gtk2/gdk/gdkkeys.c
Pavel Holejsovsky a1c297a310 [GI] Cosmetic cleanups of annotations and doc comments
This change does not introduce any functionality change, mostly
cosmtic cleanups, like re-linebreak when introduced annotations messed
up indentation or whitespace errors fixes.
2011-01-18 17:31:59 +01:00

625 lines
21 KiB
C

/* GDK - The GIMP Drawing Kit
* Copyright (C) 2000 Red Hat, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
/*
* Modified by the GTK+ Team and others 1997-2000. See the AUTHORS
* file for a list of people on the GTK+ Team. See the ChangeLog
* files for a list of changes. These files are distributed with
* GTK+ at ftp://ftp.gtk.org/pub/gtk/.
*/
#include "config.h"
#include "gdkkeysprivate.h"
#include "gdkdisplay.h"
#include "gdkdisplaymanagerprivate.h"
/**
* SECTION:keys
* @Short_description: Functions for manipulating keyboard codes
* @Title: Key Values
*
* Key values are the codes which are sent whenever a key is pressed or released.
* They appear in the #GdkEventKey.keyval field of the
* #GdkEventKey structure, which is passed to signal handlers for the
* #GtkWidget::key-press-event and #GtkWidget::key-release-event signals.
* The complete list of key values can be found in the
* <filename>&lt;gdk/gdkkeysyms.h&gt;</filename> header file.
*
* Key values are regularly updated from the upstream X.org X11 implementation,
* so new values are added regularly. They will be prefixed with GDK_KEY_ rather
* than XF86XK_ or XK_ (for older symbols).
*
* Key values can be converted into a string representation using
* gdk_keyval_name(). The reverse function, converting a string to a key value,
* is provided by gdk_keyval_from_name().
*
* The case of key values can be determined using gdk_keyval_is_upper() and
* gdk_keyval_is_lower(). Key values can be converted to upper or lower case
* using gdk_keyval_to_upper() and gdk_keyval_to_lower().
*
* When it makes sense, key values can be converted to and from
* Unicode characters with gdk_keyval_to_unicode() and gdk_unicode_to_keyval().
*
* <para id="key-group-explanation">
* One #GdkKeymap object exists for each user display. gdk_keymap_get_default()
* returns the #GdkKeymap for the default display; to obtain keymaps for other
* displays, use gdk_keymap_get_for_display(). A keymap
* is a mapping from #GdkKeymapKey to key values. You can think of a #GdkKeymapKey
* as a representation of a symbol printed on a physical keyboard key. That is, it
* contains three pieces of information. First, it contains the hardware keycode;
* this is an identifying number for a physical key. Second, it contains the
* <firstterm>level</firstterm> of the key. The level indicates which symbol on the
* key will be used, in a vertical direction. So on a standard US keyboard, the key
* with the number "1" on it also has the exclamation point ("!") character on
* it. The level indicates whether to use the "1" or the "!" symbol. The letter
* keys are considered to have a lowercase letter at level 0, and an uppercase
* letter at level 1, though only the uppercase letter is printed. Third, the
* #GdkKeymapKey contains a group; groups are not used on standard US keyboards,
* but are used in many other countries. On a keyboard with groups, there can be 3
* or 4 symbols printed on a single key. The group indicates movement in a
* horizontal direction. Usually groups are used for two different languages. In
* group 0, a key might have two English characters, and in group 1 it might have
* two Hebrew characters. The Hebrew characters will be printed on the key next to
* the English characters.
* </para>
*
* In order to use a keymap to interpret a key event, it's necessary to first
* convert the keyboard state into an effective group and level. This is done via a
* set of rules that varies widely according to type of keyboard and user
* configuration. The function gdk_keymap_translate_keyboard_state() accepts a
* keyboard state -- consisting of hardware keycode pressed, active modifiers, and
* active group -- applies the appropriate rules, and returns the group/level to be
* used to index the keymap, along with the modifiers which did not affect the
* group and level. i.e. it returns "unconsumed modifiers." The keyboard group may
* differ from the effective group used for keymap lookups because some keys don't
* have multiple groups - e.g. the Enter key is always in group 0 regardless of
* keyboard state.
