gtk2/docs/faq/gtkfaq.sgml
BST 2000 Tony Gale 621639b754 s/gtk_main_iteration/g_main_iteration/
Mon Jul 31 13:53:16 BST 2000  Tony Gale <gale@gtk.org>

        * docs/gtkfaq.sgml docs/gtk-faq.sgml:
          s/gtk_main_iteration/g_main_iteration/

          Did this already in change:
                Mon Nov 15 17:17:51 GMT 1999 Tony Gale  <gale@gtk.org>
          don't know how it got reverted.
2000-07-31 13:00:21 +00:00

2983 lines
98 KiB
Plaintext

<!doctype linuxdoc system>
<article>
<!-- Title information -->
<title>GTK+ FAQ
<!-- NOTE: Use only one author tag, otherwise sgml2txt barfs - TRG -->
<author>Tony Gale, Shawn T. Amundson, Emmanuel Deloget, Nathan Froyd
<date>March 9th 2000
<abstract> This document is intended to answer questions that are likely to be
frequently asked by programmers using GTK+ or people who are just looking at
using GTK+.
</abstract>
<!-- Table of contents -->
<toc>
<!-- Begin the document -->
<!-- ***************************************************************** -->
<sect>General Information
<!-- ----------------------------------------------------------------- -->
<sect1>Before anything else: the greetings
<p>
The FAQ authors want to thank:
<itemize>
<item>Havoc Pennington
<item>Erik Mouw
<item>Owen Taylor
<item>Tim Janik
<item>Thomas Mailund Jensen
<item>Joe Pfeiffer
<item>Andy Kahn
<item>Federico Mena Quintero
<item>Damon Chaplin
<item>and all the members of the GTK+ lists
</itemize>
If we forgot you, please email us !
Thanks again (I know, it's really short :)
<!-- ----------------------------------------------------------------- -->
<sect1>Authors
<p>
The original authors of GTK+ were:
<itemize>
<item>Peter Mattis
<item>Spencer Kimball
<item>Josh MacDonald
</itemize>
Since then, much has been added by others. Please see the AUTHORS
file in the distribution for the GTK+ Team.
<!-- ----------------------------------------------------------------- -->
<sect1>What is GTK+?
<p>
GTK+ is a small and efficient widget set designed with the general
look and feel of Motif. In reality, it looks much better than Motif.
It contains common widgets and some more complex widgets such as a
file selection, and color selection widgets.
GTK+ provides some unique features. (At least, I know of no other
widget library which provides them). For example, a button does not
contain a label, it contains a child widget, which in most instances
will be a label. However, the child widget can also be a pixmap,
image or any combination possible the programmer desires. This
flexibility is adhered to throughout the library.
<!-- ----------------------------------------------------------------- -->
<sect1>What is the + in GTK+?
<P>
Peter Mattis informed the gtk mailing list that:
<quote>
"I originally wrote gtk which included the three libraries, libglib,
libgdk and libgtk. It featured a flat widget hierarchy. That is, you
couldn't derive a new widget from an existing one. And it contained
a more standard callback mechanism instead of the signal mechanism now
present in gtk+. The + was added to distinguish between the original
version of gtk and the new version. You can think of it as being an
enhancement to the original gtk that adds object oriented features."
</quote>
<!-- ----------------------------------------------------------------- -->
<sect1>Does the G in GTK+, GDK and GLib stand for?
<p>
GTK+ == Gimp Toolkit
GDK == GTK+ Drawing Kit
GLib == G Libray
<!-- ----------------------------------------------------------------- -->
<sect1>Where is the documentation for GTK+?
<p>
In the GTK+ distribution's doc/ directory you will find the
reference material for both GTK and GDK, this FAQ and the
GTK Tutorial.
In addition, you can find links to HTML versions of these documents
by going to <htmlurl url="http://www.gtk.org/"
name="http://www.gtk.org/">. A packaged version of the GTK Tutorial,
with SGML, HTML, Postscript, DVI and text versions can be found in
<htmlurl url="ftp://ftp.gtk.org/pub/gtk/tutorial"
name="ftp://ftp.gtk.org/pub/gtk/tutorial">
There are now a couple of books available that deal with programming
GTK+, GDK and GNOME:
<itemize>
<item> Eric Harlows book entitled "Developing Linux Applications with
GTK+ and GDK". The ISBN is 0-7357-0021-4
<P>
The example code from Eric's book is available on-line at
<htmlurl url="http://www.bcpl.net/~eharlow/book"
name="http://www.bcpl.net/~eharlow/book">
<item> Havoc Pennington has released a book called "GTK+/GNOME
Application Development". The ISBN is 0-7357-0078-8
<P>
The free version of the book lives here:
<htmlurl url="http://developer.gnome.org/doc/GGAD/"
name="http://developer.gnome.org/doc/GGAD/">
<P>
And Havoc maintains information about it and errata here:
<htmlurl url="http://pobox.com/~hp/gnome-app-devel.html"
name="http://pobox.com/~hp/gnome-app-devel.html">
</itemize>
<!-- ----------------------------------------------------------------- -->
<sect1>Is there a mailing list (or mailing list archive) for GTK+?
<p>
Information on mailing lists relating to GTK+ can be found at:
<htmlurl url="http://www.gtk.org/mailinglists.html"
name="http://www.gtk.org/mailinglists.html">
<!-- ----------------------------------------------------------------- -->
<sect1>How to get help with GTK+
<p>
First, make sure your question isn't answered in the documentation,
this FAQ or the tutorial. Done that? You're sure you've done that,
right? In that case, the best place to post questions is to the GTK+
mailing list.
<!-- ----------------------------------------------------------------- -->
<sect1>How to report bugs in GTK+
<p>
Bugs should be reported to the GNOME bug tracking
system (<htmlurl url="http://bugs.gnome.org"
name="http://bugs.gnome.org">). To report a problem about GTK+, send
mail to submit@bugs.gnome.org.
The subject of the mail should describe your problem. In the body of
the mail, you should first include a "pseudo-header" that gives the
package and version number. This should be separated by a blank line
from the actual headers.
<verb>
Package: gtk+
Version: 1.2.0
</verb>
Substitute 1.2.0 with the version of GTK+ that you have installed.
Then describe the bug. Include:
<itemize>
<item> Information about your system. For instance:
<itemize>
<item> What operating system and version
<item> What version of X
<item> For Linux, what version of the C library
</itemize>
And anything else you think is relevant.
<item> How to reproduce the bug.
If you can reproduce it with the testgtk program that is built in
the gtk/ subdirectory, that will be most convenient. Otherwise,
please include a short test program that exhibits the behavior. As
a last resort, you can also provide a pointer to a larger piece of
software that can be downloaded.
(Bugs that can be reproduced within the GIMP are almost as good as
bugs that can be reproduced in testgtk. If you are reporting a bug
found with the GIMP, please include the version number of the GIMP
you are using)
<item> If the bug was a crash, the exact text that was printed out
when the crash occured.
<item> Further information such as stack traces may be useful, but are
not necessary. If you do send a stack trace, and the error is an X
error, it will be more useful if the stacktrace is produced running
the test program with the <tt/--sync/ command line option.
</itemize>
<!-- ----------------------------------------------------------------- -->
<sect1>Is there a Windows version of GTK+?
