height);
cairo_matrix_translate (&matrix,
-node->bounds.origin.x,
-node->bounds.origin.y);
cairo_pattern_set_matrix (pattern, &matrix);
cairo_set_source (cr, pattern);
cairo_pattern_destroy (pattern);
cairo_surface_destroy (surface);
gsk_cairo_rectangle (cr, &node->bounds);
cairo_fill (cr);
}
static void
gsk_texture_node_diff (GskRenderNode *node1,
GskRenderNode *node2,
cairo_region_t *region)
{
GskTextureNode *self1 = (GskTextureNode *) node1;
GskTextureNode *self2 = (GskTextureNode *) node2;
if (graphene_rect_equal (&node1->bounds, &node2->bounds) &&
self1->texture == self2->texture)
return;
gsk_render_node_diff_impossible (node1, node2, region);
}
/**
* gsk_texture_node_get_texture:
* @node: (type GskTextureNode): a `GskRenderNode` of type %GSK_TEXTURE_NODE
*
* Retrieves the `GdkTexture` used when creating this `GskRenderNode`.
*
* Returns: (transfer none): the `GdkTexture`
*/
GdkTexture *
gsk_texture_node_get_texture (const GskRenderNode *node)
{
const GskTextureNode *self = (const GskTextureNode *) node;
return self->texture;
}
/**
* gsk_texture_node_new:
* @texture: the `GdkTexture`
* @bounds: the rectangle to render the texture into
*
* Creates a `GskRenderNode` that will render the given
* @texture into the area given by @bounds.
*
* Returns: (transfer full) (type GskTextureNode): A new `GskRenderNode`
*/
GskRenderNode *
gsk_texture_node_new (GdkTexture *texture,
const graphene_rect_t *bounds)
{
GskTextureNode *self;
GskRenderNode *node;
g_return_val_if_fail (GDK_IS_TEXTURE (texture), NULL);
g_return_val_if_fail (bounds != NULL, NULL);
self = gsk_render_node_alloc (GSK_TEXTURE_NODE);
node = (GskRenderNode *) self;
node->offscreen_for_opacity = FALSE;
self->texture = g_object_ref (texture);
graphene_rect_init_from_rect (&node->bounds, bounds);
node->prefers_high_depth = gdk_memory_format_prefers_high_depth (gdk_texture_get_format (texture));
return node;
}
/* }}} */
/* {{{ GSK_TEXTURE_SCALE_NODE */
/**
* GskTextureScaleNode:
*
* A render node for a `GdkTexture`.
*
* Since: 4.10
*/
struct _GskTextureScaleNode
{
GskRenderNode render_node;
GdkTexture *texture;
GskScalingFilter filter;
};
static void
gsk_texture_scale_node_finalize (GskRenderNode *node)
{
GskTextureScaleNode *self = (GskTextureScaleNode *) node;
GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_TEXTURE_SCALE_NODE));
g_clear_object (&self->texture);
parent_class->finalize (node);
}
static void
gsk_texture_scale_node_draw (GskRenderNode *node,
cairo_t *cr)
{
GskTextureScaleNode *self = (GskTextureScaleNode *) node;
cairo_surface_t *surface;
cairo_pattern_t *pattern;
cairo_matrix_t matrix;
cairo_filter_t filters[] = {
CAIRO_FILTER_BILINEAR,
CAIRO_FILTER_NEAREST,
CAIRO_FILTER_GOOD,
};
cairo_t *cr2;
cairo_surface_t *surface2;
surface2 = cairo_image_surface_create (CAIRO_FORMAT_ARGB32,
(int) ceilf (node->bounds.size.width),
(int) ceilf (node->bounds.size.height));
cr2 = cairo_create (surface2);
cairo_set_source_rgba (cr2, 0, 0, 0, 0);
cairo_paint (cr2);
surface = gdk_texture_download_surface (self->texture);
pattern = cairo_pattern_create_for_surface (surface);
cairo_pattern_set_extend (pattern, CAIRO_EXTEND_PAD);
cairo_matrix_init_scale (&matrix,
gdk_texture_get_width (self->texture) / node->bounds.size.width,
gdk_texture_get_height (self->texture) / node->bounds.size.height);
cairo_pattern_set_matrix (pattern, &matrix);
cairo_pattern_set_filter (pattern, filters[self->filter]);
cairo_set_source (cr2, pattern);
cairo_pattern_destroy (pattern);
cairo_surface_destroy (surface);
cairo_rectangle (cr2, 0, 0, node->bounds.size.width, node->bounds.size.height);
cairo_fill (cr2);
cairo_destroy (cr2);
cairo_save (cr);
pattern = cairo_pattern_create_for_surface (surface2);
cairo_pattern_set_extend (pattern, CAIRO_EXTEND_PAD);
cairo_matrix_init_identity (&matrix);
cairo_matrix_translate (&matrix,
-node->bounds.origin.x,
-node->bounds.origin.y);
cairo_pattern_set_matrix (pattern, &matrix);
cairo_set_source (cr, pattern);
cairo_pattern_destroy (pattern);
cairo_surface_destroy (surface2);
gsk_cairo_rectangle (cr, &node->bounds);
cairo_fill (cr);
cairo_restore (cr);
}
static void
gsk_texture_scale_node_diff (GskRenderNode *node1,
GskRenderNode *node2,
cairo_region_t *region)
{
GskTextureScaleNode *self1 = (GskTextureScaleNode *) node1;
GskTextureScaleNode *self2 = (GskTextureScaleNode *) node2;
if (graphene_rect_equal (&node1->bounds, &node2->bounds) &&
self1->texture == self2->texture &&
self1->filter == self2->filter)
return;
gsk_render_node_diff_impossible (node1, node2, region);
}
/**
* gsk_texture_scale_node_get_texture:
* @node: (type GskTextureScaleNode): a `GskRenderNode` of type %GSK_TEXTURE_SCALE_NODE
*
* Retrieves the `GdkTexture` used when creating this `GskRenderNode`.
*
* Returns: (transfer none): the `GdkTexture`
*
* Since: 4.10
*/
GdkTexture *
gsk_texture_scale_node_get_texture (const GskRenderNode *node)
{
const GskTextureScaleNode *self = (const GskTextureScaleNode *) node;
return self->texture;
}
/**
* gsk_texture_scale_node_get_filter:
* @node: (type GskTextureScaleNode): a `GskRenderNode` of type %GSK_TEXTURE_SCALE_NODE
*
* Retrieves the `GskScalingFilter` used when creating this `GskRenderNode`.
*
* Returns: (transfer none): the `GskScalingFilter`
*
* Since: 4.10
*/
GskScalingFilter
gsk_texture_scale_node_get_filter (const GskRenderNode *node)
{
const GskTextureScaleNode *self = (const GskTextureScaleNode *) node;
return self->filter;
}
/**
* gsk_texture_scale_node_new:
* @texture: the texture to scale
* @bounds: the size of the texture to scale to
* @filter: how to scale the texture
*
* Creates a node that scales the texture to the size given by the
* bounds and the filter and then places it at the bounds' position.
*
* This node is intended for tight control over scaling applied
* to a texture, such as in image editors and requires the
* application to be aware of the whole render tree as further
* transforms may be applied that conflict with the desired effect
* of this node.
*
* Returns: (transfer full) (type GskTextureScaleNode): A new `GskRenderNode`
*
* Since: 4.10
*/
GskRenderNode *
gsk_texture_scale_node_new (GdkTexture *texture,
const graphene_rect_t *bounds,
GskScalingFilter filter)
{
GskTextureScaleNode *self;
GskRenderNode *node;
g_return_val_if_fail (GDK_IS_TEXTURE (texture), NULL);
g_return_val_if_fail (bounds != NULL, NULL);
self = gsk_render_node_alloc (GSK_TEXTURE_SCALE_NODE);
node = (GskRenderNode *) self;
node->offscreen_for_opacity = FALSE;
self->texture = g_object_ref (texture);
graphene_rect_init_from_rect (&node->bounds, bounds);
self->filter = filter;
node->prefers_high_depth = gdk_memory_format_prefers_high_depth (gdk_texture_get_format (texture));
return node;
}
/* }}} */
/* {{{ GSK_INSET_SHADOW_NODE */
/**
* GskInsetShadowNode:
*
* A render node for an inset shadow.
*/
struct _GskInsetShadowNode
{
GskRenderNode render_node;
GskRoundedRect outline;
GdkRGBA color;
float dx;
float dy;
float spread;
float blur_radius;
};
static gboolean
has_empty_clip (cairo_t *cr)
{
double x1, y1, x2, y2;
cairo_clip_extents (cr, &x1, &y1, &x2, &y2);
return x1 == x2 && y1 == y2;
}
static void
draw_shadow (cairo_t *cr,
gboolean inset,
const GskRoundedRect *box,
const GskRoundedRect *clip_box,
float radius,
const GdkRGBA *color,
GskBlurFlags blur_flags)
{
cairo_t *shadow_cr;
if (has_empty_clip (cr))
return;
gdk_cairo_set_source_rgba (cr, color);
shadow_cr = gsk_cairo_blur_start_drawing (cr, radius, blur_flags);
cairo_set_fill_rule (shadow_cr, CAIRO_FILL_RULE_EVEN_ODD);
gsk_rounded_rect_path (box, shadow_cr);
if (inset)
gsk_cairo_rectangle (shadow_cr, &clip_box->bounds);
cairo_fill (shadow_cr);
gsk_cairo_blur_finish_drawing (shadow_cr, radius, color, blur_flags);
}
typedef struct {
float radius;
graphene_size_t corner;
} CornerMask;
typedef enum {
TOP,
RIGHT,
BOTTOM,
LEFT
} Side;
static guint
corner_mask_hash (CornerMask *mask)
{
return ((guint)mask->radius << 24) ^
((guint)(mask->corner.width*4)) << 12 ^
((guint)(mask->corner.height*4)) << 0;
}
static gboolean
corner_mask_equal (CornerMask *mask1,
CornerMask *mask2)
{
return
mask1->radius == mask2->radius &&
mask1->corner.width == mask2->corner.width &&
mask1->corner.height == mask2->corner.height;
}
static void
draw_shadow_corner (cairo_t *cr,
gboolean inset,
const GskRoundedRect *box,
const GskRoundedRect *clip_box,
float radius,
const GdkRGBA *color,
GskCorner corner,
cairo_rectangle_int_t *drawn_rect)
{
float clip_radius;
int x1, x2, x3, y1, y2, y3, x, y;
GskRoundedRect corner_box;
cairo_t *mask_cr;
cairo_surface_t *mask;
cairo_pattern_t *pattern;
cairo_matrix_t matrix;
float sx, sy;
static GHashTable *corner_mask_cache = NULL;
float max_other;
CornerMask key;
gboolean overlapped;
clip_radius = gsk_cairo_blur_compute_pixels (radius);
overlapped = FALSE;
if (corner == GSK_CORNER_TOP_LEFT || corner == GSK_CORNER_BOTTOM_LEFT)
{
x1 = floor (box->bounds.origin.x - clip_radius);
x2 = ceil (box->bounds.origin.x + box->corner[corner].width + clip_radius);
x = x1;
sx = 1;
max_other = MAX(box->corner[GSK_CORNER_TOP_RIGHT].width, box->corner[GSK_CORNER_BOTTOM_RIGHT].width);
x3 = floor (box->bounds.origin.x + box->bounds.size.width - max_other - clip_radius);
if (x2 > x3)
overlapped = TRUE;
}
else
{
x1 = floor (box->bounds.origin.x + box->bounds.size.width - box->corner[corner].width - clip_radius);
x2 = ceil (box->bounds.origin.x + box->bounds.size.width + clip_radius);
x = x2;
sx = -1;
max_other = MAX(box->corner[GSK_CORNER_TOP_LEFT].width, box->corner[GSK_CORNER_BOTTOM_LEFT].width);
x3 = ceil (box->bounds.origin.x + max_other + clip_radius);
if (x3 > x1)
overlapped = TRUE;
}
if (corner == GSK_CORNER_TOP_LEFT || corner == GSK_CORNER_TOP_RIGHT)
{
y1 = floor (box->bounds.origin.y - clip_radius);
y2 = ceil (box->bounds.origin.y + box->corner[corner].height + clip_radius);
y = y1;
sy = 1;
max_other = MAX(box->corner[GSK_CORNER_BOTTOM_LEFT].height, box->corner[GSK_CORNER_BOTTOM_RIGHT].height);
y3 = floor (box->bounds.origin.y + box->bounds.size.height - max_other - clip_radius);
if (y2 > y3)
overlapped = TRUE;
}
else
{
y1 = floor (box->bounds.origin.y + box->bounds.size.height - box->corner[corner].height - clip_radius);
y2 = ceil (box->bounds.origin.y + box->bounds.size.height + clip_radius);
y = y2;
sy = -1;
max_other = MAX(box->corner[GSK_CORNER_TOP_LEFT].height, box->corner[GSK_CORNER_TOP_RIGHT].height);
y3 = ceil (box->bounds.origin.y + max_other + clip_radius);
if (y3 > y1)
overlapped = TRUE;
}
drawn_rect->x = x1;
drawn_rect->y = y1;
drawn_rect->width = x2 - x1;
drawn_rect->height = y2 - y1;
cairo_rectangle (cr, x1, y1, x2 - x1, y2 - y1);
cairo_clip (cr);
if (inset || overlapped)
{
/* Fall back to generic path if inset or if the corner radius
runs into each other */
draw_shadow (cr, inset, box, clip_box, radius, color, GSK_BLUR_X | GSK_BLUR_Y);
return;
}
if (has_empty_clip (cr))
return;
/* At this point we're drawing a blurred outset corner. The only
* things that affect the output of the blurred mask in this case
* is:
*
* What corner this is, which defines the orientation (sx,sy)
* and position (x,y)
*
* The blur radius (which also defines the clip_radius)
*
* The horizontal and vertical corner radius
*
* We apply the first position and orientation when drawing the
* mask, so we cache rendered masks based on the blur radius and the
* corner radius.
*/
if (corner_mask_cache == NULL)
corner_mask_cache = g_hash_table_new_full ((GHashFunc)corner_mask_hash,
(GEqualFunc)corner_mask_equal,
g_free, (GDestroyNotify)cairo_surface_destroy);
key.radius = radius;
key.corner = box->corner[corner];
mask = g_hash_table_lookup (corner_mask_cache, &key);
if (mask == NULL)
{
mask = cairo_surface_create_similar_image (cairo_get_target (cr), CAIRO_FORMAT_A8,
drawn_rect->width + clip_radius,
drawn_rect->height + clip_radius);
mask_cr = cairo_create (mask);
gsk_rounded_rect_init_from_rect (&corner_box, &GRAPHENE_RECT_INIT (clip_radius, clip_radius, 2*drawn_rect->width, 2*drawn_rect->height), 0);
corner_box.corner[0] = box->corner[corner];
gsk_rounded_rect_path (&corner_box, mask_cr);
cairo_fill (mask_cr);
gsk_cairo_blur_surface (mask, radius, GSK_BLUR_X | GSK_BLUR_Y);
cairo_destroy (mask_cr);
g_hash_table_insert (corner_mask_cache, g_memdup2 (&key, sizeof (key)), mask);
}
gdk_cairo_set_source_rgba (cr, color);
pattern = cairo_pattern_create_for_surface (mask);
cairo_matrix_init_identity (&matrix);
cairo_matrix_scale (&matrix, sx, sy);
cairo_matrix_translate (&matrix, -x, -y);
cairo_pattern_set_matrix (pattern, &matrix);
cairo_mask (cr, pattern);
cairo_pattern_destroy (pattern);
}
static void
draw_shadow_side (cairo_t *cr,
gboolean inset,
const GskRoundedRect *box,
const GskRoundedRect *clip_box,
float radius,
const GdkRGBA *color,
Side side,
cairo_rectangle_int_t *drawn_rect)
{
GskBlurFlags blur_flags = GSK_BLUR_REPEAT;
double clip_radius;
int x1, x2, y1, y2;
clip_radius = gsk_cairo_blur_compute_pixels (radius);
if (side == TOP || side == BOTTOM)
{
blur_flags |= GSK_BLUR_Y;
x1 = floor (box->bounds.origin.x - clip_radius);
x2 = ceil (box->bounds.origin.x + box->bounds.size.width + clip_radius);
}
else if (side == LEFT)
{
x1 = floor (box->bounds.origin.x -clip_radius);
x2 = ceil (box->bounds.origin.x + clip_radius);
}
else
{
x1 = floor (box->bounds.origin.x + box->bounds.size.width -clip_radius);
x2 = ceil (box->bounds.origin.x + box->bounds.size.width + clip_radius);
}
if (side == LEFT || side == RIGHT)
{
blur_flags |= GSK_BLUR_X;
y1 = floor (box->bounds.origin.y - clip_radius);
y2 = ceil (box->bounds.origin.y + box->bounds.size.height + clip_radius);
}
else if (side == TOP)
{
y1 = floor (box->bounds.origin.y -clip_radius);
y2 = ceil (box->bounds.origin.y + clip_radius);
}
else
{
y1 = floor (box->bounds.origin.y + box->bounds.size.height -clip_radius);
y2 = ceil (box->bounds.origin.y + box->bounds.size.height + clip_radius);
}
drawn_rect->x = x1;
drawn_rect->y = y1;
drawn_rect->width = x2 - x1;
drawn_rect->height = y2 - y1;
cairo_rectangle (cr, x1, y1, x2 - x1, y2 - y1);
cairo_clip (cr);
draw_shadow (cr, inset, box, clip_box, radius, color, blur_flags);
}
static gboolean
needs_blur (double radius)
{
/* The code doesn't actually do any blurring for radius 1, as it
* ends up with box filter size 1 */
if (radius <= 1.0)
return FALSE;
return TRUE;
}
static void
gsk_inset_shadow_node_draw (GskRenderNode *node,
cairo_t *cr)
{
GskInsetShadowNode *self = (GskInsetShadowNode *) node;
GskRoundedRect box, clip_box;
int clip_radius;
double x1c, y1c, x2c, y2c;
double blur_radius;
/* We don't need to draw invisible shadows */
if (gdk_rgba_is_clear (&self->color))
return;
cairo_clip_extents (cr, &x1c, &y1c, &x2c, &y2c);
if (!gsk_rounded_rect_intersects_rect (&self->outline, &GRAPHENE_RECT_INIT (x1c, y1c, x2c - x1c, y2c - y1c)))
return;
blur_radius = self->blur_radius / 2;
clip_radius = gsk_cairo_blur_compute_pixels (blur_radius);
cairo_save (cr);
gsk_rounded_rect_path (&self->outline, cr);
cairo_clip (cr);
gsk_rounded_rect_init_copy (&box, &self->outline);
gsk_rounded_rect_offset (&box, self->dx, self->dy);
gsk_rounded_rect_shrink (&box, self->spread, self->spread, self->spread, self->spread);
gsk_rounded_rect_init_copy (&clip_box, &self->outline);
gsk_rounded_rect_shrink (&clip_box, -clip_radius, -clip_radius, -clip_radius, -clip_radius);
if (!needs_blur (blur_radius))
draw_shadow (cr, TRUE, &box, &clip_box, blur_radius, &self->color, GSK_BLUR_NONE);
else
{
cairo_region_t *remaining;
cairo_rectangle_int_t r;
int i;
/* For the blurred case we divide the rendering into 9 parts,
* 4 of the corners, 4 for the horizonat/vertical lines and
* one for the interior. We make the non-interior parts
* large enough to fit the full radius of the blur, so that
* the interior part can be drawn solidly.