*
* Note that gdk_keymap_translate_keyboard_state() also returns the keyval, i.e. it
* goes ahead and performs the keymap lookup in addition to telling you which
* effective group/level values were used for the lookup. #GdkEventKey already
* contains this keyval, however, so you don't normally need to call
* gdk_keymap_translate_keyboard_state() just to get the keyval.
*/
enum {
DIRECTION_CHANGED,
KEYS_CHANGED,
STATE_CHANGED,
LAST_SIGNAL
};
static guint signals[LAST_SIGNAL] = { 0 };
G_DEFINE_TYPE (GdkKeymap, gdk_keymap, G_TYPE_OBJECT)
static void
gdk_keymap_class_init (GdkKeymapClass *klass)
{
GObjectClass *object_class = G_OBJECT_CLASS (klass);
/**
* GdkKeymap::direction-changed:
* @keymap: the object on which the signal is emitted
*
* The ::direction-changed signal gets emitted when the direction of
* the keymap changes.
*
* Since: 2.0
*/
signals[DIRECTION_CHANGED] =
g_signal_new ("direction-changed",
G_OBJECT_CLASS_TYPE (object_class),
G_SIGNAL_RUN_LAST,
G_STRUCT_OFFSET (GdkKeymapClass, direction_changed),
NULL, NULL,
g_cclosure_marshal_VOID__VOID,
G_TYPE_NONE,
0);
/**
* GdkKeymap::keys-changed:
* @keymap: the object on which the signal is emitted
*
* The ::keys-changed signal is emitted when the mapping represented by
* @keymap changes.
*
* Since: 2.2
*/
signals[KEYS_CHANGED] =
g_signal_new ("keys-changed",
G_OBJECT_CLASS_TYPE (object_class),
G_SIGNAL_RUN_LAST,
G_STRUCT_OFFSET (GdkKeymapClass, keys_changed),
NULL, NULL,
g_cclosure_marshal_VOID__VOID,
G_TYPE_NONE,
0);
/**
* GdkKeymap::state-changed:
* @keymap: the object on which the signal is emitted
*
* The ::state-changed signal is emitted when the state of the
* keyboard changes, e.g when Caps Lock is turned on or off.
* See gdk_keymap_get_caps_lock_state().
*
* Since: 2.16
*/
signals[STATE_CHANGED] =
g_signal_new ("state_changed",
G_OBJECT_CLASS_TYPE (object_class),
G_SIGNAL_RUN_LAST,
G_STRUCT_OFFSET (GdkKeymapClass, state_changed),
NULL, NULL,
g_cclosure_marshal_VOID__VOID,
G_TYPE_NONE,
0);
}
static void
gdk_keymap_init (GdkKeymap *keymap)
{
}
/* Other key-handling stuff
*/
/**
* gdk_keyval_convert_case:
* @symbol: a keyval
* @lower: (out): return location for lowercase version of @symbol
* @upper: (out): return location for uppercase version of @symbol
*
* Obtains the upper- and lower-case versions of the keyval @symbol.
* Examples of keyvals are #GDK_KEY_a, #GDK_KEY_Enter, #GDK_KEY_F1, etc.
*/
void
gdk_keyval_convert_case (guint symbol,
guint *lower,
guint *upper)
{
GdkDisplayManager *manager = gdk_display_manager_get ();
GDK_DISPLAY_MANAGER_GET_CLASS (manager)->keyval_convert_case (manager, symbol, lower, upper);
}
/**
* gdk_keyval_to_upper:
* @keyval: a key value.
*
* Converts a key value to upper case, if applicable.
*
* Returns: the upper case form of @keyval, or @keyval itself if it is already
* in upper case or it is not subject to case conversion.
*/
guint
gdk_keyval_to_upper (guint keyval)
{
guint result;
gdk_keyval_convert_case (keyval, NULL, &result);
return result;
}
/**
* gdk_keyval_to_lower:
* @keyval: a key value.
*
* Converts a key value to lower case, if applicable.
*
* Returns: the lower case form of @keyval, or @keyval itself if it is already
* in lower case or it is not subject to case conversion.
*/
guint
gdk_keyval_to_lower (guint keyval)
{
guint result;
gdk_keyval_convert_case (keyval, &result, NULL);
return result;
}
/**
* gdk_keyval_is_upper:
* @keyval: a key value.
*
* Returns %TRUE if the given key value is in upper case.
*
* Returns: %TRUE if @keyval is in upper case, or if @keyval is not subject to
* case conversion.