<p>
There is an on going port of GTK+ to the Windows platform which is
making impressive progress.
See <htmlurl url="http://www.iki.fi/tml/gimp/win32"
name="http://www.iki.fi/tml/gimp/win32"> for more information.
<!-- ----------------------------------------------------------------- -->
<sect1>What applications have been written with GTK+?
<p>
A list of some GTK+ based application can be found on the GTK+ web
server at <htmlurl url="http://www.gtk.org/apps/"
name="http://www.gtk.org/apps/"> and contains more than 350
applications.
Failing that, look for a project to work on for the GNOME project,
<htmlurl url="http://www.gnome.org/" name="http://www.gnome.org/">
Write a game. Write something that is useful.
Some of these are:
<itemize>
<item>GIMP (<htmlurl url="http://www.gimp.org/"
name="http://www.gimp.org/">),
an image manipulation program
<item>AbiWord (<htmlurl url="http://www.abisource.com/"
name="http://www.abisource.com/">),
a professional word processor
<item>GUBI (<htmlurl url="http://www.SoftHome.net/pub/users/timj/gubi/index.htm"
name="http://www.SoftHome.net/pub/users/timj/gubi/index.htm">),
a user interface builder
<item>Gzilla (<htmlurl url="http://www.levien.com/gzilla/"
name="http://www.levien.com/gzilla/">),
a web browser
<item>SANE (<htmlurl url="http://www.azstarnet.com/~axplinux/sane/"
name="http://www.azstarnet.com/~axplinux/sane/"> ),
a universal scanner interface
<item>XQF (<htmlurl url="http://www.botik.ru/~roma/quake/"
name="http://www.botik.ru/~roma/quake/">),
a QuakeWorld/Quake2 server browser and launcher
<item>ElectricEyes (<htmlurl url="http://www.labs.redhat.com/ee.shtml"
name="http://www.labs.redhat.com/ee.shtml">),
an image viewer that aims to be a free replacement for xv
<item>GPK - the General Proxy Kit (<htmlurl url="http://www.humanfactor.com/gpk/"
name="http://www.humanfactor.com/gpk/">),
an add-on library to permit thread-safe access to GTK+
<item>GCK - the General Convenience Kit (<htmlurl url="http://www.ii.uib.no/~tomb/gck.html"
name="http://www.ii.uib.no/~tomb/gck.html">),
miscellaneous functions intended to ease color handling, UI construction,
vector operations, and math functions
<item>GDK Imlib (<htmlurl url="http://www.labs.redhat.com/imlib/"
name="http://www.labs.redhat.com/imlib/">),
a fast image loading and manipulation library for GDK
<item>Glade (<htmlurl url="http://glade.pn.org/"
name="http://glade.pn.org/">),
a GTK+ based RAD tool which produces GTK+ applications
</itemize>
<p>
In addition to the above, the GNOME project (<htmlurl
url="http://www.gnome.org" name="http://www.gnome.org">) is using GTK+
to build a free desktop for Linux. Many more programs can be found
there.
<!-- ----------------------------------------------------------------- -->
<sect1>I'm looking for an application to write in GTK+. How about an IRC client?
<p>
Ask on gtk-list for suggestions. There are at least three IRC clients
already under development (probably more in fact. The server at
<htmlurl url="http://www.forcix.cx/irc-clients.html"
name="http://www.forcix.cx/irc-clients.html"> list a bunch of them).
<itemize>
<item>X-Chat.
<item>girc. (Included with GNOME)
<item>gsirc. (In the gnome CVS tree)
</itemize>
<!-- ***************************************************************** -->
<sect>How to find, configure, install, and troubleshoot GTK+
<!-- ***************************************************************** -->
<!-- ----------------------------------------------------------------- -->
<sect1>What do I need to run GTK+?
<p>
To compile GTK+, all you need is a C compiler (gcc) and the X Window System
and associated libraries on your system.
<!-- ----------------------------------------------------------------- -->
<sect1>Where can I get GTK+?
<p>
The canonical site is:
<verb>
ftp://ftp.gtk.org/pub/gtk
</verb>
This site tends to get busy around the time of a new GTK+ release
so try and use one of the mirror sites that are listed in
<htmlurl url="ftp://ftp.gtk.org/etc/mirrors"
name="ftp://ftp.gtk.org/etc/mirrors">
Here's a few mirror sites to get you started:
<itemize>
<item>Africa - ftp://ftp.is.co.za/applications/gimp/
<item>Australia - ftp://ftp.au.gimp.org/pub/gimp/
<item>Finland - ftp://ftp.funet.fi/pub/sci/graphics/packages/gimp
<item>Germany - ftp://infosoc.uni-koeln.de/pub/ftp.gimp.org/
<item>Japan - ftp://SunSITE.sut.ac.jp/pub/archives/packages/gimp/
<item>UK - ftp://ftp.flirble.org/pub/X/gimp/
<item>US - ftp://ftp.insync.net/pub/mirrors/ftp.gimp.org/
</itemize>
<!-- ----------------------------------------------------------------- -->
<sect1>How do I configure/compile GTK+?
<p>
Generally, all you will need to do is issue the commands:
<verb>
./configure
make
</verb>
in the gtk+-version/ directory.
<!-- ----------------------------------------------------------------- -->
<sect1>When compiling GTK+ I get an error like:
<tt/make: file `Makefile' line 456: Syntax error/
<p>
Make sure that you are using GNU make (use <tt/make -v/ to
check). There are many weird and wonderful versions of make out there,
and not all of them handle the automatically generated Makefiles.
<!-- ----------------------------------------------------------------- -->
<sect1>I've compiled and installed GTK+, but I can't get any programs to link with it!
<p>
This problem is most often encountered when the GTK+ libraries can't
be found or are the wrong version. Generally, the compiler will
complain about an 'unresolved symbol'. There are two things you need
to check:
<itemize>
<item>Make sure that the libraries can be found. You want to edit
/etc/ld.so.conf to include the directories which contain the GTK
libraries, so it looks something like:
<verb>
/usr/X11R6/lib
/usr/local/lib
</verb>
Then you need to run /sbin/ldconfig as root. You can find what directory
GTK is in using
<verb>
gtk-config --libs
</verb>
If your system doesn't use ld.so to find libraries (such as Solaris), then
you will have to use the LD_LIBRARY_PATH environment variable (or compile
the path into your program, which I'm not going to cover here). So, with a
Bourne type shell you can do (if your GTK libraries are in /usr/local/lib):
<verb>
export LD_LIBRARY_PATH=/usr/local/lib
</verb>
and in a csh, you can do:
<verb>
setenv LD_LIBRARY_PATH /usr/local/lib
</verb>
<item>Make sure the linker is finding the correct set of libraries. If you
have a Linux distribution that installs GTK+ (e.g. RedHat 5.0) then this
older version may be used. Now (assuming you have a RedHat
system), issue the command
<verb>
rpm -e gtk gtk-devel
</verb>
You may also want to remove the packages that depend on gtk (rpm will
tell you which ones they are). If you don't have a RedHat Linux
system, check to make sure that neither <verb>/usr/lib</verb> or
<verb>/usr/local/lib</verb> contain any of the libraries libgtk,
libgdk, libglib, or libgck. If they do exist, remove them (and any
gtk include files, such as /usr/include/gtk and /usr/include/gdk) and
reinstall gtk+. </itemize>
<!-- ----------------------------------------------------------------- -->
<sect1>When compiling programs with GTK+, I get compiler error messages about not being able to find <tt/"glibconfig.h"/.