*/
/* In the inset case we want to paint the whole clip-box.
* We could remove the part of "box" where the blur doesn't
* reach, but computing that is a bit tricky since the
* rounded corners are on the "inside" of it. */
r.x = floor (clip_box.bounds.origin.x);
r.y = floor (clip_box.bounds.origin.y);
r.width = ceil (clip_box.bounds.origin.x + clip_box.bounds.size.width) - r.x;
r.height = ceil (clip_box.bounds.origin.y + clip_box.bounds.size.height) - r.y;
remaining = cairo_region_create_rectangle (&r);
/* First do the corners of box */
for (i = 0; i < 4; i++)
{
cairo_save (cr);
/* Always clip with remaining to ensure we never draw any area twice */
gdk_cairo_region (cr, remaining);
cairo_clip (cr);
draw_shadow_corner (cr, TRUE, &box, &clip_box, blur_radius, &self->color, i, &r);
cairo_restore (cr);
/* We drew the region, remove it from remaining */
cairo_region_subtract_rectangle (remaining, &r);
}
/* Then the sides */
for (i = 0; i < 4; i++)
{
cairo_save (cr);
/* Always clip with remaining to ensure we never draw any area twice */
gdk_cairo_region (cr, remaining);
cairo_clip (cr);
draw_shadow_side (cr, TRUE, &box, &clip_box, blur_radius, &self->color, i, &r);
cairo_restore (cr);
/* We drew the region, remove it from remaining */
cairo_region_subtract_rectangle (remaining, &r);
}
/* Then the rest, which needs no blurring */
cairo_save (cr);
gdk_cairo_region (cr, remaining);
cairo_clip (cr);
draw_shadow (cr, TRUE, &box, &clip_box, blur_radius, &self->color, GSK_BLUR_NONE);
cairo_restore (cr);
cairo_region_destroy (remaining);
}
cairo_restore (cr);
}
static void
gsk_inset_shadow_node_diff (GskRenderNode *node1,
GskRenderNode *node2,
cairo_region_t *region)
{
GskInsetShadowNode *self1 = (GskInsetShadowNode *) node1;
GskInsetShadowNode *self2 = (GskInsetShadowNode *) node2;
if (gsk_rounded_rect_equal (&self1->outline, &self2->outline) &&
gdk_rgba_equal (&self1->color, &self2->color) &&
self1->dx == self2->dx &&
self1->dy == self2->dy &&
self1->spread == self2->spread &&
self1->blur_radius == self2->blur_radius)
return;
gsk_render_node_diff_impossible (node1, node2, region);
}
/**
* gsk_inset_shadow_node_new:
* @outline: outline of the region containing the shadow
* @color: color of the shadow
* @dx: horizontal offset of shadow
* @dy: vertical offset of shadow
* @spread: how far the shadow spreads towards the inside
* @blur_radius: how much blur to apply to the shadow
*
* Creates a `GskRenderNode` that will render an inset shadow
* into the box given by @outline.
*
* Returns: (transfer full) (type GskInsetShadowNode): A new `GskRenderNode`
*/
GskRenderNode *
gsk_inset_shadow_node_new (const GskRoundedRect *outline,
const GdkRGBA *color,
float dx,
float dy,
float spread,
float blur_radius)
{
GskInsetShadowNode *self;
GskRenderNode *node;
g_return_val_if_fail (outline != NULL, NULL);
g_return_val_if_fail (color != NULL, NULL);
self = gsk_render_node_alloc (GSK_INSET_SHADOW_NODE);
node = (GskRenderNode *) self;
node->offscreen_for_opacity = FALSE;
gsk_rounded_rect_init_copy (&self->outline, outline);
self->color = *color;
self->dx = dx;
self->dy = dy;
self->spread = spread;
self->blur_radius = blur_radius;
graphene_rect_init_from_rect (&node->bounds, &self->outline.bounds);
return node;
}
/**
* gsk_inset_shadow_node_get_outline:
* @node: (type GskInsetShadowNode): a `GskRenderNode` for an inset shadow
*
* Retrieves the outline rectangle of the inset shadow.
*
* Returns: (transfer none): a rounded rectangle
*/
const GskRoundedRect *
gsk_inset_shadow_node_get_outline (const GskRenderNode *node)
{
const GskInsetShadowNode *self = (const GskInsetShadowNode *) node;
return &self->outline;
}
/**
* gsk_inset_shadow_node_get_color:
* @node: (type GskInsetShadowNode): a `GskRenderNode` for an inset shadow
*
* Retrieves the color of the inset shadow.
*
* Returns: (transfer none): the color of the shadow
*/
const GdkRGBA *
gsk_inset_shadow_node_get_color (const GskRenderNode *node)
{
const GskInsetShadowNode *self = (const GskInsetShadowNode *) node;
return &self->color;
}
/**
* gsk_inset_shadow_node_get_dx:
* @node: (type GskInsetShadowNode): a `GskRenderNode` for an inset shadow
*
* Retrieves the horizontal offset of the inset shadow.
*
* Returns: an offset, in pixels
*/
float
gsk_inset_shadow_node_get_dx (const GskRenderNode *node)
{
const GskInsetShadowNode *self = (const GskInsetShadowNode *) node;
return self->dx;
}
/**
* gsk_inset_shadow_node_get_dy:
* @node: (type GskInsetShadowNode): a `GskRenderNode` for an inset shadow
*
* Retrieves the vertical offset of the inset shadow.
*
* Returns: an offset, in pixels
*/
float
gsk_inset_shadow_node_get_dy (const GskRenderNode *node)
{
const GskInsetShadowNode *self = (const GskInsetShadowNode *) node;
return self->dy;
}
/**
* gsk_inset_shadow_node_get_spread:
* @node: (type GskInsetShadowNode): a `GskRenderNode` for an inset shadow
*
* Retrieves how much the shadow spreads inwards.
*
* Returns: the size of the shadow, in pixels
*/
float
gsk_inset_shadow_node_get_spread (const GskRenderNode *node)
{
const GskInsetShadowNode *self = (const GskInsetShadowNode *) node;
return self->spread;
}
/**
* gsk_inset_shadow_node_get_blur_radius:
* @node: (type GskInsetShadowNode): a `GskRenderNode` for an inset shadow
*
* Retrieves the blur radius to apply to the shadow.
*
* Returns: the blur radius, in pixels
*/
float
gsk_inset_shadow_node_get_blur_radius (const GskRenderNode *node)
{
const GskInsetShadowNode *self = (const GskInsetShadowNode *) node;
return self->blur_radius;
}
/* }}} */
/* {{{ GSK_OUTSET_SHADOW_NODE */
/**
* GskOutsetShadowNode:
*
* A render node for an outset shadow.
*/
struct _GskOutsetShadowNode
{
GskRenderNode render_node;
GskRoundedRect outline;
GdkRGBA color;
float dx;
float dy;
float spread;
float blur_radius;
};
static void
gsk_outset_shadow_get_extents (GskOutsetShadowNode *self,
float *top,
float *right,
float *bottom,
float *left)
{
float clip_radius;
clip_radius = gsk_cairo_blur_compute_pixels (ceil (self->blur_radius / 2.0));
*top = MAX (0, ceil (clip_radius + self->spread - self->dy));
*right = MAX (0, ceil (clip_radius + self->spread + self->dx));
*bottom = MAX (0, ceil (clip_radius + self->spread + self->dy));
*left = MAX (0, ceil (clip_radius + self->spread - self->dx));
}
static void
gsk_outset_shadow_node_draw (GskRenderNode *node,
cairo_t *cr)
{
GskOutsetShadowNode *self = (GskOutsetShadowNode *) node;
GskRoundedRect box, clip_box;
int clip_radius;
double x1c, y1c, x2c, y2c;
float top, right, bottom, left;
double blur_radius;
/* We don't need to draw invisible shadows */
if (gdk_rgba_is_clear (&self->color))
return;
cairo_clip_extents (cr, &x1c, &y1c, &x2c, &y2c);
if (gsk_rounded_rect_contains_rect (&self->outline, &GRAPHENE_RECT_INIT (x1c, y1c, x2c - x1c, y2c - y1c)))
return;
blur_radius = self->blur_radius / 2;
clip_radius = gsk_cairo_blur_compute_pixels (blur_radius);
cairo_save (cr);
gsk_rounded_rect_init_copy (&clip_box, &self->outline);
gsk_outset_shadow_get_extents (self, &top, &right, &bottom, &left);
gsk_rounded_rect_shrink (&clip_box, -top, -right, -bottom, -left);
cairo_set_fill_rule (cr, CAIRO_FILL_RULE_EVEN_ODD);
gsk_rounded_rect_path (&self->outline, cr);
gsk_cairo_rectangle (cr, &clip_box.bounds);
cairo_clip (cr);
gsk_rounded_rect_init_copy (&box, &self->outline);
gsk_rounded_rect_offset (&box, self->dx, self->dy);
gsk_rounded_rect_shrink (&box, -self->spread, -self->spread, -self->spread, -self->spread);
if (!needs_blur (blur_radius))
draw_shadow (cr, FALSE, &box, &clip_box, blur_radius, &self->color, GSK_BLUR_NONE);
else
{
int i;
cairo_region_t *remaining;
cairo_rectangle_int_t r;
/* For the blurred case we divide the rendering into 9 parts,
* 4 of the corners, 4 for the horizonat/vertical lines and
* one for the interior. We make the non-interior parts
* large enough to fit the full radius of the blur, so that
* the interior part can be drawn solidly.
*/
/* In the outset case we want to paint the entire box, plus as far
* as the radius reaches from it */
r.x = floor (box.bounds.origin.x - clip_radius);
r.y = floor (box.bounds.origin.y - clip_radius);
r.width = ceil (box.bounds.origin.x + box.bounds.size.width + clip_radius) - r.x;
r.height = ceil (box.bounds.origin.y + box.bounds.size.height + clip_radius) - r.y;
remaining = cairo_region_create_rectangle (&r);
/* First do the corners of box */
for (i = 0; i < 4; i++)
{
cairo_save (cr);
/* Always clip with remaining to ensure we never draw any area twice */
gdk_cairo_region (cr, remaining);
cairo_clip (cr);
draw_shadow_corner (cr, FALSE, &box, &clip_box, blur_radius, &self->color, i, &r);
cairo_restore (cr);
/* We drew the region, remove it from remaining */
cairo_region_subtract_rectangle (remaining, &r);
}
/* Then the sides */
for (i = 0; i < 4; i++)
{
cairo_save (cr);
/* Always clip with remaining to ensure we never draw any area twice */
gdk_cairo_region (cr, remaining);
cairo_clip (cr);
draw_shadow_side (cr, FALSE, &box, &clip_box, blur_radius, &self->color, i, &r);
cairo_restore (cr);
/* We drew the region, remove it from remaining */
cairo_region_subtract_rectangle (remaining, &r);
}
/* Then the rest, which needs no blurring */
cairo_save (cr);
gdk_cairo_region (cr, remaining);
cairo_clip (cr);
draw_shadow (cr, FALSE, &box, &clip_box, blur_radius, &self->color, GSK_BLUR_NONE);
cairo_restore (cr);
cairo_region_destroy (remaining);
}
cairo_restore (cr);
}
static void
gsk_outset_shadow_node_diff (GskRenderNode *node1,
GskRenderNode *node2,
cairo_region_t *region)
{
GskOutsetShadowNode *self1 = (GskOutsetShadowNode *) node1;
GskOutsetShadowNode *self2 = (GskOutsetShadowNode *) node2;
if (gsk_rounded_rect_equal (&self1->outline, &self2->outline) &&
gdk_rgba_equal (&self1->color, &self2->color) &&
self1->dx == self2->dx &&
self1->dy == self2->dy &&
self1->spread == self2->spread &&
self1->blur_radius == self2->blur_radius)
return;
gsk_render_node_diff_impossible (node1, node2, region);
}
/**
* gsk_outset_shadow_node_new:
* @outline: outline of the region surrounded by shadow
* @color: color of the shadow
* @dx: horizontal offset of shadow
* @dy: vertical offset of shadow
* @spread: how far the shadow spreads towards the inside
* @blur_radius: how much blur to apply to the shadow
*
* Creates a `GskRenderNode` that will render an outset shadow
* around the box given by @outline.
*
* Returns: (transfer full) (type GskOutsetShadowNode): A new `GskRenderNode`
*/
GskRenderNode *
gsk_outset_shadow_node_new (const GskRoundedRect *outline,
const GdkRGBA *color,
float dx,
float dy,
float spread,
float blur_radius)
{
GskOutsetShadowNode *self;
GskRenderNode *node;
float top, right, bottom, left;
g_return_val_if_fail (outline != NULL, NULL);
g_return_val_if_fail (color != NULL, NULL);
self = gsk_render_node_alloc (GSK_OUTSET_SHADOW_NODE);
node = (GskRenderNode *) self;
node->offscreen_for_opacity = FALSE;
gsk_rounded_rect_init_copy (&self->outline, outline);
self->color = *color;
self->dx = dx;
self->dy = dy;
self->spread = spread;
self->blur_radius = blur_radius;
gsk_outset_shadow_get_extents (self, &top, &right, &bottom, &left);
graphene_rect_init_from_rect (&node->bounds, &self->outline.bounds);
node->bounds.origin.x -= left;
node->bounds.origin.y -= top;
node->bounds.size.width += left + right;
node->bounds.size.height += top + bottom;
return node;
}
/**
* gsk_outset_shadow_node_get_outline:
* @node: (type GskOutsetShadowNode): a `GskRenderNode` for an outset shadow
*
* Retrieves the outline rectangle of the outset shadow.
*
* Returns: (transfer none): a rounded rectangle
*/
const GskRoundedRect *
gsk_outset_shadow_node_get_outline (const GskRenderNode *node)
{
const GskOutsetShadowNode *self = (const GskOutsetShadowNode *) node;
return &self->outline;
}
/**
* gsk_outset_shadow_node_get_color:
* @node: (type GskOutsetShadowNode): a `GskRenderNode` for an outset shadow
*
* Retrieves the color of the outset shadow.
*
* Returns: (transfer none): a color
*/
const GdkRGBA *
gsk_outset_shadow_node_get_color (const GskRenderNode *node)
{
const GskOutsetShadowNode *self = (const GskOutsetShadowNode *) node;
return &self->color;
}
/**
* gsk_outset_shadow_node_get_dx:
* @node: (type GskOutsetShadowNode): a `GskRenderNode` for an outset shadow
*
* Retrieves the horizontal offset of the outset shadow.
*
* Returns: an offset, in pixels
*/
float
gsk_outset_shadow_node_get_dx (const GskRenderNode *node)
{
const GskOutsetShadowNode *self = (const GskOutsetShadowNode *) node;
return self->dx;
}
/**
* gsk_outset_shadow_node_get_dy:
* @node: (type GskOutsetShadowNode): a `GskRenderNode` for an outset shadow
*
* Retrieves the vertical offset of the outset shadow.
*
* Returns: an offset, in pixels
*/
float
gsk_outset_shadow_node_get_dy (const GskRenderNode *node)
{
const GskOutsetShadowNode *self = (const GskOutsetShadowNode *) node;
return self->dy;
}
/**
* gsk_outset_shadow_node_get_spread:
* @node: (type GskOutsetShadowNode): a `GskRenderNode` for an outset shadow
*
* Retrieves how much the shadow spreads outwards.
*
* Returns: the size of the shadow, in pixels
*/
float
gsk_outset_shadow_node_get_spread (const GskRenderNode *node)
{
const GskOutsetShadowNode *self = (const GskOutsetShadowNode *) node;
return self->spread;
}
/**
* gsk_outset_shadow_node_get_blur_radius:
* @node: (type GskOutsetShadowNode): a `GskRenderNode` for an outset shadow
*
* Retrieves the blur radius of the shadow.
*
* Returns: the blur radius, in pixels
*/
float
gsk_outset_shadow_node_get_blur_radius (const GskRenderNode *node)
{
const GskOutsetShadowNode *self = (const GskOutsetShadowNode *) node;
return self->blur_radius;
}
/* }}} */
/* {{{ GSK_CAIRO_NODE */
/**
* GskCairoNode:
*
* A render node for a Cairo surface.