*/
gboolean
gdk_keyval_is_upper (guint keyval)
{
if (keyval)
{
guint upper_val = 0;
gdk_keyval_convert_case (keyval, NULL, &upper_val);
return upper_val == keyval;
}
return FALSE;
}
/**
* gdk_keyval_is_lower:
* @keyval: a key value.
*
* Returns %TRUE if the given key value is in lower case.
*
* Returns: %TRUE if @keyval is in lower case, or if @keyval is not
* subject to case conversion.
*/
gboolean
gdk_keyval_is_lower (guint keyval)
{
if (keyval)
{
guint lower_val = 0;
gdk_keyval_convert_case (keyval, &lower_val, NULL);
return lower_val == keyval;
}
return FALSE;
}
/**
* gdk_keymap_get_default:
*
* Returns the #GdkKeymap attached to the default display.
*
* Returns: (transfer none): the #GdkKeymap attached to the default display.
*/
GdkKeymap*
gdk_keymap_get_default (void)
{
return gdk_keymap_get_for_display (gdk_display_get_default ());
}
/**
* gdk_keymap_get_direction:
* @keymap: a #GdkKeymap
*
* Returns the direction of effective layout of the keymap.
*
* Returns: %PANGO_DIRECTION_LTR or %PANGO_DIRECTION_RTL
* if it can determine the direction. %PANGO_DIRECTION_NEUTRAL
* otherwise.
**/
PangoDirection
gdk_keymap_get_direction (GdkKeymap *keymap)
{
return GDK_KEYMAP_GET_CLASS(keymap)->get_direction (keymap);
}
/**
* gdk_keymap_have_bidi_layouts:
* @keymap: a #GdkKeymap
*
* Determines if keyboard layouts for both right-to-left and left-to-right
* languages are in use.
*
* Returns: %TRUE if there are layouts in both directions, %FALSE otherwise
*
* Since: 2.12
**/
gboolean
gdk_keymap_have_bidi_layouts (GdkKeymap *keymap)
{
return GDK_KEYMAP_GET_CLASS(keymap)->have_bidi_layouts (keymap);
}
/**
* gdk_keymap_get_caps_lock_state:
* @keymap: a #GdkKeymap
*
* Returns whether the Caps Lock modifer is locked.
*
* Returns: %TRUE if Caps Lock is on
*
* Since: 2.16
*/
gboolean
gdk_keymap_get_caps_lock_state (GdkKeymap *keymap)
{
return GDK_KEYMAP_GET_CLASS(keymap)->get_caps_lock_state (keymap);
}
/**
* gdk_keymap_get_num_lock_state:
* @keymap: a #GdkKeymap
*
* Returns whether the Num Lock modifer is locked.
*
* Returns: %TRUE if Num Lock is on
*
* Since: 3.0
*/
gboolean
gdk_keymap_get_num_lock_state (GdkKeymap *keymap)
{
return GDK_KEYMAP_GET_CLASS(keymap)->get_num_lock_state (keymap);
}
/**
* gdk_keymap_get_entries_for_keyval:
* @keymap: a #GdkKeymap
* @keyval: a keyval, such as %GDK_a, %GDK_Up, %GDK_Return, etc.
* @keys: (out): return location for an array of #GdkKeymapKey
* @n_keys: (out): return location for number of elements in returned array
*
* Obtains a list of keycode/group/level combinations that will
* generate @keyval. Groups and levels are two kinds of keyboard mode;
* in general, the level determines whether the top or bottom symbol
* on a key is used, and the group determines whether the left or
* right symbol is used. On US keyboards, the shift key changes the
* keyboard level, and there are no groups. A group switch key might
* convert a keyboard between Hebrew to English modes, for example.
* #GdkEventKey contains a %group field that indicates the active
* keyboard group. The level is computed from the modifier mask.
* The returned array should be freed
* with g_free().
*
* Return value: %TRUE if keys were found and returned
**/
gboolean
gdk_keymap_get_entries_for_keyval (GdkKeymap *keymap,
guint keyval,
GdkKeymapKey **keys,
gint *n_keys)
{
return GDK_KEYMAP_GET_CLASS(keymap)->get_entries_for_keyval (keymap, keyval, keys, n_keys);
}
/**
* gdk_keymap_get_entries_for_keycode:
* @keymap: a #GdkKeymap
* @hardware_keycode: a keycode
* @keys: (out): return location for array of #GdkKeymapKey, or %NULL
* @keyvals: (out): return location for array of keyvals, or %NULL
* @n_entries: length of @keys and @keyvals
*
* Returns the keyvals bound to @hardware_keycode.