<p>
The header file "glibconfig.h" was moved to the directory
$exec_prefix/lib/glib/include/. $exec_prefix is the
directory that was specified by giving the --exec-prefix
flags to ./configure when compiling GTK+. It defaults to
$prefix, (specified with --prefix), which in turn defaults
to /usr/local/.
This was done because "glibconfig.h" includes architecture
dependent information, and the rest of the include files
are put in $prefix/include, which can be shared between different
architectures.
GTK+ includes a shell script, <tt/gtk-config/, that
makes it easy to find out the correct include paths.
The GTK+ tutorial includes an example of using <tt/gtk-config/
for simple compilation from the command line. For information
about more complicated configuration, see the file
docs/gtk-config.txt in the GTK+ distribution.
If you are trying to compile an old program, you may
be able to work around the problem by configuring it
with a command line like:
<tscreen><verb>
CPPFLAGS="-I/usr/local/include/glib/include" ./configure
</verb></tscreen>
for Bourne-compatible shells like bash, or for csh variants:
<tscreen><verb>
setenv CPPFLAGS "-I/usr/local/include/glib/include"
./configure
</verb></tscreen>
(Substitute the appropriate value of $exec_prefix for /usr/local.)
<!-- ----------------------------------------------------------------- -->
<sect1>When installing a GTK+ application, configure reports that it can't find GTK.
<p>
There are several common reasons for this:
<itemize>
<item>You have an old version of GTK installed somewhere. RedHat 5.0, for
example, installs an older copy of GTK that may not work with the latest
applications. You should remove this old copy, but note that in the case
of RedHat 5.0 this will break the <tt/control-panel/ applications.
<P>
<item><tt/gtk-config/ (or another component of GTK) isn't in your path, or
there is an old version on your system. Type:
<verb>
gtk-config --version
</verb>
to check for both of these. If it returns a value different from what
you expect, then you have an old version of GTK on your system.
<P>
<item>The ./configure script can't find the GTK libraries. As ./configure
compiles various test programs, it needs to be able to find the GTK
libraries. See the question above for help on this.
</itemize>
<p>
If none of the above help, then have a look in config.log, which is
generated by ./configure as it runs. At the bottom will be the last
action it took before failing. If it is a section of source code, copy
the source code to a file and compile it with the line just above it in
config.log. If the compilation is successful, try executing it.
<!-- ***************************************************************** -->
<sect>Development of GTK+
<!-- ***************************************************************** -->
<!-- ----------------------------------------------------------------- -->
<sect1>Whats this CVS thing that everyone keeps talking about, and how do I access it?
<p>
CVS is the Concurent Version System and is a very popular means of
version control for software projects. It is designed to allow multiple
authors to be able to simultanously operate on the same source tree.
This source tree is centrally maintained, but each developer has a
local mirror of this repository that they make there changes to.
The GTK+ developers use a CVS repository to store the master copy of
the current development version of GTK+. As such, people wishing to
contribute patches to GTK+ should generate them against the CVS version.
Normal people should use the packaged releases.
The CVS toolset is available as RPM packages from the usual RedHat sites.
The latest version is available at
<htmlurl url="http://download.cyclic.com/pub/"
name="http://download.cyclic.com/pub/">
Anyone can download the latest CVS version of GTK+ by using anonymous access
using the following steps:
<itemize>
<item> In a bourne shell descendant (e.g. bash) type:
<verb>
CVSROOT=':pserver:anonymous@anoncvs.gnome.org:/cvs/gnome'
export CVSROOT
</verb>
<item>Next, the first time the source tree is checked out, a cvs login
is needed.
<verb>
cvs login
</verb>
This will ask you for a password. There is no password for cvs.gimp.org,
so just enter a carriage return.
<item>To get the tree and place it in a subdir of your current working
directory, issue the command:
<verb>
cvs -z3 get gtk+
</verb>
Note that with the GTK+ 1.1 tree, glib has been moved to a separate CVS
module, so if you don't have glib installed you will need to get that
as well:
<verb>
cvs -z3 get glib
</verb>
</itemize>
<!-- ----------------------------------------------------------------- -->
<sect1>How can I contribute to GTK+?
<p>
It's simple. If something doesn't work like you think it should in a program,
check the documentation to make sure you're not missing something. If it is a
true bug or missing feature, track it down in the GTK+ source, change it,
and then generate a patch in the form of a 'context diff'. This can be done
using a command such as <tt/diff -ru &lt;oldfile&gt; &lt;newfile&gt;/.
Then upload the patchfile to:
<verb>
ftp://ftp.gtk.org/incoming
</verb>
along with a README file. Make sure you follow the naming conventions or your
patch will just be deleted! The filenames should be of this form:
<verb>
gtk-<username>-<date yymmdd-n>.patch.gz
gtk-<username>-<date yymmdd-n>.patch.README
</verb>
The "n" in the date indicates a unique number (starting from 0)
of patches you uploaded that day. It should be 0, unless you
upload more than one patch in the same day.
Example:
<verb>
gtk-gale-982701-0.patch.gz
gtk-gale-982701-0.patch.README
</verb>
Once you upload <em>anything</em>, send the README to ftp-admin@gtk.org
<!-- ----------------------------------------------------------------- -->
<sect1>How do I know if my patch got applied, and if not, why not?
<p>
Uploaded patches will be moved to <tt>ftp://ftp.gtk.org/pub/gtk/patches</tt>
where one of the GTK+ development team will pick them up. If applied, they
will be moved to <tt>/pub/gtk/patches/old</tt>.
Patches that aren't applied, for whatever reason, are moved to
<tt>/pub/gtk/patches/unapplied</tt> or <tt>/pub/gtk/patches/outdated</tt>.
At this point you can ask on the <tt/gtk-list/ mailing list why your patch
wasn't applied. There are many possible reasons why patches may not be
applied, ranging from it doesn't apply cleanly, to it isn't right. Don't
be put off if your patch didn't make it first time round.
<!-- ----------------------------------------------------------------- -->
<sect1>What is the policy on incorporating new widgets into the library?
<p>
This is up to the authors, so you will have to ask them once you
are done with your widget. As a general guideline, widgets that are
generally useful, work, and are not a disgrace to the widget set will
gladly be included.
<!-- ----------------------------------------------------------------- -->
<sect1>Is anyone working on bindings for languages other than C?
<p>
The GTK+ home page (<htmlurl url="http://www.gtk.org/"
name="http://www.gtk.org/">) presents a list of GTK+ bindings.
<itemize>
<item>There are several C++ wrappers for GTK+.
<itemize>
<item>the gtk-- package, which is a very small wrapper for GTK+.
You can find the home page at:
<htmlurl url="http://www.cs.tut.fi/~p150650/gtk/gtk--.html"
name="http://www.cs.tut.fi/~p150650/gtk/gtk--.html">.
The FTP site is
<htmlurl url="ftp://ftp.gtk.org/pub/gtk/gtk--"
name="ftp://ftp.gtk.org/pub/gtk/gtk--">.