*/
struct _GskCairoNode
{
GskRenderNode render_node;
cairo_surface_t *surface;
};
static void
gsk_cairo_node_finalize (GskRenderNode *node)
{
GskCairoNode *self = (GskCairoNode *) node;
GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_CAIRO_NODE));
if (self->surface)
cairo_surface_destroy (self->surface);
parent_class->finalize (node);
}
static void
gsk_cairo_node_draw (GskRenderNode *node,
cairo_t *cr)
{
GskCairoNode *self = (GskCairoNode *) node;
if (self->surface == NULL)
return;
cairo_set_source_surface (cr, self->surface, 0, 0);
cairo_paint (cr);
}
/**
* gsk_cairo_node_get_surface:
* @node: (type GskCairoNode): a `GskRenderNode` for a Cairo surface
*
* Retrieves the Cairo surface used by the render node.
*
* Returns: (transfer none): a Cairo surface
*/
cairo_surface_t *
gsk_cairo_node_get_surface (GskRenderNode *node)
{
GskCairoNode *self = (GskCairoNode *) node;
g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_CAIRO_NODE), NULL);
return self->surface;
}
/**
* gsk_cairo_node_new:
* @bounds: the rectangle to render to
*
* Creates a `GskRenderNode` that will render a cairo surface
* into the area given by @bounds.
*
* You can draw to the cairo surface using [method@Gsk.CairoNode.get_draw_context].
*
* Returns: (transfer full) (type GskCairoNode): A new `GskRenderNode`
*/
GskRenderNode *
gsk_cairo_node_new (const graphene_rect_t *bounds)
{
GskCairoNode *self;
GskRenderNode *node;
g_return_val_if_fail (bounds != NULL, NULL);
self = gsk_render_node_alloc (GSK_CAIRO_NODE);
node = (GskRenderNode *) self;
node->offscreen_for_opacity = FALSE;
graphene_rect_init_from_rect (&node->bounds, bounds);
return node;
}
/**
* gsk_cairo_node_get_draw_context:
* @node: (type GskCairoNode): a `GskRenderNode` for a Cairo surface
*
* Creates a Cairo context for drawing using the surface associated
* to the render node.
*
* If no surface exists yet, a surface will be created optimized for
* rendering to @renderer.
*
* Returns: (transfer full): a Cairo context used for drawing; use
* cairo_destroy() when done drawing
*/
cairo_t *
gsk_cairo_node_get_draw_context (GskRenderNode *node)
{
GskCairoNode *self = (GskCairoNode *) node;
int width, height;
cairo_t *res;
g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_CAIRO_NODE), NULL);
width = ceilf (node->bounds.size.width);
height = ceilf (node->bounds.size.height);
if (width <= 0 || height <= 0)
{
cairo_surface_t *surface = cairo_image_surface_create (CAIRO_FORMAT_ARGB32, 0, 0);
res = cairo_create (surface);
cairo_surface_destroy (surface);
}
else if (self->surface == NULL)
{
self->surface = cairo_recording_surface_create (CAIRO_CONTENT_COLOR_ALPHA,
&(cairo_rectangle_t) {
node->bounds.origin.x,
node->bounds.origin.y,
node->bounds.size.width,
node->bounds.size.height
});
res = cairo_create (self->surface);
}
else
{
res = cairo_create (self->surface);
}
gsk_cairo_rectangle (res, &node->bounds);
cairo_clip (res);
return res;
}
/* }}} */
/* {{{ GSK_CONTAINER_NODE */
/**
* GskContainerNode:
*
* A render node that can contain other render nodes.
*/
struct _GskContainerNode
{
GskRenderNode render_node;
gboolean disjoint;
guint n_children;
GskRenderNode **children;
};
static void
gsk_container_node_finalize (GskRenderNode *node)
{
GskContainerNode *container = (GskContainerNode *) node;
GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_CONTAINER_NODE));
for (guint i = 0; i < container->n_children; i++)
gsk_render_node_unref (container->children[i]);
g_free (container->children);
parent_class->finalize (node);
}
static void
gsk_container_node_draw (GskRenderNode *node,
cairo_t *cr)
{
GskContainerNode *container = (GskContainerNode *) node;
guint i;
for (i = 0; i < container->n_children; i++)
{
gsk_render_node_draw (container->children[i], cr);
}
}
static int
gsk_container_node_compare_func (gconstpointer elem1, gconstpointer elem2, gpointer data)
{
return gsk_render_node_can_diff ((const GskRenderNode *) elem1, (const GskRenderNode *) elem2) ? 0 : 1;
}
static GskDiffResult
gsk_container_node_keep_func (gconstpointer elem1, gconstpointer elem2, gpointer data)
{
gsk_render_node_diff ((GskRenderNode *) elem1, (GskRenderNode *) elem2, data);
if (cairo_region_num_rectangles (data) > MAX_RECTS_IN_DIFF)
return GSK_DIFF_ABORTED;
return GSK_DIFF_OK;
}
static GskDiffResult
gsk_container_node_change_func (gconstpointer elem, gsize idx, gpointer data)
{
const GskRenderNode *node = elem;
cairo_region_t *region = data;
cairo_rectangle_int_t rect;
rectangle_init_from_graphene (&rect, &node->bounds);
cairo_region_union_rectangle (region, &rect);
if (cairo_region_num_rectangles (region) > MAX_RECTS_IN_DIFF)
return GSK_DIFF_ABORTED;
return GSK_DIFF_OK;
}
static GskDiffSettings *
gsk_container_node_get_diff_settings (void)
{
static GskDiffSettings *settings = NULL;
if (G_LIKELY (settings))
return settings;
settings = gsk_diff_settings_new (gsk_container_node_compare_func,
gsk_container_node_keep_func,
gsk_container_node_change_func,
gsk_container_node_change_func);
gsk_diff_settings_set_allow_abort (settings, TRUE);
return settings;
}
static gboolean
gsk_render_node_diff_multiple (GskRenderNode **nodes1,
gsize n_nodes1,
GskRenderNode **nodes2,
gsize n_nodes2,
cairo_region_t *region)
{
return gsk_diff ((gconstpointer *) nodes1, n_nodes1,
(gconstpointer *) nodes2, n_nodes2,
gsk_container_node_get_diff_settings (),
region) == GSK_DIFF_OK;
}
void
gsk_container_node_diff_with (GskRenderNode *container,
GskRenderNode *other,
cairo_region_t *region)
{
GskContainerNode *self = (GskContainerNode *) container;
if (gsk_render_node_diff_multiple (self->children,
self->n_children,
&other,
1,
region))
return;
gsk_render_node_diff_impossible (container, other, region);
}
static void
gsk_container_node_diff (GskRenderNode *node1,
GskRenderNode *node2,
cairo_region_t *region)
{
GskContainerNode *self1 = (GskContainerNode *) node1;
GskContainerNode *self2 = (GskContainerNode *) node2;
if (gsk_render_node_diff_multiple (self1->children,
self1->n_children,
self2->children,
self2->n_children,
region))
return;
gsk_render_node_diff_impossible (node1, node2, region);
}
/**
* gsk_container_node_new:
* @children: (array length=n_children) (transfer none): The children of the node
* @n_children: Number of children in the @children array
*
* Creates a new `GskRenderNode` instance for holding the given @children.
*
* The new node will acquire a reference to each of the children.
*
* Returns: (transfer full) (type GskContainerNode): the new `GskRenderNode`
*/
GskRenderNode *
gsk_container_node_new (GskRenderNode **children,
guint n_children)
{
GskContainerNode *self;
GskRenderNode *node;
self = gsk_render_node_alloc (GSK_CONTAINER_NODE);
node = (GskRenderNode *) self;
self->disjoint = TRUE;
self->n_children = n_children;
if (n_children == 0)
{
graphene_rect_init_from_rect (&node->bounds, graphene_rect_zero ());
}
else
{
graphene_rect_t bounds;
self->children = g_malloc_n (n_children, sizeof (GskRenderNode *));
self->children[0] = gsk_render_node_ref (children[0]);
graphene_rect_init_from_rect (&bounds, &(children[0]->bounds));
node->prefers_high_depth = gsk_render_node_prefers_high_depth (children[0]);
for (guint i = 1; i < n_children; i++)
{
self->children[i] = gsk_render_node_ref (children[i]);
self->disjoint &= !graphene_rect_intersection (&bounds, &(children[i]->bounds), NULL);
graphene_rect_union (&bounds, &(children[i]->bounds), &bounds);
node->prefers_high_depth |= gsk_render_node_prefers_high_depth (children[i]);
node->offscreen_for_opacity |= children[i]->offscreen_for_opacity;
}
graphene_rect_init_from_rect (&node->bounds, &bounds);
node->offscreen_for_opacity |= !self->disjoint;
}
return node;
}
/**
* gsk_container_node_get_n_children:
* @node: (type GskContainerNode): a container `GskRenderNode`
*
* Retrieves the number of direct children of @node.
*
* Returns: the number of children of the `GskRenderNode`
*/
guint
gsk_container_node_get_n_children (const GskRenderNode *node)
{
const GskContainerNode *self = (const GskContainerNode *) node;
return self->n_children;
}
/**
* gsk_container_node_get_child:
* @node: (type GskContainerNode): a container `GskRenderNode`
* @idx: the position of the child to get
*
* Gets one of the children of @container.
*
* Returns: (transfer none): the @idx'th child of @container
*/
GskRenderNode *
gsk_container_node_get_child (const GskRenderNode *node,
guint idx)
{
const GskContainerNode *self = (const GskContainerNode *) node;
g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_CONTAINER_NODE), NULL);
g_return_val_if_fail (idx < self->n_children, NULL);
return self->children[idx];
}
GskRenderNode **
gsk_container_node_get_children (const GskRenderNode *node,
guint *n_children)
{
const GskContainerNode *self = (const GskContainerNode *) node;
*n_children = self->n_children;
return self->children;
}
/*< private>
* gsk_container_node_is_disjoint:
* @node: a container `GskRenderNode`
*
* Returns `TRUE` if it is known that the child nodes are not
* overlapping. There is no guarantee that they do overlap
* if this function return FALSE.
*
* Returns: `TRUE` if children don't overlap
*/
gboolean
gsk_container_node_is_disjoint (const GskRenderNode *node)
{
const GskContainerNode *self = (const GskContainerNode *) node;
return self->disjoint;
}
/* }}} */
/* {{{ GSK_TRANSFORM_NODE */
/**
* GskTransformNode:
*
* A render node applying a `GskTransform` to its single child node.
*/
struct _GskTransformNode
{
GskRenderNode render_node;
GskRenderNode *child;
GskTransform *transform;
float dx, dy;
};
static void
gsk_transform_node_finalize (GskRenderNode *node)
{
GskTransformNode *self = (GskTransformNode *) node;
GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_TRANSFORM_NODE));
gsk_render_node_unref (self->child);
gsk_transform_unref (self->transform);
parent_class->finalize (node);
}
static void
gsk_transform_node_draw (GskRenderNode *node,
cairo_t *cr)
{
GskTransformNode *self = (GskTransformNode *) node;
float xx, yx, xy, yy, dx, dy;
cairo_matrix_t ctm;
if (gsk_transform_get_category (self->transform) < GSK_TRANSFORM_CATEGORY_2D)
{
cairo_set_source_rgb (cr, 255 / 255., 105 / 255., 180 / 255.);
gsk_cairo_rectangle (cr, &node->bounds);
cairo_fill (cr);
return;
}
gsk_transform_to_2d (self->transform, &xx, &yx, &xy, &yy, &dx, &dy);
cairo_matrix_init (&ctm, xx, yx, xy, yy, dx, dy);
GSK_DEBUG (CAIRO, "CTM = { .xx = %g, .yx = %g, .xy = %g, .yy = %g, .x0 = %g, .y0 = %g }",
ctm.xx, ctm.yx,
ctm.xy, ctm.yy,
ctm.x0, ctm.y0);
if (xx * yy == xy * yx)
{
/* broken matrix here. This can happen during transitions
* (like when flipping an axis at the point where scale == 0)
* and just means that nothing should be drawn.
* But Cairo throws lots of ugly errors instead of silently
* going on. So We silently go on.
*/
return;
}
cairo_transform (cr, &ctm);
gsk_render_node_draw (self->child, cr);
}
static gboolean
gsk_transform_node_can_diff (const GskRenderNode *node1,
const GskRenderNode *node2)
{
GskTransformNode *self1 = (GskTransformNode *) node1;
GskTransformNode *self2 = (GskTransformNode *) node2;
if (!gsk_transform_equal (self1->transform, self2->transform))
return FALSE;
return gsk_render_node_can_diff (self1->child, self2->child);
}
static void
gsk_transform_node_diff (GskRenderNode *node1,
GskRenderNode *node2,
cairo_region_t *region)
{
GskTransformNode *self1 = (GskTransformNode *) node1;
GskTransformNode *self2 = (GskTransformNode *) node2;
if (!gsk_transform_equal (self1->transform, self2->transform))
{
gsk_render_node_diff_impossible (node1, node2, region);
return;
}
if (self1->child == self2->child)
return;
switch (gsk_transform_get_category (self1->transform))
{
case GSK_TRANSFORM_CATEGORY_IDENTITY:
gsk_render_node_diff (self1->child, self2->child, region);
break;
case GSK_TRANSFORM_CATEGORY_2D_TRANSLATE:
{
cairo_region_t *sub;
float dx, dy;
gsk_transform_to_translate (self1->transform, &dx, &dy);
sub = cairo_region_create ();
gsk_render_node_diff (self1->child, self2->child, sub);
cairo_region_translate (sub, floorf (dx), floorf (dy));
if (floorf (dx) != dx)
{
cairo_region_t *tmp = cairo_region_copy (sub);
cairo_region_translate (tmp, 1, 0);
cairo_region_union (sub, tmp);
cairo_region_destroy (tmp);
}
if (floorf (dy) != dy)
{
cairo_region_t *tmp = cairo_region_copy (sub);
cairo_region_translate (tmp, 0, 1);
cairo_region_union (sub, tmp);
cairo_region_destroy (tmp);
}
cairo_region_union (region, sub);
cairo_region_destroy (sub);
}
break;
case GSK_TRANSFORM_CATEGORY_UNKNOWN:
case GSK_TRANSFORM_CATEGORY_ANY:
case GSK_TRANSFORM_CATEGORY_3D:
case GSK_TRANSFORM_CATEGORY_2D:
case GSK_TRANSFORM_CATEGORY_2D_AFFINE:
default:
gsk_render_node_diff_impossible (node1, node2, region);
break;
}
}
/**
* gsk_transform_node_new:
* @child: The node to transform
* @transform: (transfer none): The transform to apply
*
* Creates a `GskRenderNode` that will transform the given @child
* with the given @transform.
*
* Returns: (transfer full) (type GskTransformNode): A new `GskRenderNode`
*/
GskRenderNode *
gsk_transform_node_new (GskRenderNode *child,
GskTransform *transform)
{
GskTransformNode *self;
GskRenderNode *node;
g_return_val_if_fail (GSK_IS_RENDER_NODE (child), NULL);
g_return_val_if_fail (transform != NULL, NULL);
self = gsk_render_node_alloc (GSK_TRANSFORM_NODE);
node = (GskRenderNode *) self;
node->offscreen_for_opacity = child->offscreen_for_opacity;
self->child = gsk_render_node_ref (child);
self->transform = gsk_transform_ref (transform);
if (gsk_transform_get_category (transform) >= GSK_TRANSFORM_CATEGORY_2D_TRANSLATE)
gsk_transform_to_translate (transform, &self->dx, &self->dy);
else
self->dx = self->dy = 0;
gsk_transform_transform_bounds (self->transform,
&child->bounds,
&node->bounds);
node->prefers_high_depth = gsk_render_node_prefers_high_depth (child);
return node;
}
/**
* gsk_transform_node_get_child:
* @node: (type GskTransformNode): a `GskRenderNode` for a transform
*
* Gets the child node that is getting transformed by the given @node.
*
* Returns: (transfer none): The child that is getting transformed
*/
GskRenderNode *
gsk_transform_node_get_child (const GskRenderNode *node)
{
const GskTransformNode *self = (const GskTransformNode *) node;
return self->child;
}
/**
* gsk_transform_node_get_transform:
* @node: (type GskTransformNode): a `GskRenderNode` for a transform
*
* Retrieves the `GskTransform` used by the @node.
*
* Returns: (transfer none): a `GskTransform`
*/
GskTransform *
gsk_transform_node_get_transform (const GskRenderNode *node)
{
const GskTransformNode *self = (const GskTransformNode *) node;
return self->transform;
}
void
gsk_transform_node_get_translate (const GskRenderNode *node,
float *dx,
float *dy)
{
const GskTransformNode *self = (const GskTransformNode *) node;
*dx = self->dx;
*dy = self->dy;
}
/* }}} */
/* {{{ GSK_OPACITY_NODE */
/**
* GskOpacityNode:
*
* A render node controlling the opacity of its single child node.
*/
struct _GskOpacityNode
{
GskRenderNode render_node;
GskRenderNode *child;
float opacity;
};
static void
gsk_opacity_node_finalize (GskRenderNode *node)
{
GskOpacityNode *self = (GskOpacityNode *) node;
GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_OPACITY_NODE));
gsk_render_node_unref (self->child);
parent_class->finalize (node);
}
static void
gsk_opacity_node_draw (GskRenderNode *node,
cairo_t *cr)
{
GskOpacityNode *self = (GskOpacityNode *) node;
cairo_save (cr);
/* clip so the push_group() creates a smaller surface */
gsk_cairo_rectangle (cr, &node->bounds);
cairo_clip (cr);
cairo_push_group (cr);
gsk_render_node_draw (self->child, cr);
cairo_pop_group_to_source (cr);
cairo_paint_with_alpha (cr, self->opacity);
cairo_restore (cr);
}
static void
gsk_opacity_node_diff (GskRenderNode *node1,
GskRenderNode *node2,
cairo_region_t *region)
{
GskOpacityNode *self1 = (GskOpacityNode *) node1;
GskOpacityNode *self2 = (GskOpacityNode *) node2;
if (self1->opacity == self2->opacity)
gsk_render_node_diff (self1->child, self2->child, region);
else
gsk_render_node_diff_impossible (node1, node2, region);
}
/**
* gsk_opacity_node_new:
* @child: The node to draw
* @opacity: The opacity to apply
*
* Creates a `GskRenderNode` that will drawn the @child with reduced
* @opacity.