* The Nth #GdkKeymapKey in @keys is bound to the Nth
* keyval in @keyvals. Free the returned arrays with g_free().
* When a keycode is pressed by the user, the keyval from
* this list of entries is selected by considering the effective
* keyboard group and level. See gdk_keymap_translate_keyboard_state().
*
* Returns: %TRUE if there were any entries
**/
gboolean
gdk_keymap_get_entries_for_keycode (GdkKeymap *keymap,
guint hardware_keycode,
GdkKeymapKey **keys,
guint **keyvals,
gint *n_entries)
{
return GDK_KEYMAP_GET_CLASS(keymap)->get_entries_for_keycode (keymap, hardware_keycode, keys, keyvals, n_entries);
}
/**
* gdk_keymap_lookup_key:
* @keymap: a #GdkKeymap
* @key: a #GdkKeymapKey with keycode, group, and level initialized
*
* Looks up the keyval mapped to a keycode/group/level triplet.
* If no keyval is bound to @key, returns 0. For normal user input,
* you want to use gdk_keymap_translate_keyboard_state() instead of
* this function, since the effective group/level may not be
* the same as the current keyboard state.
*
* Return value: a keyval, or 0 if none was mapped to the given @key
**/
guint
gdk_keymap_lookup_key (GdkKeymap *keymap,
const GdkKeymapKey *key)
{
return GDK_KEYMAP_GET_CLASS(keymap)->lookup_key (keymap, key);
}
/**
* gdk_keymap_translate_keyboard_state:
* @keymap: a #GdkKeymap
* @hardware_keycode: a keycode
* @state: a modifier state
* @group: active keyboard group
* @keyval: (out) (allow-none): return location for keyval, or %NULL
* @effective_group: (out) (allow-none): return location for effective
* group, or %NULL
* @level: (out) (allow-none): return location for level, or %NULL
* @consumed_modifiers: (out) (allow-none): return location for modifiers
* that were used to determine the group or level, or %NULL
*
* Translates the contents of a #GdkEventKey into a keyval, effective
* group, and level. Modifiers that affected the translation and
* are thus unavailable for application use are returned in
* @consumed_modifiers.
* See <xref linkend="key-group-explanation"/> for an explanation of
* groups and levels. The @effective_group is the group that was
* actually used for the translation; some keys such as Enter are not
* affected by the active keyboard group. The @level is derived from
* @state. For convenience, #GdkEventKey already contains the translated
* keyval, so this function isn't as useful as you might think.
*
* <note><para>
* @consumed_modifiers gives modifiers that should be masked out
* from @state when comparing this key press to a hot key. For
* instance, on a US keyboard, the <literal>plus</literal>
* symbol is shifted, so when comparing a key press to a
* <literal>&lt;Control&gt;plus</literal> accelerator &lt;Shift&gt; should
* be masked out.
* </para>
* <informalexample><programlisting>
* &sol;* We want to ignore irrelevant modifiers like ScrollLock *&sol;
* &num;define ALL_ACCELS_MASK (GDK_CONTROL_MASK | GDK_SHIFT_MASK | GDK_MOD1_MASK)
* gdk_keymap_translate_keyboard_state (keymap, event->hardware_keycode,
* event->state, event->group,
* &amp;keyval, NULL, NULL, &amp;consumed);
* if (keyval == GDK_PLUS &&
* (event->state &amp; ~consumed &amp; ALL_ACCELS_MASK) == GDK_CONTROL_MASK)
* &sol;* Control was pressed *&sol;
* </programlisting></informalexample>
* <para>
* An older interpretation @consumed_modifiers was that it contained
* all modifiers that might affect the translation of the key;
* this allowed accelerators to be stored with irrelevant consumed
* modifiers, by doing:</para>
* <informalexample><programlisting>
* &sol;* XXX Don't do this XXX *&sol;
* if (keyval == accel_keyval &&
* (event->state &amp; ~consumed &amp; ALL_ACCELS_MASK) == (accel_mods &amp; ~consumed))
* &sol;* Accelerator was pressed *&sol;
* </programlisting></informalexample>
* <para>
* However, this did not work if multi-modifier combinations were