<item>the VDK package, which was built as the base package of a GTK+
application Borland-like builder. The home page can be found at
<htmlurl url="www.guest.net/homepages/mmotta/VDKHome"
name="www.guest.net/homepages/mmotta/VDKHome">.
<item>The wxWindows/Gtk package, a free C++ library for cross-platform
GUI development. The home page of this package is
<htmlurl url="http://www.freiburg.linux.de/~wxxt/"
name="http://www.freiburg.linux.de/~wxxt/">.
</itemize>
<p>
<item>There are three known Objective-c bindings currently in development:
<itemize>
<item>The <htmlurl url="http://www.gnome.org/" name="GNOME project's"> package
of choice is objgtk. Objgtk is based on the Object class and is maintained by
<htmlurl url="mailto:sopwith@cuc.edu" name="Elliot Lee">. Apparently, objgtk
is being accepted as the `standard' Objective-C binding for GTK+.
<item>If you are more inclined towards the
<htmlurl url="http://www.gnustep.org/" name="GNUstep project">,
you may want to check out GTKKit by
<htmlurl url="mailto:helge@mdlink.de" name="Helge He&szlig;">.
The intention is to setup a GTK+ binding using the FoundationKit.
GTKKit includes nicities like writing a XML-type template file to
construct a GTK+ interface.
<item>The GToolKit package, which can be found at
<htmlurl url="ftp://ftp.gtk.org/pub/gtk/objc-gtoolkit/"
name="ftp://ftp.gtk.org/pub/gtk/objc-gtoolkit/">.
</itemize>
<p>
<item>Perl bindings
<htmlurl url="ftp://ftp.gtk.org/pub/gtk/perl"
name="ftp://ftp.gtk.org/pub/gtk/perl">
<P>
<item>Guile bindings. The home page is at
<htmlurl url="http://www.ping.de/sites/zagadka/guile-gtk"
name="http://www.ping.de/sites/zagadka/guile-gtk">.
By the way, Guile is the GNU Project's implemention of R4RS Scheme (the
standard). If you like Scheme, you may want to take a look at this.
<p>
<item>David Monniaux reports:
<quote>I've started a gtk-O'Caml binding system.
The basics of the system, including callbacks, work fine.
The current development is in
<htmlurl url="http://www.ens-lyon.fr/~dmonniau/arcs"
name="http://www.ens-lyon.fr/~dmonniau/arcs">
</quote>
<item> Several python bindings have been done:
<p>
<itemize>
<item>pygtk is at
<htmlurl url="http://www.daa.com.au/~james/pygtk"
name="http://www.daa.com.au/~james/pygtk"> and
<htmlurl url="ftp://ftp.gtk.org/pub/gtk/python"
name="ftp://ftp.gtk.org/pub/gtk/python">
<item>python-gtk is at
<htmlurl url="http://www.ucalgary.ca/~nascheme/python-gtk"
name="http://www.ucalgary.ca/~nascheme/python-gtk">
</itemize>
<p>
<item>There's are a couple of OpenGL/Mesa widgets available for
GTK+. I suggest you start at
<htmlurl url="http://www.student.oulu.fi/~jlof/gtkglarea/index.html"
name="http://www.student.oulu.fi/~jlof/gtkglarea/index.html">
<p>
<item>Last, there are a lot of other language bindings for languages such as
Eiffel, TOM, Pascal, Pike, etc.
</itemize>
<!-- ***************************************************************** -->
<sect>Development with GTK+: the begining
<!-- ***************************************************************** -->
<!-- ----------------------------------------------------------------- -->
<sect1>How do I get started?
<p>
So, after you have installed GTK+ there are a couple of things that can
ease you into developing applications with it. There is the
GTK+ Tutorial <htmlurl url="http://www.gtk.org/tutorial/"
name="http://www.gtk.org/tutorial/">, which is undergoing
development. This will introduce you to writing applications using C.
The Tutorial doesn't (yet) contain information on all of the widgets
that are in GTK+. For example code on how to use the basics of all the
GTK+ widgets you should look at the file gtk/testgtk.c (and associated
source files) within the GTK+ distribution. Looking at these examples will
give you a good grounding on what the widgets can do.
<!-- ----------------------------------------------------------------- -->
<sect1>I tried to compile a small <tt/Hello World/ of mine, but it failed. Any clue?
<p>
Since you are good at coding, we will not deal with compile time error here :).
The classic command line to compile a GTK+ based program is
<verb>
gcc -o myprg [c files list] `gtk-config --cflags --libs`
</verb>
You should notice the backquote character which is used in this command line.
A common mistake when you start a GTK+ based development is to use quote
instead of backquotes. If you do so, the compiler will complain about an
unknown file called 'gtk-config --cflags --libs'. The text in
backquotes is an instruction to your shell to substitute the output of
executing this text into the command line.
The command line above ensure that:
<itemize>
<item>the correct C compiler flags will be used to compile the program
(including the complete C header directory list)
<item>your program will be linked with the needed libraries.
</itemize>
<!-- ----------------------------------------------------------------- -->
<sect1>What about using the <tt/make/ utility?
<p>
This is a sample makefile which compile a GTK+ based program:
<tscreen><verb>
# basic GTK+ app makefile
SOURCES = myprg.c foo.c bar.c
OBJS = ${SOURCES:.c=.o}
CFLAGS = `gtk-config --cflags`
LDADD = `gtk-config --libs`
CC = gcc
PACKAGE = myprg
all : ${OBJS}
${CC} -o ${PACKAGE} ${OBJS} ${LDADD}
.c.o:
${CC} ${CFLAGS} -c $<
# end of file
</verb></tscreen>
For more information about the <tt/make/ utility, you should read either the
related man page or the relevant info file.
<sect1>I use the backquote stuff in my makefiles, but my make process failed.
<p>
The backquote construction seems to not be accepted by some old <tt/make/
utilities. If you use one of these, the make process will probably fail.
In order to have the backquote syntax working again, you should use the
GNU make utility (get it on the GNU ftp server at
<htmlurl url="ftp://ftp.gnu.org/" name="ftp://ftp.gnu.org/">).
<!-- ----------------------------------------------------------------- -->
<sect1>I want to add some configure stuff, how could I do this?
<p>
To use autoconf/automake, you must first install the relevant packages. These
are:
<itemize>
<item>the m4 preprocessor v1.4 or better
<item>autoconf v2.13 or better
<item>automake v1.4 or better
</itemize>
You'll find these packages on the GNU main ftp server (<htmlurl
url="ftp://ftp.gnu.org/" name="ftp://ftp.gnu.org/">) or on any GNU mirror.
In order to use the powerful autoconf/automake scheme, you must create
a configure.in which may look like:
<tscreen><verb>
dnl Process this file with autoconf to produce a configure script.
dnl configure.in for a GTK+ based program
AC_INIT(myprg.c)dnl
AM_INIT_AUTOMAKE(mypkgname,0.0.1)dnl
AM_CONFIG_HEADER(config.h)dnl
dnl Checks for programs.
AC_PROG_CC dnl check for the c compiler
dnl you should add CFLAGS="" here, 'cos it is set to -g by PROG_CC
dnl Checks for libraries.