*
* Returns: (transfer full) (type GskOpacityNode): A new `GskRenderNode`
*/
GskRenderNode *
gsk_opacity_node_new (GskRenderNode *child,
float opacity)
{
GskOpacityNode *self;
GskRenderNode *node;
g_return_val_if_fail (GSK_IS_RENDER_NODE (child), NULL);
self = gsk_render_node_alloc (GSK_OPACITY_NODE);
node = (GskRenderNode *) self;
node->offscreen_for_opacity = child->offscreen_for_opacity;
self->child = gsk_render_node_ref (child);
self->opacity = CLAMP (opacity, 0.0, 1.0);
graphene_rect_init_from_rect (&node->bounds, &child->bounds);
node->prefers_high_depth = gsk_render_node_prefers_high_depth (child);
return node;
}
/**
* gsk_opacity_node_get_child:
* @node: (type GskOpacityNode): a `GskRenderNode` for an opacity
*
* Gets the child node that is getting opacityed by the given @node.
*
* Returns: (transfer none): The child that is getting opacityed
*/
GskRenderNode *
gsk_opacity_node_get_child (const GskRenderNode *node)
{
const GskOpacityNode *self = (const GskOpacityNode *) node;
return self->child;
}
/**
* gsk_opacity_node_get_opacity:
* @node: (type GskOpacityNode): a `GskRenderNode` for an opacity
*
* Gets the transparency factor for an opacity node.
*
* Returns: the opacity factor
*/
float
gsk_opacity_node_get_opacity (const GskRenderNode *node)
{
const GskOpacityNode *self = (const GskOpacityNode *) node;
return self->opacity;
}
/* }}} */
/* {{{ GSK_COLOR_MATRIX_NODE */
/**
* GskColorMatrixNode:
*
* A render node controlling the color matrix of its single child node.
*/
struct _GskColorMatrixNode
{
GskRenderNode render_node;
GskRenderNode *child;
graphene_matrix_t color_matrix;
graphene_vec4_t color_offset;
};
static void
gsk_color_matrix_node_finalize (GskRenderNode *node)
{
GskColorMatrixNode *self = (GskColorMatrixNode *) node;
GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_COLOR_MATRIX_NODE));
gsk_render_node_unref (self->child);
parent_class->finalize (node);
}
static void
apply_color_matrix_to_pattern (cairo_pattern_t *pattern,
const graphene_matrix_t *color_matrix,
const graphene_vec4_t *color_offset,
gboolean multiply_alpha)
{
cairo_surface_t *surface, *image_surface;
guchar *data;
gsize x, y, width, height, stride;
float alpha;
graphene_vec4_t pixel;
guint32* pixel_data;
cairo_pattern_get_surface (pattern, &surface);
image_surface = cairo_surface_map_to_image (surface, NULL);
data = cairo_image_surface_get_data (image_surface);
width = cairo_image_surface_get_width (image_surface);
height = cairo_image_surface_get_height (image_surface);
stride = cairo_image_surface_get_stride (image_surface);
for (y = 0; y < height; y++)
{
pixel_data = (guint32 *) data;
for (x = 0; x < width; x++)
{
alpha = ((pixel_data[x] >> 24) & 0xFF) / 255.0;
if (alpha == 0)
{
graphene_vec4_init (&pixel, 0.0, 0.0, 0.0, 0.0);
}
else
{
graphene_vec4_init (&pixel,
((pixel_data[x] >> 16) & 0xFF) / (255.0 * alpha),
((pixel_data[x] >> 8) & 0xFF) / (255.0 * alpha),
( pixel_data[x] & 0xFF) / (255.0 * alpha),
alpha);
graphene_matrix_transform_vec4 (color_matrix, &pixel, &pixel);
}
if (multiply_alpha)
graphene_vec4_init (&pixel,
graphene_vec4_get_x (&pixel),
graphene_vec4_get_y (&pixel),
graphene_vec4_get_z (&pixel),
alpha * graphene_vec4_get_w (&pixel));
graphene_vec4_add (&pixel, color_offset, &pixel);
alpha = graphene_vec4_get_w (&pixel);
if (alpha > 0.0)
{
alpha = MIN (alpha, 1.0);
pixel_data[x] = (((guint32) roundf (alpha * 255)) << 24) |
(((guint32) roundf (CLAMP (graphene_vec4_get_x (&pixel), 0, 1) * alpha * 255)) << 16) |
(((guint32) roundf (CLAMP (graphene_vec4_get_y (&pixel), 0, 1) * alpha * 255)) << 8) |
((guint32) roundf (CLAMP (graphene_vec4_get_z (&pixel), 0, 1) * alpha * 255));
}
else
{
pixel_data[x] = 0;
}
}
data += stride;
}
cairo_surface_mark_dirty (image_surface);
cairo_surface_unmap_image (surface, image_surface);
}
static void
gsk_color_matrix_node_draw (GskRenderNode *node,
cairo_t *cr)
{
GskColorMatrixNode *self = (GskColorMatrixNode *) node;
cairo_pattern_t *pattern;
cairo_save (cr);
/* clip so the push_group() creates a smaller surface */
gsk_cairo_rectangle (cr, &node->bounds);
cairo_clip (cr);
cairo_push_group (cr);
gsk_render_node_draw (self->child, cr);
pattern = cairo_pop_group (cr);
apply_color_matrix_to_pattern (pattern, &self->color_matrix, &self->color_offset, FALSE);
cairo_set_source (cr, pattern);
cairo_paint (cr);
cairo_restore (cr);
cairo_pattern_destroy (pattern);
}
static void
gsk_color_matrix_node_diff (GskRenderNode *node1,
GskRenderNode *node2,
cairo_region_t *region)
{
GskColorMatrixNode *self1 = (GskColorMatrixNode *) node1;
GskColorMatrixNode *self2 = (GskColorMatrixNode *) node2;
if (!graphene_vec4_equal (&self1->color_offset, &self2->color_offset))
goto nope;
if (!graphene_matrix_equal_fast (&self1->color_matrix, &self2->color_matrix))
goto nope;
gsk_render_node_diff (self1->child, self2->child, region);
return;
nope:
gsk_render_node_diff_impossible (node1, node2, region);
return;
}
/**
* gsk_color_matrix_node_new:
* @child: The node to draw
* @color_matrix: The matrix to apply
* @color_offset: Values to add to the color
*
* Creates a `GskRenderNode` that will drawn the @child with
* @color_matrix.
*
* In particular, the node will transform the operation
*
* pixel = color_matrix * pixel + color_offset
*
* for every pixel.
*
* Returns: (transfer full) (type GskColorMatrixNode): A new `GskRenderNode`
*/
GskRenderNode *
gsk_color_matrix_node_new (GskRenderNode *child,
const graphene_matrix_t *color_matrix,
const graphene_vec4_t *color_offset)
{
GskColorMatrixNode *self;
GskRenderNode *node;
g_return_val_if_fail (GSK_IS_RENDER_NODE (child), NULL);
self = gsk_render_node_alloc (GSK_COLOR_MATRIX_NODE);
node = (GskRenderNode *) self;
node->offscreen_for_opacity = child->offscreen_for_opacity;
self->child = gsk_render_node_ref (child);
graphene_matrix_init_from_matrix (&self->color_matrix, color_matrix);
graphene_vec4_init_from_vec4 (&self->color_offset, color_offset);
graphene_rect_init_from_rect (&node->bounds, &child->bounds);
node->prefers_high_depth = gsk_render_node_prefers_high_depth (child);
return node;
}
/**
* gsk_color_matrix_node_get_child:
* @node: (type GskColorMatrixNode): a color matrix `GskRenderNode`
*
* Gets the child node that is getting its colors modified by the given @node.
*
* Returns: (transfer none): The child that is getting its colors modified
**/
GskRenderNode *
gsk_color_matrix_node_get_child (const GskRenderNode *node)
{
const GskColorMatrixNode *self = (const GskColorMatrixNode *) node;
return self->child;
}
/**
* gsk_color_matrix_node_get_color_matrix:
* @node: (type GskColorMatrixNode): a color matrix `GskRenderNode`
*
* Retrieves the color matrix used by the @node.
*
* Returns: a 4x4 color matrix
*/
const graphene_matrix_t *
gsk_color_matrix_node_get_color_matrix (const GskRenderNode *node)
{
const GskColorMatrixNode *self = (const GskColorMatrixNode *) node;
return &self->color_matrix;
}
/**
* gsk_color_matrix_node_get_color_offset:
* @node: (type GskColorMatrixNode): a color matrix `GskRenderNode`
*
* Retrieves the color offset used by the @node.
*
* Returns: a color vector
*/
const graphene_vec4_t *
gsk_color_matrix_node_get_color_offset (const GskRenderNode *node)
{
const GskColorMatrixNode *self = (const GskColorMatrixNode *) node;
return &self->color_offset;
}
/* }}} */
/* {{{ GSK_REPEAT_NODE */
/**
* GskRepeatNode:
*
* A render node repeating its single child node.
*/
struct _GskRepeatNode
{
GskRenderNode render_node;
GskRenderNode *child;
graphene_rect_t child_bounds;
};
static void
gsk_repeat_node_finalize (GskRenderNode *node)
{
GskRepeatNode *self = (GskRepeatNode *) node;
GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_REPEAT_NODE));
gsk_render_node_unref (self->child);
parent_class->finalize (node);
}
static void
gsk_repeat_node_draw (GskRenderNode *node,
cairo_t *cr)
{
GskRepeatNode *self = (GskRepeatNode *) node;
cairo_pattern_t *pattern;
cairo_surface_t *surface;
cairo_t *surface_cr;
surface = cairo_surface_create_similar (cairo_get_target (cr),
CAIRO_CONTENT_COLOR_ALPHA,
ceilf (self->child_bounds.size.width),
ceilf (self->child_bounds.size.height));
surface_cr = cairo_create (surface);
cairo_translate (surface_cr,
- self->child_bounds.origin.x,
- self->child_bounds.origin.y);
gsk_render_node_draw (self->child, surface_cr);
cairo_destroy (surface_cr);
pattern = cairo_pattern_create_for_surface (surface);
cairo_pattern_set_extend (pattern, CAIRO_EXTEND_REPEAT);
cairo_pattern_set_matrix (pattern,
&(cairo_matrix_t) {
.xx = 1.0,
.yy = 1.0,
.x0 = - self->child_bounds.origin.x,
.y0 = - self->child_bounds.origin.y
});
cairo_set_source (cr, pattern);
cairo_pattern_destroy (pattern);
cairo_surface_destroy (surface);
gsk_cairo_rectangle (cr, &node->bounds);
cairo_fill (cr);
}
/**
* gsk_repeat_node_new:
* @bounds: The bounds of the area to be painted
* @child: The child to repeat
* @child_bounds: (nullable): The area of the child to repeat or %NULL to
* use the child's bounds
*
* Creates a `GskRenderNode` that will repeat the drawing of @child across
* the given @bounds.
*
* Returns: (transfer full) (type GskRepeatNode): A new `GskRenderNode`
*/
GskRenderNode *
gsk_repeat_node_new (const graphene_rect_t *bounds,
GskRenderNode *child,
const graphene_rect_t *child_bounds)
{
GskRepeatNode *self;
GskRenderNode *node;
g_return_val_if_fail (bounds != NULL, NULL);
g_return_val_if_fail (GSK_IS_RENDER_NODE (child), NULL);
self = gsk_render_node_alloc (GSK_REPEAT_NODE);
node = (GskRenderNode *) self;
node->offscreen_for_opacity = TRUE;
graphene_rect_init_from_rect (&node->bounds, bounds);
self->child = gsk_render_node_ref (child);
if (child_bounds)
graphene_rect_init_from_rect (&self->child_bounds, child_bounds);
else
graphene_rect_init_from_rect (&self->child_bounds, &child->bounds);
node->prefers_high_depth = gsk_render_node_prefers_high_depth (child);
return node;
}
/**
* gsk_repeat_node_get_child:
* @node: (type GskRepeatNode): a repeat `GskRenderNode`
*
* Retrieves the child of @node.
*
* Returns: (transfer none): a `GskRenderNode`
*/
GskRenderNode *
gsk_repeat_node_get_child (const GskRenderNode *node)
{
const GskRepeatNode *self = (const GskRepeatNode *) node;
return self->child;
}
/**
* gsk_repeat_node_get_child_bounds:
* @node: (type GskRepeatNode): a repeat `GskRenderNode`
*
* Retrieves the bounding rectangle of the child of @node.
*
* Returns: (transfer none): a bounding rectangle
*/
const graphene_rect_t *
gsk_repeat_node_get_child_bounds (const GskRenderNode *node)
{
const GskRepeatNode *self = (const GskRepeatNode *) node;
return &self->child_bounds;
}
/* }}} */
/* {{{ GSK_CLIP_NODE */
/**
* GskClipNode:
*
* A render node applying a rectangular clip to its single child node.
*/
struct _GskClipNode
{
GskRenderNode render_node;
GskRenderNode *child;
graphene_rect_t clip;
};
static void
gsk_clip_node_finalize (GskRenderNode *node)
{
GskClipNode *self = (GskClipNode *) node;
GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_CLIP_NODE));
gsk_render_node_unref (self->child);
parent_class->finalize (node);
}
static void
gsk_clip_node_draw (GskRenderNode *node,
cairo_t *cr)
{
GskClipNode *self = (GskClipNode *) node;
cairo_save (cr);
gsk_cairo_rectangle (cr, &self->clip);
cairo_clip (cr);
gsk_render_node_draw (self->child, cr);
cairo_restore (cr);
}
static void
gsk_clip_node_diff (GskRenderNode *node1,
GskRenderNode *node2,
cairo_region_t *region)
{
GskClipNode *self1 = (GskClipNode *) node1;
GskClipNode *self2 = (GskClipNode *) node2;
if (graphene_rect_equal (&self1->clip, &self2->clip))
{
cairo_region_t *sub;
cairo_rectangle_int_t clip_rect;
sub = cairo_region_create();
gsk_render_node_diff (self1->child, self2->child, sub);
rectangle_init_from_graphene (&clip_rect, &self1->clip);
cairo_region_intersect_rectangle (sub, &clip_rect);
cairo_region_union (region, sub);
cairo_region_destroy (sub);
}
else
{
gsk_render_node_diff_impossible (node1, node2, region);
}
}
/**
* gsk_clip_node_new:
* @child: The node to draw
* @clip: The clip to apply
*
* Creates a `GskRenderNode` that will clip the @child to the area
* given by @clip.
*
* Returns: (transfer full) (type GskClipNode): A new `GskRenderNode`
*/
GskRenderNode *
gsk_clip_node_new (GskRenderNode *child,
const graphene_rect_t *clip)
{
GskClipNode *self;
GskRenderNode *node;
g_return_val_if_fail (GSK_IS_RENDER_NODE (child), NULL);
g_return_val_if_fail (clip != NULL, NULL);
self = gsk_render_node_alloc (GSK_CLIP_NODE);
node = (GskRenderNode *) self;
node->offscreen_for_opacity = child->offscreen_for_opacity;
self->child = gsk_render_node_ref (child);
graphene_rect_normalize_r (clip, &self->clip);
graphene_rect_intersection (&self->clip, &child->bounds, &node->bounds);
node->prefers_high_depth = gsk_render_node_prefers_high_depth (child);
return node;
}
/**
* gsk_clip_node_get_child:
* @node: (type GskClipNode): a clip @GskRenderNode
*
* Gets the child node that is getting clipped by the given @node.
*
* Returns: (transfer none): The child that is getting clipped
**/
GskRenderNode *
gsk_clip_node_get_child (const GskRenderNode *node)
{
const GskClipNode *self = (const GskClipNode *) node;
return self->child;
}
/**
* gsk_clip_node_get_clip:
* @node: (type GskClipNode): a `GskClipNode`
*
* Retrieves the clip rectangle for @node.
*
* Returns: a clip rectangle
*/
const graphene_rect_t *
gsk_clip_node_get_clip (const GskRenderNode *node)
{
const GskClipNode *self = (const GskClipNode *) node;
return &self->clip;
}
/* }}} */
/* {{{ GSK_ROUNDED_CLIP_NODE */
/**
* GskRoundedClipNode:
*
* A render node applying a rounded rectangle clip to its single child.
*/
struct _GskRoundedClipNode
{
GskRenderNode render_node;
GskRenderNode *child;
GskRoundedRect clip;
};
static void
gsk_rounded_clip_node_finalize (GskRenderNode *node)
{
GskRoundedClipNode *self = (GskRoundedClipNode *) node;
GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_ROUNDED_CLIP_NODE));
gsk_render_node_unref (self->child);
parent_class->finalize (node);
}
static void
gsk_rounded_clip_node_draw (GskRenderNode *node,
cairo_t *cr)
{
GskRoundedClipNode *self = (GskRoundedClipNode *) node;
cairo_save (cr);
gsk_rounded_rect_path (&self->clip, cr);
cairo_clip (cr);
gsk_render_node_draw (self->child, cr);
cairo_restore (cr);
}
static void
gsk_rounded_clip_node_diff (GskRenderNode *node1,
GskRenderNode *node2,
cairo_region_t *region)
{
GskRoundedClipNode *self1 = (GskRoundedClipNode *) node1;
GskRoundedClipNode *self2 = (GskRoundedClipNode *) node2;
if (gsk_rounded_rect_equal (&self1->clip, &self2->clip))
{
cairo_region_t *sub;
cairo_rectangle_int_t clip_rect;
sub = cairo_region_create();
gsk_render_node_diff (self1->child, self2->child, sub);
rectangle_init_from_graphene (&clip_rect, &self1->clip.bounds);
cairo_region_intersect_rectangle (sub, &clip_rect);
cairo_region_union (region, sub);
cairo_region_destroy (sub);
}
else
{
gsk_render_node_diff_impossible (node1, node2, region);
}
}
/**
* gsk_rounded_clip_node_new:
* @child: The node to draw
* @clip: The clip to apply
*
* Creates a `GskRenderNode` that will clip the @child to the area
* given by @clip.