* used in the keymap, since, for instance, <literal>&lt;Control&gt;</literal>
* would be masked out even if only <literal>&lt;Control&gt;&lt;Alt&gt;</literal>
* was used in the keymap. To support this usage as well as well as
* possible, all <emphasis>single modifier</emphasis> combinations
* that could affect the key for any combination of modifiers will
* be returned in @consumed_modifiers; multi-modifier combinations
* are returned only when actually found in @state. When you store
* accelerators, you should always store them with consumed modifiers
* removed. Store <literal>&lt;Control&gt;plus</literal>,
* not <literal>&lt;Control&gt;&lt;Shift&gt;plus</literal>,
* </para></note>
*
* Return value: %TRUE if there was a keyval bound to the keycode/state/group
**/
gboolean
gdk_keymap_translate_keyboard_state (GdkKeymap *keymap,
guint hardware_keycode,
GdkModifierType state,
gint group,
guint *keyval,
gint *effective_group,
gint *level,
GdkModifierType *consumed_modifiers)
{
return GDK_KEYMAP_GET_CLASS(keymap)->translate_keyboard_state (keymap,
hardware_keycode,
state,
group,
keyval,
effective_group,
level,
consumed_modifiers);
}
/**
* gdk_keymap_add_virtual_modifiers:
* @keymap: a #GdkKeymap
* @state: pointer to the modifier mask to change
*
* Adds virtual modifiers (i.e. Super, Hyper and Meta) which correspond
* to the real modifiers (i.e Mod2, Mod3, ...) in @modifiers.
* are set in @state to their non-virtual counterparts (i.e. Mod2,
* Mod3,...) and set the corresponding bits in @state.
*
* GDK already does this before delivering key events, but for
* compatibility reasons, it only sets the first virtual modifier
* it finds, whereas this function sets all matching virtual modifiers.
*
* This function is useful when matching key events against
* accelerators.
*
* Since: 2.20
*/
void
gdk_keymap_add_virtual_modifiers (GdkKeymap *keymap,
GdkModifierType *state)
{
GDK_KEYMAP_GET_CLASS(keymap)->add_virtual_modifiers (keymap, state);
}
/**
* gdk_keymap_map_virtual_modifiers:
* @keymap: a #GdkKeymap
* @state: pointer to the modifier state to map
*
* Maps the virtual modifiers (i.e. Super, Hyper and Meta) which
* are set in @state to their non-virtual counterparts (i.e. Mod2,
* Mod3,...) and set the corresponding bits in @state.
*
* This function is useful when matching key events against
* accelerators.
*
* Returns: %TRUE if no virtual modifiers were mapped to the
* same non-virtual modifier. Note that %FALSE is also returned
* if a virtual modifier is mapped to a non-virtual modifier that
* was already set in @state.
*
* Since: 2.20
*/
gboolean
gdk_keymap_map_virtual_modifiers (GdkKeymap *keymap,
GdkModifierType *state)
{
return GDK_KEYMAP_GET_CLASS(keymap)->map_virtual_modifiers (keymap, state);
}
/**
* gdk_keyval_name:
* @keyval: a key value
*
* Converts a key value into a symbolic name.
*
* The names are the same as those in the
* <filename>&lt;gdk/gdkkeysyms.h&gt;</filename> header file
* but without the leading "GDK_KEY_".
*
* Return value: (transfer none): a string containing the name of the key,
* or %NULL if @keyval is not a valid key. The string should not be
* modified.
*/
gchar*
gdk_keyval_name (guint keyval)
{
GdkDisplayManager *manager = gdk_display_manager_get ();
return GDK_DISPLAY_MANAGER_GET_CLASS (manager)->get_keyval_name (manager, keyval);
}
/**
* gdk_keyval_from_name:
* @keyval_name: a key name
*
* Converts a key name to a key value.
*
* The names are the same as those in the
* <filename>&lt;gdk/gdkkeysyms.h&gt;</filename> header file
* but without the leading "GDK_KEY_".
*
* Returns: the corresponding key value, or %GDK_KEY_VoidSymbol
* if the key name is not a valid key
*/
guint
gdk_keyval_from_name (const gchar *keyval_name)
{
GdkDisplayManager *manager = gdk_display_manager_get ();
return GDK_DISPLAY_MANAGER_GET_CLASS (manager)->lookup_keyval (manager, keyval_name);
}