AM_PATH_GTK(1.2.0,,AC_MSG_ERROR(mypkgname 0.1 needs GTK))dnl
AC_OUTPUT(
Makefile
)dnl
</verb></tscreen>
You must add a Makefile.am file:
<tscreen><verb>
bin_PROGRAMS = myprg
myprg_SOURCES = myprg.c foo.c bar.c
INCLUDES = @GTK_CFLAGS@
LDADD = @GTK_LIBS@
CLEANFILES = *~
DISTCLEANFILES = .deps/*.P
</verb></tscreen>
If your project contains more than one subdirectory, you'll have to
create one Makefile.am in each directory plus a master Makefile.am
which will look like:
<tscreen><verb>
SUBDIRS = mydir1 mydir2 mydir3
</verb></tscreen>
then, to use these, simply type the following commands:
<verb>
aclocal
autoheader
autoconf
automake --add-missing --include-deps --foreign
</verb>
For further information, you should look at the autoconf and the
automake documentation (the shipped info files are really easy to
understand, and there are plenty of web resources that deal with
autoconf and automake).
<!-- ----------------------------------------------------------------- -->
<sect1>I try to debug my GTK+ application with gdb, but it hangs my X server when I hit some breakpoint. Any Idea ?
<p>
From Federico Mena Quintero:
<quote>
X is not locked up. It is likely that you are hitting a breakpoint
inside a callback that is called from a place in Gtk that has a mouse
grab.
<P>
Run your program with the "--sync" option; it will make it easier to
debug. Also, you may want to use the console for running the
debugger, and just let the program run in another console with the X
server.
</quote>
Eric Mouw had another solution:
<quote>
An old terminal connected to an otherwise unused serial port is also great
for debugging X programs. Old vt100/vt220 terminals are dirt cheap but a
bit hard to get (here in The Netherlands, YMMV).
</quote>
<!-- ***************************************************************** -->
<sect>Development with GTK+: general questions
<!-- ***************************************************************** -->
<!-- ----------------------------------------------------------------- -->
<sect1>What widgets are in GTK?
<p>
The GTK+ Tutorial lists the following widgets:
<verb>
GtkObject
+GtkData
| +GtkAdjustment
| `GtkTooltips
`GtkWidget
+GtkContainer
| +GtkBin
| | +GtkAlignment
| | +GtkEventBox
| | +GtkFrame
| | | `GtkAspectFrame
| | +GtkHandleBox
| | +GtkItem
| | | +GtkListItem
| | | +GtkMenuItem
| | | | `GtkCheckMenuItem
| | | | `GtkRadioMenuItem
| | | `GtkTreeItem
| | +GtkViewport
| | `GtkWindow
| | +GtkColorSelectionDialog
| | +GtkDialog
| | | `GtkInputDialog
| | `GtkFileSelection
| +GtkBox
| | +GtkButtonBox
| | | +GtkHButtonBox
| | | `GtkVButtonBox
| | +GtkHBox
| | | +GtkCombo
| | | `GtkStatusbar
| | `GtkVBox
| | +GtkColorSelection
| | `GtkGammaCurve
| +GtkButton
| | +GtkOptionMenu
| | `GtkToggleButton
| | `GtkCheckButton
| | `GtkRadioButton
| +GtkCList
| `GtkCTree
| +GtkFixed
| +GtkList
| +GtkMenuShell
| | +GtkMenuBar
| | `GtkMenu
| +GtkNotebook
| +GtkPaned
| | +GtkHPaned
| | `GtkVPaned
| +GtkScrolledWindow
| +GtkTable
| +GtkToolbar
| `GtkTree
+GtkDrawingArea
| `GtkCurve
+GtkEditable
| +GtkEntry
| | `GtkSpinButton
| `GtkText
+GtkMisc
| +GtkArrow
| +GtkImage
| +GtkLabel
| | `GtkTipsQuery
| `GtkPixmap
+GtkPreview
+GtkProgressBar
+GtkRange
| +GtkScale
| | +GtkHScale
| | `GtkVScale
| `GtkScrollbar
| +GtkHScrollbar
| `GtkVScrollbar
+GtkRuler
| +GtkHRuler
| `GtkVRuler
`GtkSeparator
+GtkHSeparator
`GtkVSeparator
</verb>
<!-- ----------------------------------------------------------------- -->
<sect1>Is GTK+ thread safe? How do I write multi-threaded GTK+ applications?
<p>
The GLib library can be used in a thread-safe mode by calling
g_thread_init() before making any other GLib calls. In this mode GLib
automatically locks all internal data structures as needed. This
does not mean that two threads can simultaneously access, for
example, a single hash table, but they can access two different hash
tables simultaneously. If two different threads need to access the
same hash table, the application is responsible for locking
itself.
When GLib is intialized to be thread-safe, GTK+ is
<em>thread aware</em>. There is a single global lock
that you must acquire with gdk_threads_enter() before
making any GDK calls, and release with gdk_threads_leave()
afterwards.
A minimal main program for a threaded GTK+ application
looks like:
<verb>
int
main (int argc, char *argv[])
{
GtkWidget *window;
g_thread_init(NULL);
gtk_init(&amp;argc, &amp;argv);
window = create_window();
gtk_widget_show(window);
gdk_threads_enter();
gtk_main();
gdk_threads_leave();
return(0);
}
</verb>
Callbacks require a bit of attention. Callbacks from GTK+
(signals) are made within the GTK+ lock. However callbacks
from GLib (timeouts, IO callbacks, and idle functions)
are made outside of the GTK+ lock. So, within a signal
handler you do not need to call gdk_threads_enter(), but
within the other types of callbacks, you do.
Erik Mouw contributed the following code example to illustrate how to
use threads within GTK+ programs.
<tscreen><verb>
/*-------------------------------------------------------------------------
* Filename: gtk-thread.c
* Version: 0.99.1
* Copyright: Copyright (C) 1999, Erik Mouw
* Author: Erik Mouw <J.A.K.Mouw@its.tudelft.nl>
* Description: GTK threads example.