*
* Returns: (transfer full) (type GskRoundedClipNode): A new `GskRenderNode`
*/
GskRenderNode *
gsk_rounded_clip_node_new (GskRenderNode *child,
const GskRoundedRect *clip)
{
GskRoundedClipNode *self;
GskRenderNode *node;
g_return_val_if_fail (GSK_IS_RENDER_NODE (child), NULL);
g_return_val_if_fail (clip != NULL, NULL);
self = gsk_render_node_alloc (GSK_ROUNDED_CLIP_NODE);
node = (GskRenderNode *) self;
node->offscreen_for_opacity = child->offscreen_for_opacity;
self->child = gsk_render_node_ref (child);
gsk_rounded_rect_init_copy (&self->clip, clip);
graphene_rect_intersection (&self->clip.bounds, &child->bounds, &node->bounds);
node->prefers_high_depth = gsk_render_node_prefers_high_depth (child);
return node;
}
/**
* gsk_rounded_clip_node_get_child:
* @node: (type GskRoundedClipNode): a rounded clip `GskRenderNode`
*
* Gets the child node that is getting clipped by the given @node.
*
* Returns: (transfer none): The child that is getting clipped
**/
GskRenderNode *
gsk_rounded_clip_node_get_child (const GskRenderNode *node)
{
const GskRoundedClipNode *self = (const GskRoundedClipNode *) node;
return self->child;
}
/**
* gsk_rounded_clip_node_get_clip:
* @node: (type GskRoundedClipNode): a rounded clip `GskRenderNode`
*
* Retrieves the rounded rectangle used to clip the contents of the @node.
*
* Returns: (transfer none): a rounded rectangle
*/
const GskRoundedRect *
gsk_rounded_clip_node_get_clip (const GskRenderNode *node)
{
const GskRoundedClipNode *self = (const GskRoundedClipNode *) node;
return &self->clip;
}
/* }}} */
/* {{{ GSK_SHADOW_NODE */
/**
* GskShadowNode:
*
* A render node drawing one or more shadows behind its single child node.
*/
struct _GskShadowNode
{
GskRenderNode render_node;
GskRenderNode *child;
gsize n_shadows;
GskShadow *shadows;
};
static void
gsk_shadow_node_finalize (GskRenderNode *node)
{
GskShadowNode *self = (GskShadowNode *) node;
GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_SHADOW_NODE));
gsk_render_node_unref (self->child);
g_free (self->shadows);
parent_class->finalize (node);
}
static void
gsk_shadow_node_draw (GskRenderNode *node,
cairo_t *cr)
{
GskShadowNode *self = (GskShadowNode *) node;
cairo_pattern_t *pattern;
gsize i;
cairo_save (cr);
/* clip so the push_group() creates a small surface */
gsk_cairo_rectangle (cr, &self->child->bounds);
cairo_clip (cr);
cairo_push_group (cr);
gsk_render_node_draw (self->child, cr);
pattern = cairo_pop_group (cr);
cairo_restore (cr);
for (i = 0; i < self->n_shadows; i++)
{
GskShadow *shadow = &self->shadows[i];
/* We don't need to draw invisible shadows */
if (gdk_rgba_is_clear (&shadow->color))
continue;
cairo_save (cr);
gdk_cairo_set_source_rgba (cr, &shadow->color);
cr = gsk_cairo_blur_start_drawing (cr, shadow->radius, GSK_BLUR_X | GSK_BLUR_Y);
cairo_translate (cr, shadow->dx, shadow->dy);
cairo_mask (cr, pattern);
cr = gsk_cairo_blur_finish_drawing (cr, shadow->radius, &shadow->color, GSK_BLUR_X | GSK_BLUR_Y);
cairo_restore (cr);
}
cairo_set_source (cr, pattern);
cairo_paint (cr);
cairo_pattern_destroy (pattern);
}
static void
gsk_shadow_node_diff (GskRenderNode *node1,
GskRenderNode *node2,
cairo_region_t *region)
{
GskShadowNode *self1 = (GskShadowNode *) node1;
GskShadowNode *self2 = (GskShadowNode *) node2;
int top = 0, right = 0, bottom = 0, left = 0;
cairo_region_t *sub;
cairo_rectangle_int_t rect;
gsize i, n;
if (self1->n_shadows != self2->n_shadows)
{
gsk_render_node_diff_impossible (node1, node2, region);
return;
}
for (i = 0; i < self1->n_shadows; i++)
{
GskShadow *shadow1 = &self1->shadows[i];
GskShadow *shadow2 = &self2->shadows[i];
float clip_radius;
if (!gdk_rgba_equal (&shadow1->color, &shadow2->color) ||
shadow1->dx != shadow2->dx ||
shadow1->dy != shadow2->dy ||
shadow1->radius != shadow2->radius)
{
gsk_render_node_diff_impossible (node1, node2, region);
return;
}
clip_radius = gsk_cairo_blur_compute_pixels (shadow1->radius / 2.0);
top = MAX (top, ceil (clip_radius - shadow1->dy));
right = MAX (right, ceil (clip_radius + shadow1->dx));
bottom = MAX (bottom, ceil (clip_radius + shadow1->dy));
left = MAX (left, ceil (clip_radius - shadow1->dx));
}
sub = cairo_region_create ();
gsk_render_node_diff (self1->child, self2->child, sub);
n = cairo_region_num_rectangles (sub);
for (i = 0; i < n; i++)
{
cairo_region_get_rectangle (sub, i, &rect);
rect.x -= left;
rect.y -= top;
rect.width += left + right;
rect.height += top + bottom;
cairo_region_union_rectangle (region, &rect);
}
cairo_region_destroy (sub);
}
static void
gsk_shadow_node_get_bounds (GskShadowNode *self,
graphene_rect_t *bounds)
{
float top = 0, right = 0, bottom = 0, left = 0;
gsize i;
graphene_rect_init_from_rect (bounds, &self->child->bounds);
for (i = 0; i < self->n_shadows; i++)
{
float clip_radius = gsk_cairo_blur_compute_pixels (self->shadows[i].radius / 2.0);
top = MAX (top, clip_radius - self->shadows[i].dy);
right = MAX (right, clip_radius + self->shadows[i].dx);
bottom = MAX (bottom, clip_radius + self->shadows[i].dy);
left = MAX (left, clip_radius - self->shadows[i].dx);
}
bounds->origin.x -= left;
bounds->origin.y -= top;
bounds->size.width += left + right;
bounds->size.height += top + bottom;
}
/**
* gsk_shadow_node_new:
* @child: The node to draw
* @shadows: (array length=n_shadows): The shadows to apply
* @n_shadows: number of entries in the @shadows array
*
* Creates a `GskRenderNode` that will draw a @child with the given
* @shadows below it.
*
* Returns: (transfer full) (type GskShadowNode): A new `GskRenderNode`
*/
GskRenderNode *
gsk_shadow_node_new (GskRenderNode *child,
const GskShadow *shadows,
gsize n_shadows)
{
GskShadowNode *self;
GskRenderNode *node;
g_return_val_if_fail (GSK_IS_RENDER_NODE (child), NULL);
g_return_val_if_fail (shadows != NULL, NULL);
g_return_val_if_fail (n_shadows > 0, NULL);
self = gsk_render_node_alloc (GSK_SHADOW_NODE);
node = (GskRenderNode *) self;
node->offscreen_for_opacity = child->offscreen_for_opacity;
self->child = gsk_render_node_ref (child);
self->n_shadows = n_shadows;
self->shadows = g_malloc_n (n_shadows, sizeof (GskShadow));
memcpy (self->shadows, shadows, n_shadows * sizeof (GskShadow));
gsk_shadow_node_get_bounds (self, &node->bounds);
node->prefers_high_depth = gsk_render_node_prefers_high_depth (child);
return node;
}
/**
* gsk_shadow_node_get_child:
* @node: (type GskShadowNode): a shadow `GskRenderNode`
*
* Retrieves the child `GskRenderNode` of the shadow @node.
*
* Returns: (transfer none): the child render node
*/
GskRenderNode *
gsk_shadow_node_get_child (const GskRenderNode *node)
{
const GskShadowNode *self = (const GskShadowNode *) node;
return self->child;
}
/**
* gsk_shadow_node_get_shadow:
* @node: (type GskShadowNode): a shadow `GskRenderNode`
* @i: the given index
*
* Retrieves the shadow data at the given index @i.
*
* Returns: (transfer none): the shadow data
*/
const GskShadow *
gsk_shadow_node_get_shadow (const GskRenderNode *node,
gsize i)
{
const GskShadowNode *self = (const GskShadowNode *) node;
return &self->shadows[i];
}
/**
* gsk_shadow_node_get_n_shadows:
* @node: (type GskShadowNode): a shadow `GskRenderNode`
*
* Retrieves the number of shadows in the @node.
*
* Returns: the number of shadows.
*/
gsize
gsk_shadow_node_get_n_shadows (const GskRenderNode *node)
{
const GskShadowNode *self = (const GskShadowNode *) node;
return self->n_shadows;
}
/* }}} */
/* {{{ GSK_BLEND_NODE */
/**
* GskBlendNode:
*
* A render node applying a blending function between its two child nodes.
*/
struct _GskBlendNode
{
GskRenderNode render_node;
GskRenderNode *bottom;
GskRenderNode *top;
GskBlendMode blend_mode;
};
static cairo_operator_t
gsk_blend_mode_to_cairo_operator (GskBlendMode blend_mode)
{
switch (blend_mode)
{
default:
g_assert_not_reached ();
case GSK_BLEND_MODE_DEFAULT:
return CAIRO_OPERATOR_OVER;
case GSK_BLEND_MODE_MULTIPLY:
return CAIRO_OPERATOR_MULTIPLY;
case GSK_BLEND_MODE_SCREEN:
return CAIRO_OPERATOR_SCREEN;
case GSK_BLEND_MODE_OVERLAY:
return CAIRO_OPERATOR_OVERLAY;
case GSK_BLEND_MODE_DARKEN:
return CAIRO_OPERATOR_DARKEN;
case GSK_BLEND_MODE_LIGHTEN:
return CAIRO_OPERATOR_LIGHTEN;
case GSK_BLEND_MODE_COLOR_DODGE:
return CAIRO_OPERATOR_COLOR_DODGE;
case GSK_BLEND_MODE_COLOR_BURN:
return CAIRO_OPERATOR_COLOR_BURN;
case GSK_BLEND_MODE_HARD_LIGHT:
return CAIRO_OPERATOR_HARD_LIGHT;
case GSK_BLEND_MODE_SOFT_LIGHT:
return CAIRO_OPERATOR_SOFT_LIGHT;
case GSK_BLEND_MODE_DIFFERENCE:
return CAIRO_OPERATOR_DIFFERENCE;
case GSK_BLEND_MODE_EXCLUSION:
return CAIRO_OPERATOR_EXCLUSION;
case GSK_BLEND_MODE_COLOR:
return CAIRO_OPERATOR_HSL_COLOR;
case GSK_BLEND_MODE_HUE:
return CAIRO_OPERATOR_HSL_HUE;
case GSK_BLEND_MODE_SATURATION:
return CAIRO_OPERATOR_HSL_SATURATION;
case GSK_BLEND_MODE_LUMINOSITY:
return CAIRO_OPERATOR_HSL_LUMINOSITY;
}
}
static void
gsk_blend_node_finalize (GskRenderNode *node)
{
GskBlendNode *self = (GskBlendNode *) node;
GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_BLEND_NODE));
gsk_render_node_unref (self->bottom);
gsk_render_node_unref (self->top);
parent_class->finalize (node);
}
static void
gsk_blend_node_draw (GskRenderNode *node,
cairo_t *cr)
{
GskBlendNode *self = (GskBlendNode *) node;
cairo_push_group (cr);
gsk_render_node_draw (self->bottom, cr);
cairo_push_group (cr);
gsk_render_node_draw (self->top, cr);
cairo_pop_group_to_source (cr);
cairo_set_operator (cr, gsk_blend_mode_to_cairo_operator (self->blend_mode));
cairo_paint (cr);
cairo_pop_group_to_source (cr); /* resets operator */
cairo_paint (cr);
}
static void
gsk_blend_node_diff (GskRenderNode *node1,
GskRenderNode *node2,
cairo_region_t *region)
{
GskBlendNode *self1 = (GskBlendNode *) node1;
GskBlendNode *self2 = (GskBlendNode *) node2;
if (self1->blend_mode == self2->blend_mode)
{
gsk_render_node_diff (self1->top, self2->top, region);
gsk_render_node_diff (self1->bottom, self2->bottom, region);
}
else
{
gsk_render_node_diff_impossible (node1, node2, region);
}
}
/**
* gsk_blend_node_new:
* @bottom: The bottom node to be drawn
* @top: The node to be blended onto the @bottom node
* @blend_mode: The blend mode to use
*
* Creates a `GskRenderNode` that will use @blend_mode to blend the @top
* node onto the @bottom node.
*
* Returns: (transfer full) (type GskBlendNode): A new `GskRenderNode`
*/
GskRenderNode *
gsk_blend_node_new (GskRenderNode *bottom,
GskRenderNode *top,
GskBlendMode blend_mode)
{
GskBlendNode *self;
GskRenderNode *node;
g_return_val_if_fail (GSK_IS_RENDER_NODE (bottom), NULL);
g_return_val_if_fail (GSK_IS_RENDER_NODE (top), NULL);
self = gsk_render_node_alloc (GSK_BLEND_NODE);
node = (GskRenderNode *) self;
node->offscreen_for_opacity = TRUE;
self->bottom = gsk_render_node_ref (bottom);
self->top = gsk_render_node_ref (top);
self->blend_mode = blend_mode;
graphene_rect_union (&bottom->bounds, &top->bounds, &node->bounds);
node->prefers_high_depth = gsk_render_node_prefers_high_depth (bottom) || gsk_render_node_prefers_high_depth (top);
return node;
}
/**
* gsk_blend_node_get_bottom_child:
* @node: (type GskBlendNode): a blending `GskRenderNode`
*
* Retrieves the bottom `GskRenderNode` child of the @node.
*
* Returns: (transfer none): the bottom child node
*/
GskRenderNode *
gsk_blend_node_get_bottom_child (const GskRenderNode *node)
{
const GskBlendNode *self = (const GskBlendNode *) node;
return self->bottom;
}
/**
* gsk_blend_node_get_top_child:
* @node: (type GskBlendNode): a blending `GskRenderNode`
*
* Retrieves the top `GskRenderNode` child of the @node.
*
* Returns: (transfer none): the top child node
*/
GskRenderNode *
gsk_blend_node_get_top_child (const GskRenderNode *node)
{
const GskBlendNode *self = (const GskBlendNode *) node;
return self->top;
}
/**
* gsk_blend_node_get_blend_mode:
* @node: (type GskBlendNode): a blending `GskRenderNode`
*
* Retrieves the blend mode used by @node.
*
* Returns: the blend mode
*/
GskBlendMode
gsk_blend_node_get_blend_mode (const GskRenderNode *node)
{
const GskBlendNode *self = (const GskBlendNode *) node;
return self->blend_mode;
}
/* }}} */
/* {{{ GSK_CROSS_FADE_NODE */
/**
* GskCrossFadeNode:
*
* A render node cross fading between two child nodes.
*/
struct _GskCrossFadeNode
{
GskRenderNode render_node;
GskRenderNode *start;
GskRenderNode *end;
float progress;
};
static void
gsk_cross_fade_node_finalize (GskRenderNode *node)
{
GskCrossFadeNode *self = (GskCrossFadeNode *) node;
GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_CROSS_FADE_NODE));
gsk_render_node_unref (self->start);
gsk_render_node_unref (self->end);
parent_class->finalize (node);
}
static void
gsk_cross_fade_node_draw (GskRenderNode *node,
cairo_t *cr)
{
GskCrossFadeNode *self = (GskCrossFadeNode *) node;
cairo_push_group_with_content (cr, CAIRO_CONTENT_COLOR_ALPHA);
gsk_render_node_draw (self->start, cr);
cairo_push_group_with_content (cr, CAIRO_CONTENT_COLOR_ALPHA);
gsk_render_node_draw (self->end, cr);
cairo_pop_group_to_source (cr);
cairo_set_operator (cr, CAIRO_OPERATOR_SOURCE);
cairo_paint_with_alpha (cr, self->progress);
cairo_pop_group_to_source (cr); /* resets operator */
cairo_paint (cr);
}
static void
gsk_cross_fade_node_diff (GskRenderNode *node1,
GskRenderNode *node2,
cairo_region_t *region)
{
GskCrossFadeNode *self1 = (GskCrossFadeNode *) node1;
GskCrossFadeNode *self2 = (GskCrossFadeNode *) node2;
if (self1->progress == self2->progress)
{
gsk_render_node_diff (self1->start, self2->start, region);
gsk_render_node_diff (self1->end, self2->end, region);
return;
}
gsk_render_node_diff_impossible (node1, node2, region);
}
/**
* gsk_cross_fade_node_new:
* @start: The start node to be drawn
* @end: The node to be cross_fadeed onto the @start node
* @progress: How far the fade has progressed from start to end. The value will
* be clamped to the range [0 ... 1]
*
* Creates a `GskRenderNode` that will do a cross-fade between @start and @end.