* Created at: Sun Oct 17 21:27:09 1999
* Modified by: Erik Mouw <J.A.K.Mouw@its.tudelft.nl>
* Modified at: Sun Oct 24 17:21:41 1999
*-----------------------------------------------------------------------*/
/*
* Compile with:
*
* cc -o gtk-thread gtk-thread.c `gtk-config --cflags --libs gthread`
*
* Thanks to Sebastian Wilhelmi and Owen Taylor for pointing out some
* bugs.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <time.h>
#include <gtk/gtk.h>
#include <glib.h>
#include <pthread.h>
#define YES_IT_IS (1)
#define NO_IT_IS_NOT (0)
typedef struct
{
GtkWidget *label;
int what;
} yes_or_no_args;
G_LOCK_DEFINE_STATIC (yes_or_no);
static volatile int yes_or_no = YES_IT_IS;
void destroy(GtkWidget *widget, gpointer data)
{
gtk_main_quit();
}
void *argument_thread(void *args)
{
yes_or_no_args *data = (yes_or_no_args *)args;
gboolean say_something;
for(;;)
{
/* sleep a while */
sleep(rand() / (RAND_MAX / 3) + 1);
/* lock the yes_or_no_variable */
G_LOCK(yes_or_no);
/* do we have to say something? */
say_something = (yes_or_no != data->what);
if(say_something)
{
/* set the variable */
yes_or_no = data->what;
}
/* Unlock the yes_or_no variable */
G_UNLOCK(yes_or_no);
if(say_something)
{
/* get GTK thread lock */
gdk_threads_enter();
/* set label text */
if(data->what == YES_IT_IS)
gtk_label_set_text(GTK_LABEL(data->label), "O yes, it is!");
else
gtk_label_set_text(GTK_LABEL(data->label), "O no, it isn't!");
/* release GTK thread lock */
gdk_threads_leave();
}
}
return(NULL);
}
int main(int argc, char *argv[])
{
GtkWidget *window;
GtkWidget *label;
yes_or_no_args yes_args, no_args;
pthread_t no_tid, yes_tid;
/* init threads */
g_thread_init(NULL);
/* init gtk */
gtk_init(&amp;argc, &amp;argv);
/* init random number generator */
srand((unsigned int)time(NULL));
/* create a window */
window = gtk_window_new(GTK_WINDOW_TOPLEVEL);
gtk_signal_connect(GTK_OBJECT (window), "destroy",
GTK_SIGNAL_FUNC(destroy), NULL);
gtk_container_set_border_width(GTK_CONTAINER (window), 10);
/* create a label */
label = gtk_label_new("And now for something completely different ...");
gtk_container_add(GTK_CONTAINER(window), label);
/* show everything */
gtk_widget_show(label);
gtk_widget_show (window);
/* create the threads */
yes_args.label = label;
yes_args.what = YES_IT_IS;
pthread_create(&amp;yes_tid, NULL, argument_thread, &amp;yes_args);
no_args.label = label;
no_args.what = NO_IT_IS_NOT;
pthread_create(&amp;no_tid, NULL, argument_thread, &amp;no_args);
/* enter the GTK main loop */
gdk_threads_enter();
gtk_main();
gdk_threads_leave();
return(0);
}
</verb></tscreen>
<!-- This is the old answer - TRG
Although GTK+, like many X toolkits, isn't thread safe, this does
not prohibit the development of multi-threaded applications with
GTK+.
Rob Browning (rlb@cs.utexas.edu) describes threading techniques for
use with GTK+ (slightly edited):
There are basically two main approaches, the first is simple, and the
second complicated. In the first, you just make sure that all GTK+ (or
X) interactions are handled by one, and
only one, thread. Any other thread that wants to draw something has
to somehow notify the "GTK+" thread, and let it handle the
actual work.
The second approach allows you to call GTK+ (or X) functions from any
thread, but it requires some careful synchronization. The
basic idea is that you create an X protection mutex, and no one may
make any X calls without first acquiring this mutex.
Note that this is a little effort, but it allows you to be
potentially more efficient than a completely thread safe GTK+. You
get to decide the granularity of the thread locking. You also have to
make sure that the thread that calls <tt/gtk_main()/ is holding the lock when
it calls <tt/gtk_main()/.
The next thing to worry about is that since you were holding the
global mutex when you entered <tt/gtk_main()/, all callbacks will also be
holding it. This means that the callback must release it if it's
going to call any other code that might reacquire it. Otherwise
you'll get deadlock. Also, you must be holding the mutex when you
finally return from the callback.
In order to allow threads other than the one calling <tt/gtk_main/ to
get access to the mutex, we also need to register a work function
with GTK that allows us to release the mutex periodically.
Why can't GTK+ be thread safe by default?
Complexity, overhead, and manpower. The proportion of threaded
programs is still reasonably small, and getting thread safety right is
both quite difficult and takes valuable time away from the main work
of getting a good graphics library finished. It would be nice to have
GTK+ thread safe "out of the box", but that's not practical right now,
and it also might make GTK+ substantially less efficient if not handled
carefully.
Regardless, it's especially not a priority since relatively good
workarounds exist.
-->
<!-- ----------------------------------------------------------------- -->
<sect1>Why does this strange 'x io error' occur when I <tt/fork()/ in my GTK+ app?
<p>
This is not really a GTK+ problem, and the problem is not related to
<tt/fork()/ either. If the 'x io error' occurs then you probably use
the <tt/exit()/ function in order to exit from the child process.
When GDK opens an X display, it creates a socket file descriptor. When
you use the <tt/exit()/ function, you implicitly close all the open
file descriptors, and the underlying X library really doesn't like
this.
The right function to use here is <tt/_exit()/.
Erik Mouw contributed the following code example to illustrate
handling fork() and exit().
<tscreen><verb>
/*-------------------------------------------------------------------------
* Filename: gtk-fork.c
* Version: 0.99.1
* Copyright: Copyright (C) 1999, Erik Mouw
* Author: Erik Mouw <J.A.K.Mouw@its.tudelft.nl>
* Description: GTK+ fork example
* Created at: Thu Sep 23 21:37:55 1999
* Modified by: Erik Mouw <J.A.K.Mouw@its.tudelft.nl>
* Modified at: Thu Sep 23 22:39:39 1999
*-----------------------------------------------------------------------*/
/*
* Compile with:
*
* cc -o gtk-fork gtk-fork.c `gtk-config --cflags --libs`
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <gtk/gtk.h>
void sigchld_handler(int num)
{
sigset_t set, oldset;
pid_t pid;
int status, exitstatus;
/* block other incoming SIGCHLD signals */
sigemptyset(&amp;set);
sigaddset(&amp;set, SIGCHLD);
sigprocmask(SIG_BLOCK, &amp;set, &amp;oldset);
/* wait for child */
while((pid = waitpid((pid_t)-1, &amp;status, WNOHANG)) > 0)
{
if(WIFEXITED(status))
{
exitstatus = WEXITSTATUS(status);
fprintf(stderr,
"Parent: child exited, pid = %d, exit status = %d\n",
(int)pid, exitstatus);
}
else if(WIFSIGNALED(status))
{
exitstatus = WTERMSIG(status);
fprintf(stderr,
"Parent: child terminated by signal %d, pid = %d\n",
exitstatus, (int)pid);
}
else if(WIFSTOPPED(status))
{
exitstatus = WSTOPSIG(status);
fprintf(stderr,
"Parent: child stopped by signal %d, pid = %d\n",
exitstatus, (int)pid);
}
else
{
fprintf(stderr,
"Parent: child exited magically, pid = %d\n",
(int)pid);
}
}
/* re-install the signal handler (some systems need this) */
signal(SIGCHLD, sigchld_handler);
/* and unblock it */
sigemptyset(&amp;set);
sigaddset(&amp;set, SIGCHLD);
sigprocmask(SIG_UNBLOCK, &amp;set, &amp;oldset);
}
gint delete_event(GtkWidget *widget, GdkEvent *event, gpointer data)
{
return(FALSE);
}
void destroy(GtkWidget *widget, gpointer data)
{
gtk_main_quit();
}
void fork_me(GtkWidget *widget, gpointer data)
{
pid_t pid;
pid = fork();
if(pid == -1)
{
/* ouch, fork() failed */
perror("fork");
exit(-1);
}
else if(pid == 0)
{
/* child */
fprintf(stderr, "Child: pid = %d\n", (int)getpid());
execlp("ls", "ls", "-CF", "/", NULL);
/* if exec() returns, there is something wrong */
perror("execlp");
/* exit child. note the use of _exit() instead of exit() */
_exit(-1);
}
else
{
/* parent */
fprintf(stderr, "Parent: forked a child with pid = %d\n", (int)pid);
}
}
int main(int argc, char *argv[])
{
GtkWidget *window;
GtkWidget *button;
gtk_init(&amp;argc, &amp;argv);
/* the basic stuff: make a window and set callbacks for destroy and
* delete events
*/
window = gtk_window_new(GTK_WINDOW_TOPLEVEL);
gtk_signal_connect(GTK_OBJECT (window), "delete_event",
GTK_SIGNAL_FUNC(delete_event), NULL);
gtk_signal_connect(GTK_OBJECT (window), "destroy",
GTK_SIGNAL_FUNC(destroy), NULL);
#if (GTK_MAJOR_VERSION == 1) && (GTK_MINOR_VERSION == 0)
gtk_container_border_width(GTK_CONTAINER (window), 10);
#else
gtk_container_set_border_width(GTK_CONTAINER (window), 10);
#endif
/* add a button to do something usefull */
button = gtk_button_new_with_label("Fork me!");
gtk_signal_connect(GTK_OBJECT (button), "clicked",
GTK_SIGNAL_FUNC(fork_me), NULL);
gtk_container_add(GTK_CONTAINER(window), button);
/* show everything */
gtk_widget_show (button);
gtk_widget_show (window);
/* install a signal handler for SIGCHLD signals */
signal(SIGCHLD, sigchld_handler);
/* main loop */
gtk_main ();
exit(0);
}
</verb></tscreen>
<!-- ----------------------------------------------------------------- -->
<sect1>Why don't the contents of a button move when the button is pressed? Here's a patch to make it work that way...
<p>
From: Peter Mattis
<quote>
The reason buttons don't move their child down and to the right when
they are depressed is because I don't think that's what is happening
visually. My view of buttons is that you are looking at them straight
on. That is, the user interface lies in a plane and you're above it
looking straight at it. When a button gets pressed it moves directly
away from you. To be absolutely correct I guess the child should
actually shrink a tiny amount. But I don't see why the child should
shift down and to the left. Remember, the child is supposed to be
attached to the buttons surface. Its not good for it to appear like
the child is slipping on the surface of the button.
<P>
On a more practical note, I did implement this at one point and
determined it didn't look good and removed it.
</quote>
<!-- ----------------------------------------------------------------- -->
<sect1>How to I identifiy a widgets top level window or other ancestor?
<p>
There are a couple of ways to find the top level parent of a
widget. The easier way is to call the <tt/gtk_widget_top_level()/
function that returns a pointer to a GtkWidget that is the top level
window.
A more complicated way to do this (but less limited, as it allows
the user to get the closest ancestor of a known type) is to use
<tt/gtk_widget_get_ancestor()/ as in:
<tscreen><verb>
GtkWidget *widget;
widget = gtk_widget_get_ancestor(w, GTK_TYPE_WINDOW);
</verb></tscreen>
Since virtually all the GTK_TYPEs can be used as the second parameter
of this function, you can get any parent widget of a particular
widget. Suppose you have an hbox which contains a vbox, which in turn
contains some other atomic widget (entry, label, etc. To find the
master hbox using the <tt/entry/ widget simply use:
<tscreen><verb>
GtkWidget *hbox;
hbox = gtk_widget_get_ancestor(w, GTK_TYPE_HBOX);
</verb></tscreen>
<!-- ----------------------------------------------------------------- -->
<sect1>How do I get the Window ID of a GtkWindow?
<p>
The actual Gdk/X window will be created when the widget gets
realized. You can get the Window ID with:
<verb>
#include <gdk/gdkx.h>
Window xwin = GDK_WINDOW_XWINDOW (GTK_WIDGET (my_window)->window);
</verb>
<!-- ----------------------------------------------------------------- -->
<sect1>How do I catch a double click event (in a list widget, for example)?
<p>
Tim Janik wrote to gtk-list (slightly modified):
Define a signal handler:
<tscreen><verb>
gint
signal_handler_event(GtkWiget *widget, GdkEvenButton *event, gpointer func_data)
{
if (GTK_IS_LIST_ITEM(widget) &&
(event->type==GDK_2BUTTON_PRESS ||
event->type==GDK_3BUTTON_PRESS) ) {
printf("I feel %s clicked on button %d\",
event->type==GDK_2BUTTON_PRESS ? "double" : "triple",
event->button);
}
return FALSE;
}
</verb></tscreen>
And connect the handler to your object:
<tscreen><verb>
{
/* list, list item init stuff */
gtk_signal_connect(GTK_OBJECT(list_item),
"button_press_event",
GTK_SIGNAL_FUNC(signal_handler_event),
NULL);
/* and/or */
gtk_signal_connect(GTK_OBJECT(list_item),
"button_release_event",
GTK_SIGNAL_FUNC(signal_handler_event),
NULL);
/* something else */
}
</verb></tscreen>
and, Owen Taylor wrote:
Note that a single button press will be received beforehand, and
if you are doing this for a button, you will therefore also get a
"clicked" signal for the button. (This is going to be true for
any toolkit, since computers aren't good at reading one's
mind.)
<!-- ----------------------------------------------------------------- -->
<sect1>By the way, what are the differences between signals and events?
<p>
First of all, Havoc Pennington gives a rather complete description of
the differences between events and signals in his free book (two
chapters can be found at <htmlurl
url="http://www106.pair.com/rhp/sample_chapters.html"
name="http://www106.pair.com/rhp/sample_chapters.html">).
Moreover, Havoc posted this to the <tt/gtk-list/
<quote>
Events are a stream of messages received from the X server. They
drive the Gtk main loop; which more or less amounts to "wait for
events, process them" (not exactly, it is really more general than
that and can wait on many different input streams at once). Events
are a Gdk/Xlib concept.
<P>
Signals are a feature of GtkObject and its subclasses. They have
nothing to do with any input stream; really a signal is just a way
to keep a list of callbacks around and invoke them ("emit" the
signal). There are lots of details and extra features of
course. Signals are emitted by object instances, and are entirely
unrelated to the Gtk main loop. Conventionally, signals are emitted
"when something changes" about the object emitting the signal.
<P>
Signals and events only come together because GtkWidget happens to
emit signals when it gets events. This is purely a convenience, so
you can connect callbacks to be invoked when a particular widget
receives a particular event. There is nothing about this that makes
signals and events inherently related concepts, any more than
emitting a signal when you click a button makes button clicking and
signals related concepts.
</quote>
<!-- ----------------------------------------------------------------- -->
<sect1>Data I pass to the <tt/delete_event/ (or other event) handler gets corrupted.
<p>
All event handlers take an additional argument which contains
information about the event that triggered the handler. So, a
<tt/delete_event/ handler must be declared as:
<tscreen><verb>
gint delete_event_handler (GtkWidget *widget,
GdkEventAny *event,
gpointer data);
</verb></tscreen>
<!-- ----------------------------------------------------------------- -->
<sect1>I have my signal connected to the the (whatever) event, but it seems I don't catch it. What's wrong?
<p>
There is some special initialisation to do in order to catch some
particular events. In fact, you must set the correct event mask bit of
your widget before getting some particular events.
For example,
<tscreen><verb>
gtk_widget_add_events(window, GDK_KEY_RELEASE_MASK);
</verb></tscreen>
lets you catch the key release events. If you want to catch every events,
simply us the GDK_ALL_EVENTS_MASK event mask.