*
* Returns: (transfer full) (type GskCrossFadeNode): A new `GskRenderNode`
*/
GskRenderNode *
gsk_cross_fade_node_new (GskRenderNode *start,
GskRenderNode *end,
float progress)
{
GskCrossFadeNode *self;
GskRenderNode *node;
g_return_val_if_fail (GSK_IS_RENDER_NODE (start), NULL);
g_return_val_if_fail (GSK_IS_RENDER_NODE (end), NULL);
self = gsk_render_node_alloc (GSK_CROSS_FADE_NODE);
node = (GskRenderNode *) self;
node->offscreen_for_opacity = TRUE;
self->start = gsk_render_node_ref (start);
self->end = gsk_render_node_ref (end);
self->progress = CLAMP (progress, 0.0, 1.0);
graphene_rect_union (&start->bounds, &end->bounds, &node->bounds);
node->prefers_high_depth = gsk_render_node_prefers_high_depth (start) || gsk_render_node_prefers_high_depth (end);
return node;
}
/**
* gsk_cross_fade_node_get_start_child:
* @node: (type GskCrossFadeNode): a cross-fading `GskRenderNode`
*
* Retrieves the child `GskRenderNode` at the beginning of the cross-fade.
*
* Returns: (transfer none): a `GskRenderNode`
*/
GskRenderNode *
gsk_cross_fade_node_get_start_child (const GskRenderNode *node)
{
const GskCrossFadeNode *self = (const GskCrossFadeNode *) node;
return self->start;
}
/**
* gsk_cross_fade_node_get_end_child:
* @node: (type GskCrossFadeNode): a cross-fading `GskRenderNode`
*
* Retrieves the child `GskRenderNode` at the end of the cross-fade.
*
* Returns: (transfer none): a `GskRenderNode`
*/
GskRenderNode *
gsk_cross_fade_node_get_end_child (const GskRenderNode *node)
{
const GskCrossFadeNode *self = (const GskCrossFadeNode *) node;
return self->end;
}
/**
* gsk_cross_fade_node_get_progress:
* @node: (type GskCrossFadeNode): a cross-fading `GskRenderNode`
*
* Retrieves the progress value of the cross fade.
*
* Returns: the progress value, between 0 and 1
*/
float
gsk_cross_fade_node_get_progress (const GskRenderNode *node)
{
const GskCrossFadeNode *self = (const GskCrossFadeNode *) node;
return self->progress;
}
/* }}} */
/* {{{ GSK_TEXT_NODE */
/**
* GskTextNode:
*
* A render node drawing a set of glyphs.
*/
struct _GskTextNode
{
GskRenderNode render_node;
PangoFont *font;
gboolean has_color_glyphs;
GdkRGBA color;
graphene_point_t offset;
guint num_glyphs;
PangoGlyphInfo *glyphs;
};
static void
gsk_text_node_finalize (GskRenderNode *node)
{
GskTextNode *self = (GskTextNode *) node;
GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_TEXT_NODE));
g_object_unref (self->font);
g_free (self->glyphs);
parent_class->finalize (node);
}
static void
gsk_text_node_draw (GskRenderNode *node,
cairo_t *cr)
{
GskTextNode *self = (GskTextNode *) node;
PangoGlyphString glyphs;
glyphs.num_glyphs = self->num_glyphs;
glyphs.glyphs = self->glyphs;
glyphs.log_clusters = NULL;
cairo_save (cr);
gdk_cairo_set_source_rgba (cr, &self->color);
cairo_translate (cr, self->offset.x, self->offset.y);
pango_cairo_show_glyph_string (cr, self->font, &glyphs);
cairo_restore (cr);
}
static void
gsk_text_node_diff (GskRenderNode *node1,
GskRenderNode *node2,
cairo_region_t *region)
{
GskTextNode *self1 = (GskTextNode *) node1;
GskTextNode *self2 = (GskTextNode *) node2;
if (self1->font == self2->font &&
gdk_rgba_equal (&self1->color, &self2->color) &&
graphene_point_equal (&self1->offset, &self2->offset) &&
self1->num_glyphs == self2->num_glyphs)
{
guint i;
for (i = 0; i < self1->num_glyphs; i++)
{
PangoGlyphInfo *info1 = &self1->glyphs[i];
PangoGlyphInfo *info2 = &self2->glyphs[i];
if (info1->glyph == info2->glyph &&
info1->geometry.width == info2->geometry.width &&
info1->geometry.x_offset == info2->geometry.x_offset &&
info1->geometry.y_offset == info2->geometry.y_offset &&
info1->attr.is_cluster_start == info2->attr.is_cluster_start &&
info1->attr.is_color == info2->attr.is_color)
continue;
gsk_render_node_diff_impossible (node1, node2, region);
return;
}
return;
}
gsk_render_node_diff_impossible (node1, node2, region);
}
/**
* gsk_text_node_new:
* @font: the `PangoFont` containing the glyphs
* @glyphs: the `PangoGlyphString` to render
* @color: the foreground color to render with
* @offset: offset of the baseline
*
* Creates a render node that renders the given glyphs.
*
* Note that @color may not be used if the font contains
* color glyphs.
*
* Returns: (nullable) (transfer full) (type GskTextNode): a new `GskRenderNode`
*/
GskRenderNode *
gsk_text_node_new (PangoFont *font,
PangoGlyphString *glyphs,
const GdkRGBA *color,
const graphene_point_t *offset)
{
GskTextNode *self;
GskRenderNode *node;
PangoRectangle ink_rect;
PangoGlyphInfo *glyph_infos;
int n;
pango_glyph_string_extents (glyphs, font, &ink_rect, NULL);
pango_extents_to_pixels (&ink_rect, NULL);
/* Don't create nodes with empty bounds */
if (ink_rect.width == 0 || ink_rect.height == 0)
return NULL;
self = gsk_render_node_alloc (GSK_TEXT_NODE);
node = (GskRenderNode *) self;
node->offscreen_for_opacity = FALSE;
self->font = g_object_ref (font);
self->color = *color;
self->offset = *offset;
self->has_color_glyphs = FALSE;
glyph_infos = g_malloc_n (glyphs->num_glyphs, sizeof (PangoGlyphInfo));
n = 0;
for (int i = 0; i < glyphs->num_glyphs; i++)
{
/* skip empty glyphs */
if (glyphs->glyphs[i].glyph == PANGO_GLYPH_EMPTY)
continue;
glyph_infos[n] = glyphs->glyphs[i];
if (glyphs->glyphs[i].attr.is_color)
self->has_color_glyphs = TRUE;
n++;
}
self->glyphs = glyph_infos;
self->num_glyphs = n;
graphene_rect_init (&node->bounds,
offset->x + ink_rect.x - 1,
offset->y + ink_rect.y - 1,
ink_rect.width + 2,
ink_rect.height + 2);
return node;
}
/**
* gsk_text_node_get_color:
* @node: (type GskTextNode): a text `GskRenderNode`
*
* Retrieves the color used by the text @node.
*
* Returns: (transfer none): the text color
*/
const GdkRGBA *
gsk_text_node_get_color (const GskRenderNode *node)
{
const GskTextNode *self = (const GskTextNode *) node;
return &self->color;
}
/**
* gsk_text_node_get_font:
* @node: (type GskTextNode): The `GskRenderNode`
*
* Returns the font used by the text @node.
*
* Returns: (transfer none): the font
*/
PangoFont *
gsk_text_node_get_font (const GskRenderNode *node)
{
const GskTextNode *self = (const GskTextNode *) node;
return self->font;
}
/**
* gsk_text_node_has_color_glyphs:
* @node: (type GskTextNode): a text `GskRenderNode`
*
* Checks whether the text @node has color glyphs.
*
* Returns: %TRUE if the text node has color glyphs
*
* Since: 4.2
*/
gboolean
gsk_text_node_has_color_glyphs (const GskRenderNode *node)
{
const GskTextNode *self = (const GskTextNode *) node;
return self->has_color_glyphs;
}
/**
* gsk_text_node_get_num_glyphs:
* @node: (type GskTextNode): a text `GskRenderNode`
*
* Retrieves the number of glyphs in the text node.
*
* Returns: the number of glyphs
*/
guint
gsk_text_node_get_num_glyphs (const GskRenderNode *node)
{
const GskTextNode *self = (const GskTextNode *) node;
return self->num_glyphs;
}
/**
* gsk_text_node_get_glyphs:
* @node: (type GskTextNode): a text `GskRenderNode`
* @n_glyphs: (out) (optional): the number of glyphs returned
*
* Retrieves the glyph information in the @node.
*
* Returns: (transfer none) (array length=n_glyphs): the glyph information
*/
const PangoGlyphInfo *
gsk_text_node_get_glyphs (const GskRenderNode *node,
guint *n_glyphs)
{
const GskTextNode *self = (const GskTextNode *) node;
if (n_glyphs != NULL)
*n_glyphs = self->num_glyphs;
return self->glyphs;
}
/**
* gsk_text_node_get_offset:
* @node: (type GskTextNode): a text `GskRenderNode`
*
* Retrieves the offset applied to the text.
*
* Returns: (transfer none): a point with the horizontal and vertical offsets
*/
const graphene_point_t *
gsk_text_node_get_offset (const GskRenderNode *node)
{
const GskTextNode *self = (const GskTextNode *) node;
return &self->offset;
}
/* }}} */
/* {{{ GSK_BLUR_NODE */
/**
* GskBlurNode:
*
* A render node applying a blur effect to its single child.
*/
struct _GskBlurNode
{
GskRenderNode render_node;
GskRenderNode *child;
float radius;
};
static void
gsk_blur_node_finalize (GskRenderNode *node)
{
GskBlurNode *self = (GskBlurNode *) node;
GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_BLUR_NODE));
gsk_render_node_unref (self->child);
parent_class->finalize (node);
}
static void
blur_once (cairo_surface_t *src,
cairo_surface_t *dest,
int radius,
guchar *div_kernel_size)
{
int width, height, src_rowstride, dest_rowstride, n_channels;
guchar *p_src, *p_dest, *c1, *c2;
int x, y, i, i1, i2, width_minus_1, height_minus_1, radius_plus_1;
int r, g, b, a;
guchar *p_dest_row, *p_dest_col;
width = cairo_image_surface_get_width (src);
height = cairo_image_surface_get_height (src);
n_channels = 4;
radius_plus_1 = radius + 1;
/* horizontal blur */
p_src = cairo_image_surface_get_data (src);
p_dest = cairo_image_surface_get_data (dest);
src_rowstride = cairo_image_surface_get_stride (src);
dest_rowstride = cairo_image_surface_get_stride (dest);
width_minus_1 = width - 1;
for (y = 0; y < height; y++)
{
/* calc the initial sums of the kernel */
r = g = b = a = 0;
for (i = -radius; i <= radius; i++)
{
c1 = p_src + (CLAMP (i, 0, width_minus_1) * n_channels);
r += c1[0];
g += c1[1];
b += c1[2];
a += c1[3];
}
p_dest_row = p_dest;
for (x = 0; x < width; x++)
{
/* set as the mean of the kernel */
p_dest_row[0] = div_kernel_size[r];
p_dest_row[1] = div_kernel_size[g];
p_dest_row[2] = div_kernel_size[b];
p_dest_row[3] = div_kernel_size[a];
p_dest_row += n_channels;
/* the pixel to add to the kernel */
i1 = x + radius_plus_1;
if (i1 > width_minus_1)
i1 = width_minus_1;
c1 = p_src + (i1 * n_channels);
/* the pixel to remove from the kernel */
i2 = x - radius;
if (i2 < 0)
i2 = 0;
c2 = p_src + (i2 * n_channels);
/* calc the new sums of the kernel */
r += c1[0] - c2[0];
g += c1[1] - c2[1];
b += c1[2] - c2[2];
a += c1[3] - c2[3];
}
p_src += src_rowstride;
p_dest += dest_rowstride;
}
/* vertical blur */
p_src = cairo_image_surface_get_data (dest);
p_dest = cairo_image_surface_get_data (src);
src_rowstride = cairo_image_surface_get_stride (dest);
dest_rowstride = cairo_image_surface_get_stride (src);
height_minus_1 = height - 1;
for (x = 0; x < width; x++)
{
/* calc the initial sums of the kernel */
r = g = b = a = 0;
for (i = -radius; i <= radius; i++)
{
c1 = p_src + (CLAMP (i, 0, height_minus_1) * src_rowstride);
r += c1[0];
g += c1[1];
b += c1[2];
a += c1[3];
}
p_dest_col = p_dest;
for (y = 0; y < height; y++)
{
/* set as the mean of the kernel */
p_dest_col[0] = div_kernel_size[r];
p_dest_col[1] = div_kernel_size[g];
p_dest_col[2] = div_kernel_size[b];
p_dest_col[3] = div_kernel_size[a];
p_dest_col += dest_rowstride;
/* the pixel to add to the kernel */
i1 = y + radius_plus_1;
if (i1 > height_minus_1)
i1 = height_minus_1;
c1 = p_src + (i1 * src_rowstride);
/* the pixel to remove from the kernel */
i2 = y - radius;
if (i2 < 0)
i2 = 0;
c2 = p_src + (i2 * src_rowstride);
/* calc the new sums of the kernel */
r += c1[0] - c2[0];
g += c1[1] - c2[1];
b += c1[2] - c2[2];
a += c1[3] - c2[3];
}
p_src += n_channels;
p_dest += n_channels;
}
}
static void
blur_image_surface (cairo_surface_t *surface, int radius, int iterations)
{
int kernel_size;
int i;
guchar *div_kernel_size;
cairo_surface_t *tmp;
int width, height;
g_assert (radius >= 0);
width = cairo_image_surface_get_width (surface);
height = cairo_image_surface_get_height (surface);
tmp = cairo_image_surface_create (CAIRO_FORMAT_ARGB32, width, height);
kernel_size = 2 * radius + 1;
div_kernel_size = g_new (guchar, 256 * kernel_size);
for (i = 0; i < 256 * kernel_size; i++)
div_kernel_size[i] = (guchar) (i / kernel_size);
while (iterations-- > 0)
blur_once (surface, tmp, radius, div_kernel_size);
g_free (div_kernel_size);
cairo_surface_destroy (tmp);
}
static void
gsk_blur_node_draw (GskRenderNode *node,
cairo_t *cr)
{
GskBlurNode *self = (GskBlurNode *) node;
cairo_pattern_t *pattern;
cairo_surface_t *surface;
cairo_surface_t *image_surface;
cairo_save (cr);
/* clip so the push_group() creates a smaller surface */
gsk_cairo_rectangle (cr, &node->bounds);
cairo_clip (cr);
cairo_push_group (cr);
gsk_render_node_draw (self->child, cr);
pattern = cairo_pop_group (cr);
cairo_pattern_get_surface (pattern, &surface);
image_surface = cairo_surface_map_to_image (surface, NULL);
blur_image_surface (image_surface, (int)self->radius, 3);
cairo_surface_mark_dirty (surface);
cairo_surface_unmap_image (surface, image_surface);
cairo_set_source (cr, pattern);
cairo_rectangle (cr,
node->bounds.origin.x, node->bounds.origin.y,
node->bounds.size.width, node->bounds.size.height);
cairo_fill (cr);
cairo_restore (cr);
cairo_pattern_destroy (pattern);
}
static void
gsk_blur_node_diff (GskRenderNode *node1,
GskRenderNode *node2,
cairo_region_t *region)
{
GskBlurNode *self1 = (GskBlurNode *) node1;
GskBlurNode *self2 = (GskBlurNode *) node2;
if (self1->radius == self2->radius)
{
cairo_rectangle_int_t rect;
cairo_region_t *sub;
int i, n, clip_radius;
clip_radius = ceil (gsk_cairo_blur_compute_pixels (self1->radius / 2.0));
sub = cairo_region_create ();
gsk_render_node_diff (self1->child, self2->child, sub);
n = cairo_region_num_rectangles (sub);
for (i = 0; i < n; i++)
{
cairo_region_get_rectangle (sub, i, &rect);
rect.x -= clip_radius;
rect.y -= clip_radius;
rect.width += 2 * clip_radius;
rect.height += 2 * clip_radius;
cairo_region_union_rectangle (region, &rect);
}
cairo_region_destroy (sub);
}
else
{
gsk_render_node_diff_impossible (node1, node2, region);
}
}
/**
* gsk_blur_node_new:
* @child: the child node to blur
* @radius: the blur radius. Must be positive
*
* Creates a render node that blurs the child.
*
* Returns: (transfer full) (type GskBlurNode): a new `GskRenderNode`
*/
GskRenderNode *
gsk_blur_node_new (GskRenderNode *child,
float radius)
{
GskBlurNode *self;
GskRenderNode *node;
float clip_radius;
g_return_val_if_fail (GSK_IS_RENDER_NODE (child), NULL);
g_return_val_if_fail (radius >= 0, NULL);
self = gsk_render_node_alloc (GSK_BLUR_NODE);
node = (GskRenderNode *) self;
node->offscreen_for_opacity = child->offscreen_for_opacity;
self->child = gsk_render_node_ref (child);
self->radius = radius;
clip_radius = gsk_cairo_blur_compute_pixels (radius / 2.0);
graphene_rect_init_from_rect (&node->bounds, &child->bounds);
graphene_rect_inset (&self->render_node.bounds,
- clip_radius,
- clip_radius);
node->prefers_high_depth = gsk_render_node_prefers_high_depth (child);
return node;
}
/**
* gsk_blur_node_get_child:
* @node: (type GskBlurNode): a blur `GskRenderNode`
*
* Retrieves the child `GskRenderNode` of the blur @node.
*
* Returns: (transfer none): the blurred child node
*/
GskRenderNode *
gsk_blur_node_get_child (const GskRenderNode *node)
{
const GskBlurNode *self = (const GskBlurNode *) node;
return self->child;
}
/**
* gsk_blur_node_get_radius:
* @node: (type GskBlurNode): a blur `GskRenderNode`
*
* Retrieves the blur radius of the @node.
*
* Returns: the blur radius
*/
float
gsk_blur_node_get_radius (const GskRenderNode *node)
{
const GskBlurNode *self = (const GskBlurNode *) node;
return self->radius;
}
/* }}} */
/* {{{ GSK_MASK_NODE */
/**
* GskMaskNode:
*
* A render node masking one child node with another.
*
* Since: 4.10
*/
typedef struct _GskMaskNode GskMaskNode;
struct _GskMaskNode
{
GskRenderNode render_node;
GskRenderNode *mask;
GskRenderNode *source;
GskMaskMode mask_mode;
};
static void
gsk_mask_node_finalize (GskRenderNode *node)
{
GskMaskNode *self = (GskMaskNode *) node;
gsk_render_node_unref (self->source);
gsk_render_node_unref (self->mask);
}
static void
gsk_mask_node_draw (GskRenderNode *node,
cairo_t *cr)
{
GskMaskNode *self = (GskMaskNode *) node;
cairo_pattern_t *mask_pattern;
graphene_matrix_t color_matrix;
graphene_vec4_t color_offset;
cairo_push_group (cr);
gsk_render_node_draw (self->source, cr);
cairo_pop_group_to_source (cr);
cairo_push_group (cr);
gsk_render_node_draw (self->mask, cr);
mask_pattern = cairo_pop_group (cr);
switch (self->mask_mode)
{
case GSK_MASK_MODE_ALPHA:
break;
case GSK_MASK_MODE_INVERTED_ALPHA:
graphene_matrix_init_from_float (&color_matrix, (float[]){ 1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, -1 });
graphene_vec4_init (&color_offset, 0, 0, 0, 1);
apply_color_matrix_to_pattern (mask_pattern, &color_matrix, &color_offset, FALSE);
break;
case GSK_MASK_MODE_LUMINANCE:
graphene_matrix_init_from_float (&color_matrix, (float[]){ 1, 0, 0, 0.2126,
0, 1, 0, 0.7152,
0, 0, 1, 0.0722,
0, 0, 0, 0 });
graphene_vec4_init (&color_offset, 0, 0, 0, 0);
apply_color_matrix_to_pattern (mask_pattern, &color_matrix, &color_offset, TRUE);
break;
case GSK_MASK_MODE_INVERTED_LUMINANCE:
graphene_matrix_init_from_float (&color_matrix, (float[]){ 1, 0, 0, -0.2126,
0, 1, 0, -0.7152,
0, 0, 1, -0.0722,
0, 0, 0, 0 });
graphene_vec4_init (&color_offset, 0, 0, 0, 1);
apply_color_matrix_to_pattern (mask_pattern, &color_matrix, &color_offset, TRUE);
break;
default:
g_assert_not_reached ();
}
gsk_cairo_rectangle (cr, &node->bounds);
cairo_clip (cr);
cairo_mask (cr, mask_pattern);
}
static void
gsk_mask_node_diff (GskRenderNode *node1,
GskRenderNode *node2,
cairo_region_t *region)
{
GskMaskNode *self1 = (GskMaskNode *) node1;
GskMaskNode *self2 = (GskMaskNode *) node2;
gsk_render_node_diff (self1->source, self2->source, region);
gsk_render_node_diff (self1->mask, self2->mask, region);
}
/**
* gsk_mask_node_new:
* @source: The source node to be drawn
* @mask: The node to be used as mask
* @mask_mode: The mask mode to use
*
* Creates a `GskRenderNode` that will mask a given node by another.
*
* The @mask_mode determines how the 'mask values' are derived from
* the colors of the @mask. Applying the mask consists of multiplying
* the 'mask value' with the alpha of the source.
*
* Returns: (transfer full) (type GskMaskNode): A new `GskRenderNode`
*
* Since: 4.10
*/
GskRenderNode *
gsk_mask_node_new (GskRenderNode *source,
GskRenderNode *mask,
GskMaskMode mask_mode)
{
GskMaskNode *self;
g_return_val_if_fail (GSK_IS_RENDER_NODE (source), NULL);
g_return_val_if_fail (GSK_IS_RENDER_NODE (mask), NULL);
self = gsk_render_node_alloc (GSK_MASK_NODE);
self->source = gsk_render_node_ref (source);
self->mask = gsk_render_node_ref (mask);
self->mask_mode = mask_mode;
self->render_node.bounds = source->bounds;
self->render_node.prefers_high_depth = gsk_render_node_prefers_high_depth (source);
return &self->render_node;
}
/**
* gsk_mask_node_get_source:
* @node: (type GskMaskNode): a mask `GskRenderNode`
*
* Retrieves the source `GskRenderNode` child of the @node.
*
* Returns: (transfer none): the source child node
*
* Since: 4.10
*/
GskRenderNode *
gsk_mask_node_get_source (const GskRenderNode *node)
{
const GskMaskNode *self = (const GskMaskNode *) node;
g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_MASK_NODE), NULL);
return self->source;
}
/**
* gsk_mask_node_get_mask:
* @node: (type GskMaskNode): a mask `GskRenderNode`
*
* Retrieves the mask `GskRenderNode` child of the @node.
*
* Returns: (transfer none): the mask child node
*
* Since: 4.10
*/
GskRenderNode *
gsk_mask_node_get_mask (const GskRenderNode *node)
{
const GskMaskNode *self = (const GskMaskNode *) node;
g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_MASK_NODE), NULL);
return self->mask;
}
/**
* gsk_mask_node_get_mask_mode:
* @node: (type GskMaskNode): a blending `GskRenderNode`
*
* Retrieves the mask mode used by @node.
*
* Returns: the mask mode
*
* Since: 4.10
*/
GskMaskMode
gsk_mask_node_get_mask_mode (const GskRenderNode *node)
{
const GskMaskNode *self = (const GskMaskNode *) node;
return self->mask_mode;
}
/* }}} */
/* {{{ GSK_DEBUG_NODE */
/**
* GskDebugNode:
*
* A render node that emits a debugging message when drawing its
* child node.
*/
struct _GskDebugNode
{
GskRenderNode render_node;
GskRenderNode *child;
char *message;
};
static void
gsk_debug_node_finalize (GskRenderNode *node)
{
GskDebugNode *self = (GskDebugNode *) node;
GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_DEBUG_NODE));
gsk_render_node_unref (self->child);
g_free (self->message);
parent_class->finalize (node);
}
static void
gsk_debug_node_draw (GskRenderNode *node,
cairo_t *cr)
{
GskDebugNode *self = (GskDebugNode *) node;
gsk_render_node_draw (self->child, cr);
}
static gboolean
gsk_debug_node_can_diff (const GskRenderNode *node1,
const GskRenderNode *node2)
{
GskDebugNode *self1 = (GskDebugNode *) node1;
GskDebugNode *self2 = (GskDebugNode *) node2;
return gsk_render_node_can_diff (self1->child, self2->child);
}
static void
gsk_debug_node_diff (GskRenderNode *node1,
GskRenderNode *node2,
cairo_region_t *region)
{
GskDebugNode *self1 = (GskDebugNode *) node1;
GskDebugNode *self2 = (GskDebugNode *) node2;
gsk_render_node_diff (self1->child, self2->child, region);
}
/**
* gsk_debug_node_new:
* @child: The child to add debug info for
* @message: (transfer full): The debug message
*
* Creates a `GskRenderNode` that will add debug information about
* the given @child.
*
* Adding this node has no visual effect.
*
* Returns: (transfer full) (type GskDebugNode): A new `GskRenderNode`
*/
GskRenderNode *
gsk_debug_node_new (GskRenderNode *child,
char *message)
{
GskDebugNode *self;
GskRenderNode *node;
g_return_val_if_fail (GSK_IS_RENDER_NODE (child), NULL);
self = gsk_render_node_alloc (GSK_DEBUG_NODE);
node = (GskRenderNode *) self;
node->offscreen_for_opacity = child->offscreen_for_opacity;
self->child = gsk_render_node_ref (child);
self->message = message;
graphene_rect_init_from_rect (&node->bounds, &child->bounds);
node->prefers_high_depth = gsk_render_node_prefers_high_depth (child);
return node;
}
/**
* gsk_debug_node_get_child:
* @node: (type GskDebugNode): a debug `GskRenderNode`
*
* Gets the child node that is getting drawn by the given @node.
*
* Returns: (transfer none): the child `GskRenderNode`
**/
GskRenderNode *
gsk_debug_node_get_child (const GskRenderNode *node)
{
const GskDebugNode *self = (const GskDebugNode *) node;
return self->child;
}
/**
* gsk_debug_node_get_message:
* @node: (type GskDebugNode): a debug `GskRenderNode`
*
* Gets the debug message that was set on this node
*
* Returns: (transfer none): The debug message
**/
const char *
gsk_debug_node_get_message (const GskRenderNode *node)
{
const GskDebugNode *self = (const GskDebugNode *) node;
return self->message;
}
/* }}} */
/* {{{ GSK_GL_SHADER_NODE */
/**
* GskGLShaderNode:
*
* A render node using a GL shader when drawing its children nodes.
*/
struct _GskGLShaderNode
{
GskRenderNode render_node;
GskGLShader *shader;
GBytes *args;
GskRenderNode **children;
guint n_children;
};
static void
gsk_gl_shader_node_finalize (GskRenderNode *node)
{
GskGLShaderNode *self = (GskGLShaderNode *) node;
GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_GL_SHADER_NODE));
for (guint i = 0; i < self->n_children; i++)
gsk_render_node_unref (self->children[i]);
g_free (self->children);
g_bytes_unref (self->args);
g_object_unref (self->shader);
parent_class->finalize (node);
}
static void
gsk_gl_shader_node_draw (GskRenderNode *node,
cairo_t *cr)
{
cairo_set_source_rgb (cr, 255 / 255., 105 / 255., 180 / 255.);
gsk_cairo_rectangle (cr, &node->bounds);
cairo_fill (cr);
}
static void
gsk_gl_shader_node_diff (GskRenderNode *node1,
GskRenderNode *node2,
cairo_region_t *region)
{
GskGLShaderNode *self1 = (GskGLShaderNode *) node1;
GskGLShaderNode *self2 = (GskGLShaderNode *) node2;
if (graphene_rect_equal (&node1->bounds, &node2->bounds) &&
self1->shader == self2->shader &&
g_bytes_compare (self1->args, self2->args) == 0 &&
self1->n_children == self2->n_children)
{
cairo_region_t *child_region = cairo_region_create();
for (guint i = 0; i < self1->n_children; i++)
gsk_render_node_diff (self1->children[i], self2->children[i], child_region);
if (!cairo_region_is_empty (child_region))
gsk_render_node_diff_impossible (node1, node2, region);
cairo_region_destroy (child_region);
}
else
{
gsk_render_node_diff_impossible (node1, node2, region);
}
}
/**
* gsk_gl_shader_node_new:
* @shader: the `GskGLShader`
* @bounds: the rectangle to render the shader into
* @args: Arguments for the uniforms
* @children: (nullable) (array length=n_children): array of child nodes,
* these will be rendered to textures and used as input.
* @n_children: Length of @children (currently the GL backend supports
* up to 4 children)
*
* Creates a `GskRenderNode` that will render the given @shader into the
* area given by @bounds.
*
* The @args is a block of data to use for uniform input, as per types and
* offsets defined by the @shader. Normally this is generated by
* [method@Gsk.GLShader.format_args] or [struct@Gsk.ShaderArgsBuilder].
*
* See [class@Gsk.GLShader] for details about how the shader should be written.
*
* All the children will be rendered into textures (if they aren't already
* `GskTextureNodes`, which will be used directly). These textures will be
* sent as input to the shader.
*
* If the renderer doesn't support GL shaders, or if there is any problem
* when compiling the shader, then the node will draw pink. You should use
* [method@Gsk.GLShader.compile] to ensure the @shader will work for the
* renderer before using it.
*
* Returns: (transfer full) (type GskGLShaderNode): A new `GskRenderNode`
*/
GskRenderNode *
gsk_gl_shader_node_new (GskGLShader *shader,
const graphene_rect_t *bounds,
GBytes *args,
GskRenderNode **children,
guint n_children)
{
GskGLShaderNode *self;
GskRenderNode *node;
g_return_val_if_fail (GSK_IS_GL_SHADER (shader), NULL);
g_return_val_if_fail (bounds != NULL, NULL);
g_return_val_if_fail (args != NULL, NULL);
g_return_val_if_fail (g_bytes_get_size (args) == gsk_gl_shader_get_args_size (shader), NULL);
g_return_val_if_fail ((children == NULL && n_children == 0) ||
(n_children == gsk_gl_shader_get_n_textures (shader)), NULL);
self = gsk_render_node_alloc (GSK_GL_SHADER_NODE);
node = (GskRenderNode *) self;
node->offscreen_for_opacity = TRUE;
graphene_rect_init_from_rect (&node->bounds, bounds);
self->shader = g_object_ref (shader);
self->args = g_bytes_ref (args);
self->n_children = n_children;
if (n_children > 0)
{
self->children = g_malloc_n (n_children, sizeof (GskRenderNode *));
for (guint i = 0; i < n_children; i++)
{
self->children[i] = gsk_render_node_ref (children[i]);
node->prefers_high_depth |= gsk_render_node_prefers_high_depth (children[i]);
}
}
return node;
}
/**
* gsk_gl_shader_node_get_n_children:
* @node: (type GskGLShaderNode): a `GskRenderNode` for a gl shader
*
* Returns the number of children
*
* Returns: The number of children
*/
guint
gsk_gl_shader_node_get_n_children (const GskRenderNode *node)
{
const GskGLShaderNode *self = (const GskGLShaderNode *) node;
return self->n_children;
}
/**
* gsk_gl_shader_node_get_child:
* @node: (type GskGLShaderNode): a `GskRenderNode` for a gl shader
* @idx: the position of the child to get
*
* Gets one of the children.
*
* Returns: (transfer none): the @idx'th child of @node
*/
GskRenderNode *
gsk_gl_shader_node_get_child (const GskRenderNode *node,
guint idx)
{
const GskGLShaderNode *self = (const GskGLShaderNode *) node;
return self->children[idx];
}
/**
* gsk_gl_shader_node_get_shader:
* @node: (type GskGLShaderNode): a `GskRenderNode` for a gl shader
*
* Gets shader code for the node.
*
* Returns: (transfer none): the `GskGLShader` shader
*/
GskGLShader *
gsk_gl_shader_node_get_shader (const GskRenderNode *node)
{
const GskGLShaderNode *self = (const GskGLShaderNode *) node;
return self->shader;
}
/**
* gsk_gl_shader_node_get_args:
* @node: (type GskGLShaderNode): a `GskRenderNode` for a gl shader
*
* Gets args for the node.
*
* Returns: (transfer none): A `GBytes` with the uniform arguments
*/
GBytes *
gsk_gl_shader_node_get_args (const GskRenderNode *node)
{
const GskGLShaderNode *self = (const GskGLShaderNode *) node;
return self->args;
}
/* }}} */
GType gsk_render_node_types[GSK_RENDER_NODE_TYPE_N_TYPES];
#ifndef I_
# define I_(str) g_intern_static_string ((str))
#endif
#define GSK_DEFINE_RENDER_NODE_TYPE(type_name, TYPE_ENUM_VALUE) \
GType \
type_name ## _get_type (void) { \
gsk_render_node_init_types (); \
g_assert (gsk_render_node_types[TYPE_ENUM_VALUE] != G_TYPE_INVALID); \
return gsk_render_node_types[TYPE_ENUM_VALUE]; \
}
GSK_DEFINE_RENDER_NODE_TYPE (gsk_container_node, GSK_CONTAINER_NODE)
GSK_DEFINE_RENDER_NODE_TYPE (gsk_cairo_node, GSK_CAIRO_NODE)
GSK_DEFINE_RENDER_NODE_TYPE (gsk_color_node, GSK_COLOR_NODE)
GSK_DEFINE_RENDER_NODE_TYPE (gsk_linear_gradient_node, GSK_LINEAR_GRADIENT_NODE)
GSK_DEFINE_RENDER_NODE_TYPE (gsk_repeating_linear_gradient_node, GSK_REPEATING_LINEAR_GRADIENT_NODE)
GSK_DEFINE_RENDER_NODE_TYPE (gsk_radial_gradient_node, GSK_RADIAL_GRADIENT_NODE)
GSK_DEFINE_RENDER_NODE_TYPE (gsk_repeating_radial_gradient_node, GSK_REPEATING_RADIAL_GRADIENT_NODE)
GSK_DEFINE_RENDER_NODE_TYPE (gsk_conic_gradient_node, GSK_CONIC_GRADIENT_NODE)
GSK_DEFINE_RENDER_NODE_TYPE (gsk_border_node, GSK_BORDER_NODE)
GSK_DEFINE_RENDER_NODE_TYPE (gsk_texture_node, GSK_TEXTURE_NODE)
GSK_DEFINE_RENDER_NODE_TYPE (gsk_texture_scale_node, GSK_TEXTURE_SCALE_NODE)
GSK_DEFINE_RENDER_NODE_TYPE (gsk_inset_shadow_node, GSK_INSET_SHADOW_NODE)
GSK_DEFINE_RENDER_NODE_TYPE (gsk_outset_shadow_node, GSK_OUTSET_SHADOW_NODE)
GSK_DEFINE_RENDER_NODE_TYPE (gsk_transform_node, GSK_TRANSFORM_NODE)
GSK_DEFINE_RENDER_NODE_TYPE (gsk_opacity_node, GSK_OPACITY_NODE)
GSK_DEFINE_RENDER_NODE_TYPE (gsk_color_matrix_node, GSK_COLOR_MATRIX_NODE)
GSK_DEFINE_RENDER_NODE_TYPE (gsk_repeat_node, GSK_REPEAT_NODE)
GSK_DEFINE_RENDER_NODE_TYPE (gsk_clip_node, GSK_CLIP_NODE)
GSK_DEFINE_RENDER_NODE_TYPE (gsk_rounded_clip_node, GSK_ROUNDED_CLIP_NODE)
GSK_DEFINE_RENDER_NODE_TYPE (gsk_shadow_node, GSK_SHADOW_NODE)
GSK_DEFINE_RENDER_NODE_TYPE (gsk_blend_node, GSK_BLEND_NODE)
GSK_DEFINE_RENDER_NODE_TYPE (gsk_cross_fade_node, GSK_CROSS_FADE_NODE)
GSK_DEFINE_RENDER_NODE_TYPE (gsk_text_node, GSK_TEXT_NODE)
GSK_DEFINE_RENDER_NODE_TYPE (gsk_blur_node, GSK_BLUR_NODE)
GSK_DEFINE_RENDER_NODE_TYPE (gsk_mask_node, GSK_MASK_NODE)
GSK_DEFINE_RENDER_NODE_TYPE (gsk_gl_shader_node, GSK_GL_SHADER_NODE)
GSK_DEFINE_RENDER_NODE_TYPE (gsk_debug_node, GSK_DEBUG_NODE)
static void
gsk_render_node_init_types_once (void)
{
{
const GskRenderNodeTypeInfo node_info =
{
GSK_CONTAINER_NODE,
sizeof (GskContainerNode),
NULL,
gsk_container_node_finalize,
gsk_container_node_draw,
NULL,
gsk_container_node_diff,
};
GType node_type = gsk_render_node_type_register_static (I_("GskContainerNode"), &node_info);
gsk_render_node_types[GSK_CONTAINER_NODE] = node_type;
}
{
const GskRenderNodeTypeInfo node_info =
{
GSK_CAIRO_NODE,
sizeof (GskCairoNode),
NULL,
gsk_cairo_node_finalize,
gsk_cairo_node_draw,
NULL,
NULL,
};
GType node_type = gsk_render_node_type_register_static (I_("GskCairoNode"), &node_info);
gsk_render_node_types[GSK_CAIRO_NODE] = node_type;
}
{
const GskRenderNodeTypeInfo node_info =
{
GSK_COLOR_NODE,
sizeof (GskColorNode),
NULL,
NULL,
gsk_color_node_draw,
NULL,
gsk_color_node_diff,
};
GType node_type = gsk_render_node_type_register_static (I_("GskColorNode"), &node_info);
gsk_render_node_types[GSK_COLOR_NODE] = node_type;
}
{
const GskRenderNodeTypeInfo node_info =
{
GSK_LINEAR_GRADIENT_NODE,
sizeof (GskLinearGradientNode),
NULL,
gsk_linear_gradient_node_finalize,
gsk_linear_gradient_node_draw,
NULL,
gsk_linear_gradient_node_diff,
};
GType node_type = gsk_render_node_type_register_static (I_("GskLinearGradientNode"), &node_info);
gsk_render_node_types[GSK_LINEAR_GRADIENT_NODE] = node_type;
}
{
const GskRenderNodeTypeInfo node_info =
{
GSK_REPEATING_LINEAR_GRADIENT_NODE,
sizeof (GskLinearGradientNode),
NULL,
gsk_linear_gradient_node_finalize,
gsk_linear_gradient_node_draw,
NULL,
gsk_linear_gradient_node_diff,
};
GType node_type = gsk_render_node_type_register_static (I_("GskRepeatingLinearGradientNode"), &node_info);
gsk_render_node_types[GSK_REPEATING_LINEAR_GRADIENT_NODE] = node_type;
}
{
const GskRenderNodeTypeInfo node_info =
{
GSK_RADIAL_GRADIENT_NODE,
sizeof (GskRadialGradientNode),
NULL,
gsk_radial_gradient_node_finalize,
gsk_radial_gradient_node_draw,
NULL,
gsk_radial_gradient_node_diff,
};
GType node_type = gsk_render_node_type_register_static (I_("GskRadialGradientNode"), &node_info);
gsk_render_node_types[GSK_RADIAL_GRADIENT_NODE] = node_type;
}
{
const GskRenderNodeTypeInfo node_info =
{
GSK_REPEATING_RADIAL_GRADIENT_NODE,
sizeof (GskRadialGradientNode),
NULL,
gsk_radial_gradient_node_finalize,
gsk_radial_gradient_node_draw,
NULL,
gsk_radial_gradient_node_diff,
};
GType node_type = gsk_render_node_type_register_static (I_("GskRepeatingRadialGradientNode"), &node_info);
gsk_render_node_types[GSK_REPEATING_RADIAL_GRADIENT_NODE] = node_type;
}
{
const GskRenderNodeTypeInfo node_info =
{
GSK_CONIC_GRADIENT_NODE,
sizeof (GskConicGradientNode),
NULL,
gsk_conic_gradient_node_finalize,
gsk_conic_gradient_node_draw,
NULL,
gsk_conic_gradient_node_diff,
};
GType node_type = gsk_render_node_type_register_static (I_("GskConicGradientNode"), &node_info);
gsk_render_node_types[GSK_CONIC_GRADIENT_NODE] = node_type;
}
{
const GskRenderNodeTypeInfo node_info =
{
GSK_BORDER_NODE,
sizeof (GskBorderNode),
NULL,
NULL,
gsk_border_node_draw,
NULL,
gsk_border_node_diff,
};
GType node_type = gsk_render_node_type_register_static (I_("GskBorderNode"), &node_info);
gsk_render_node_types[GSK_BORDER_NODE] = node_type;
}
{
const GskRenderNodeTypeInfo node_info =
{
GSK_TEXTURE_NODE,
sizeof (GskTextureNode),
NULL,
gsk_texture_node_finalize,
gsk_texture_node_draw,
NULL,
gsk_texture_node_diff,
};
GType node_type = gsk_render_node_type_register_static (I_("GskTextureNode"), &node_info);
gsk_render_node_types[GSK_TEXTURE_NODE] = node_type;
}
{
const GskRenderNodeTypeInfo node_info =
{
GSK_TEXTURE_SCALE_NODE,
sizeof (GskTextureScaleNode),
NULL,
gsk_texture_scale_node_finalize,
gsk_texture_scale_node_draw,
NULL,
gsk_texture_scale_node_diff,
};
GType node_type = gsk_render_node_type_register_static (I_("GskTextureScaleNode"), &node_info);
gsk_render_node_types[GSK_TEXTURE_SCALE_NODE] = node_type;
}
{
const GskRenderNodeTypeInfo node_info =
{
GSK_INSET_SHADOW_NODE,
sizeof (GskInsetShadowNode),
NULL,
NULL,
gsk_inset_shadow_node_draw,
NULL,
gsk_inset_shadow_node_diff,
};
GType node_type = gsk_render_node_type_register_static (I_("GskInsetShadowNode"), &node_info);
gsk_render_node_types[GSK_INSET_SHADOW_NODE] = node_type;
}
{
const GskRenderNodeTypeInfo node_info =
{
GSK_OUTSET_SHADOW_NODE,
sizeof (GskOutsetShadowNode),
NULL,
NULL,
gsk_outset_shadow_node_draw,
NULL,
gsk_outset_shadow_node_diff,
};
GType node_type = gsk_render_node_type_register_static (I_("GskOutsetShadowNode"), &node_info);
gsk_render_node_types[GSK_OUTSET_SHADOW_NODE] = node_type;
}
{
const GskRenderNodeTypeInfo node_info =
{
GSK_TRANSFORM_NODE,
sizeof (GskTransformNode),
NULL,
gsk_transform_node_finalize,
gsk_transform_node_draw,
gsk_transform_node_can_diff,
gsk_transform_node_diff,
};
GType node_type = gsk_render_node_type_register_static (I_("GskTransformNode"), &node_info);
gsk_render_node_types[GSK_TRANSFORM_NODE] = node_type;
}
{
const GskRenderNodeTypeInfo node_info =
{
GSK_OPACITY_NODE,
sizeof (GskOpacityNode),
NULL,
gsk_opacity_node_finalize,
gsk_opacity_node_draw,
NULL,
gsk_opacity_node_diff,
};
GType node_type = gsk_render_node_type_register_static (I_("GskOpacityNode"), &node_info);
gsk_render_node_types[GSK_OPACITY_NODE] = node_type;
}
{
const GskRenderNodeTypeInfo node_info =
{
GSK_COLOR_MATRIX_NODE,
sizeof (GskColorMatrixNode),
NULL,
gsk_color_matrix_node_finalize,
gsk_color_matrix_node_draw,
NULL,
gsk_color_matrix_node_diff,
};
GType node_type = gsk_render_node_type_register_static (I_("GskColorMatrixNode"), &node_info);
gsk_render_node_types[GSK_COLOR_MATRIX_NODE] = node_type;
}
{
const GskRenderNodeTypeInfo node_info =
{
GSK_REPEAT_NODE,
sizeof (GskRepeatNode),
NULL,
gsk_repeat_node_finalize,
gsk_repeat_node_draw,
NULL,
NULL,
};
GType node_type = gsk_render_node_type_register_static (I_("GskRepeatNode"), &node_info);
gsk_render_node_types[GSK_REPEAT_NODE] = node_type;
}
{
const GskRenderNodeTypeInfo node_info =
{
GSK_CLIP_NODE,
sizeof (GskClipNode),
NULL,
gsk_clip_node_finalize,
gsk_clip_node_draw,
NULL,
gsk_clip_node_diff,
};
GType node_type = gsk_render_node_type_register_static (I_("GskClipNode"), &node_info);
gsk_render_node_types[GSK_CLIP_NODE] = node_type;
}
{
const GskRenderNodeTypeInfo node_info =
{
GSK_ROUNDED_CLIP_NODE,
sizeof (GskRoundedClipNode),
NULL,
gsk_rounded_clip_node_finalize,
gsk_rounded_clip_node_draw,
NULL,
gsk_rounded_clip_node_diff,
};
GType node_type = gsk_render_node_type_register_static (I_("GskRoundedClipNode"), &node_info);
gsk_render_node_types[GSK_ROUNDED_CLIP_NODE] = node_type;
}
{
const GskRenderNodeTypeInfo node_info =
{
GSK_SHADOW_NODE,
sizeof (GskShadowNode),
NULL,
gsk_shadow_node_finalize,
gsk_shadow_node_draw,
NULL,
gsk_shadow_node_diff,
};
GType node_type = gsk_render_node_type_register_static (I_("GskShadowNode"), &node_info);
gsk_render_node_types[GSK_SHADOW_NODE] = node_type;
}
{
const GskRenderNodeTypeInfo node_info =
{
GSK_BLEND_NODE,
sizeof (GskBlendNode),
NULL,
gsk_blend_node_finalize,
gsk_blend_node_draw,
NULL,
gsk_blend_node_diff,
};
GType node_type = gsk_render_node_type_register_static (I_("GskBlendNode"), &node_info);
gsk_render_node_types[GSK_BLEND_NODE] = node_type;
}
{
const GskRenderNodeTypeInfo node_info =
{
GSK_CROSS_FADE_NODE,
sizeof (GskCrossFadeNode),
NULL,
gsk_cross_fade_node_finalize,
gsk_cross_fade_node_draw,
NULL,
gsk_cross_fade_node_diff,
};
GType node_type = gsk_render_node_type_register_static (I_("GskCrossFadeNode"), &node_info);
gsk_render_node_types[GSK_CROSS_FADE_NODE] = node_type;
}
{
const GskRenderNodeTypeInfo node_info =
{
GSK_TEXT_NODE,
sizeof (GskTextNode),
NULL,
gsk_text_node_finalize,
gsk_text_node_draw,
NULL,
gsk_text_node_diff,
};
GType node_type = gsk_render_node_type_register_static (I_("GskTextNode"), &node_info);
gsk_render_node_types[GSK_TEXT_NODE] = node_type;
}
{
const GskRenderNodeTypeInfo node_info =
{
GSK_BLUR_NODE,
sizeof (GskBlurNode),
NULL,
gsk_blur_node_finalize,
gsk_blur_node_draw,
NULL,
gsk_blur_node_diff,
};
GType node_type = gsk_render_node_type_register_static (I_("GskBlurNode"), &node_info);
gsk_render_node_types[GSK_BLUR_NODE] = node_type;
}
{
const GskRenderNodeTypeInfo node_info =
{
GSK_MASK_NODE,
sizeof (GskMaskNode),
NULL,
gsk_mask_node_finalize,
gsk_mask_node_draw,
NULL,
gsk_mask_node_diff,
};
GType node_type = gsk_render_node_type_register_static (I_("GskMaskNode"), &node_info);
gsk_render_node_types[GSK_MASK_NODE] = node_type;
}
{
const GskRenderNodeTypeInfo node_info =
{
GSK_GL_SHADER_NODE,
sizeof (GskGLShaderNode),
NULL,
gsk_gl_shader_node_finalize,
gsk_gl_shader_node_draw,
NULL,
gsk_gl_shader_node_diff,
};
GType node_type = gsk_render_node_type_register_static (I_("GskGLShaderNode"), &node_info);
gsk_render_node_types[GSK_GL_SHADER_NODE] = node_type;
}
{
const GskRenderNodeTypeInfo node_info =
{
GSK_DEBUG_NODE,
sizeof (GskDebugNode),
NULL,
gsk_debug_node_finalize,
gsk_debug_node_draw,
gsk_debug_node_can_diff,
gsk_debug_node_diff,
};
GType node_type = gsk_render_node_type_register_static (I_("GskDebugNode"), &node_info);
gsk_render_node_types[GSK_DEBUG_NODE] = node_type;
}
}
static void
gsk_render_node_content_serializer_finish (GObject *source,
GAsyncResult *result,
gpointer serializer)
{
GOutputStream *stream = G_OUTPUT_STREAM (source);
GError *error = NULL;
if (g_output_stream_splice_finish (stream, result, &error) < 0)
gdk_content_serializer_return_error (serializer, error);
else
gdk_content_serializer_return_success (serializer);
}
static void
gsk_render_node_content_serializer (GdkContentSerializer *serializer)
{
GInputStream *input;
const GValue *value;
GskRenderNode *node;
GBytes *bytes;
value = gdk_content_serializer_get_value (serializer);
node = gsk_value_get_render_node (value);
bytes = gsk_render_node_serialize (node);
input = g_memory_input_stream_new_from_bytes (bytes);
g_output_stream_splice_async (gdk_content_serializer_get_output_stream (serializer),
input,
G_OUTPUT_STREAM_SPLICE_CLOSE_SOURCE,
gdk_content_serializer_get_priority (serializer),
gdk_content_serializer_get_cancellable (serializer),
gsk_render_node_content_serializer_finish,
serializer);
g_object_unref (input);
g_bytes_unref (bytes);
}
static void
gsk_render_node_content_deserializer_finish (GObject *source,
GAsyncResult *result,
gpointer deserializer)
{
GOutputStream *stream = G_OUTPUT_STREAM (source);
GError *error = NULL;
gssize written;
GValue *value;
GskRenderNode *node;
GBytes *bytes;
written = g_output_stream_splice_finish (stream, result, &error);
if (written < 0)
{
gdk_content_deserializer_return_error (deserializer, error);
return;
}
bytes = g_memory_output_stream_steal_as_bytes (G_MEMORY_OUTPUT_STREAM (stream));
/* For now, we ignore any parsing errors. We might want to revisit that if it turns
* out copy/paste leads to too many errors */
node = gsk_render_node_deserialize (bytes, NULL, NULL);
value = gdk_content_deserializer_get_value (deserializer);
gsk_value_take_render_node (value, node);
gdk_content_deserializer_return_success (deserializer);
}
static void
gsk_render_node_content_deserializer (GdkContentDeserializer *deserializer)
{
GOutputStream *output;
output = g_memory_output_stream_new_resizable ();
g_output_stream_splice_async (output,
gdk_content_deserializer_get_input_stream (deserializer),
G_OUTPUT_STREAM_SPLICE_CLOSE_SOURCE | G_OUTPUT_STREAM_SPLICE_CLOSE_TARGET,
gdk_content_deserializer_get_priority (deserializer),
gdk_content_deserializer_get_cancellable (deserializer),
gsk_render_node_content_deserializer_finish,
deserializer);
g_object_unref (output);
}
static void
gsk_render_node_init_content_serializers (void)
{
gdk_content_register_serializer (GSK_TYPE_RENDER_NODE,
"application/x-gtk-render-node",
gsk_render_node_content_serializer,
NULL,
NULL);
gdk_content_register_serializer (GSK_TYPE_RENDER_NODE,
"text/plain;charset=utf-8",
gsk_render_node_content_serializer,
NULL,
NULL);
/* The serialization format only outputs ASCII, so we can do this */
gdk_content_register_serializer (GSK_TYPE_RENDER_NODE,
"text/plain",
gsk_render_node_content_serializer,
NULL,
NULL);
gdk_content_register_deserializer ("application/x-gtk-render-node",
GSK_TYPE_RENDER_NODE,
gsk_render_node_content_deserializer,
NULL,
NULL);
}
/*< private >
* gsk_render_node_init_types:
*
* Initialize all the `GskRenderNode` types provided by GSK.
*/
void
gsk_render_node_init_types (void)
{
static gsize register_types__volatile;
if (g_once_init_enter (&register_types__volatile))
{
gboolean initialized = TRUE;
gsk_render_node_init_types_once ();
gsk_render_node_init_content_serializers ();
g_once_init_leave (&register_types__volatile, initialized);
}
}
/* vim:set foldmethod=marker expandtab: */