All the event masks are defined in the <tt/gdktypes.h/ file.
<!-- ----------------------------------------------------------------- -->
<sect1>I need to add a new signal to a GTK+ widget. Any idea?
<p>
If the signal you want to add may be beneficial for other GTK+ users,
you may want to submit a patch that presents your changes. Check the
tutorial for more information about adding signals to a widget class.
If you don't think it is the case or if your patch is not applied
you'll have to use the <tt/gtk_object_class_user_signal_new/
function. <tt/gtk_object_class_user_signal_new/ allows you to add a
new signal to a predefined GTK+ widget without any modification of the
GTK+ source code. The new signal can be emited with
<tt/gtk_signal_emit/ and can be handled in the same way as other
signals.
Tim Janik posted this code snippet:
<tscreen><verb>
static guint signal_user_action = 0;
signal_user_action =
gtk_object_class_user_signal_new (gtk_type_class (GTK_TYPE_WIDGET),
"user_action",
GTK_RUN_LAST | GTK_RUN_ACTION,
gtk_marshal_NONE__POINTER,
GTK_TYPE_NONE, 1,
GTK_TYPE_POINTER);
void
gtk_widget_user_action (GtkWidget *widget,
gpointer act_data)
{
g_return_if_fail (GTK_IS_WIDGET (widget));
gtk_signal_emit (GTK_OBJECT (widget), signal_user_action, act_data);
}
</verb></tscreen>
If you want your new signal to have more than the classical gpointer
parameter, you'll have to play with GTK+ marshallers.
<!-- ----------------------------------------------------------------- -->
<sect1>Is it possible to get some text displayed which is truncated to fit inside its allocation?
<p>
GTK's behavior (no clipping) is a consequence of its attempts to
conserve X resources. Label widgets (among others) don't get their own
X window - they just draw their contents on their parent's window.
While it might be possible to have clipping occur by setting the clip
mask before drawing the text, this would probably cause a substantial
performance penalty.
Its possible that, in the long term, the best solution to such
problems might be just to change gtk to give labels X windows.
A short term workaround is to put the label widget inside another
widget that does get its own window - one possible candidate would
be the viewport widget.
<tscreen><verb>
viewport = gtk_viewport (NULL, NULL);
gtk_widget_set_usize (viewport, 50, 25);
gtk_viewport_set_shadow_type (GTK_VIEWPORT(viewport), GTK_SHADOW_NONE);
gtk_widget_show(viewport);
label = gtk_label ("a really long label that won't fit");
gtk_container_add (GTK_CONTAINER(viewport), label);
gtk_widget_show (label);
</verb></tscreen>
If you were doing this for a bunch of widgets, you might want to
copy gtkviewport.c and strip out the adjustment and shadow
functionality (perhaps you could call it GtkClipper).
<!-- ----------------------------------------------------------------- -->
<sect1>How do I make my window modal? / How do I make a single window active?
<p>
After you create your window, do <tt/gtk_grab_add(my_window)/. And after
closing the window do <tt/gtk_grab_remove(my_window)/.
<!-- ----------------------------------------------------------------- -->
<sect1>Why doesn't my widget (e.g. progressbar) update?
<p>
You are probably doing all the changes within a function without
returning control to <tt/gtk_main()/. This may be the case if you do
some lengthy calculation in your code. Most drawing updates are only
placed on a queue, which is processed within <tt/gtk_main()/. You can
force the drawing queue to be processed using something like:
<tscreen><verb>
while (g_main_iteration(FALSE));
</verb></tscreen>
inside you're function that changes the widget.
What the above snippet does is run all pending events and high priority
idle functions, then return immediately (the drawing is done in a
high priority idle function).
<!-- ----------------------------------------------------------------- -->
<sect1>How do I attach data to some GTK+ object/widget?
<p>
First of all, the attached data is stored in the object_data field of
a GtkObject. The type of this field is GData, which is defined in
glib.h. So you should read the gdataset.c file in your glib source
directory very carefully.
There are two (easy) ways to attach some data to a gtk object. Using
<tt/gtk_object_set_data()/ and <tt/gtk_object_get_data()/ seems to be
the most common way to do this, as it provides a powerful interface to
connect objects and data.
<tscreen><verb>
void gtk_object_set_data(GtkObject *object, const gchar *key, gpointer data);
gpointer gtk_object_get_data(GtkObject *object, const gchar *key);
</verb></tscreen>
Since a short example is better than any lengthy speech:
<tscreen><verb>
struct my_struct p1,p2,*result;
GtkWidget *w;
gtk_object_set_data(GTK_OBJECT(w),"p1 data",(gpointer)&amp;p1);
gtk_object_set_data(GTK_OBJECT(w),"p2 data",(gpointer)&amp;p2);
result = gtk_object_get_data(GTK_OBJECT(w),"p1 data");
</verb></tscreen>
The <tt/gtk_object_set_user_data()/ and <tt/gtk_object_get_user_data()/
functions does exactly the same thing
as the functions above, but does not let you specify the "key" parameter.
Instead, it uses a standard "user_data" key. Note that the use of these
functions is deprecated in 1.2. They only provide a compatibility mode
with some old gtk packages.
<!-- ----------------------------------------------------------------- -->
<sect1>How do I remove the data I have attached to an object?
<p>
When attaching the data to the object, you can use the
<tt/gtk_object_set_data_full()/ function. The three first arguments of
the function are the same as in <tt/gtk_object_set_data()/. The fourth
one is a pointer to a callback function which is called when the data
is destroyed. The data is destroyed when you:
<itemize>
<item> destroy the object
<item> replace the data with a new one (with the same key)
<item> replace the data with NULL (with the same key)
</itemize>
<!-- ----------------------------------------------------------------- -->
<sect1>How do I reparent a widget?
<p>
The normal way to reparent (ie change the owner) of a widget should be
to use the function:
<tscreen><verb>
void gtk_widget_reparent (GtkWidget *widget,
GtkWidget *new_parent)
</verb></tscreen>
But this is only a "should be" since this function does not correctly
do its job on some specific widgets. The main goal of
gtk_widget_reparent() is to avoid unrealizing widget if both widget
and new_parent are realized (in this case, widget->window is
successfully reparented). The problem here is that some widgets in the
GTK+ hierarchy have multiple attached X subwindows and this is notably
the case for the GtkSpinButton widget. For those,
gtk_widget_reparent() will fail by leaving an unrealized child window
where it should not.
To avoid this problem, simply use the following code snippet:
<tscreen><verb>
gtk_widget_ref(widget);
gtk_container_remove(GTK_CONTAINER(old_parent), widget);
gtk_container_add(GTK_CONTAINER(new_parent), widget);
gtk_widget_unref(widget);
</verb></tscreen>
<!-- ----------------------------------------------------------------- -->
<sect1>How could I get any widgets position?
<p>
As Tim Janik pointed out, there are different cases, and each case
requires a different solution.
<itemize>
<item> If you want the position of a widget relative to its parent,
you should use <tt/widget->allocation.x/ and
<tt/widget->allocation.y/.
<item> If you want the position of a window relative to the X root
window, you should use <tt/gdk_window_get_geometry()/
<tt/gdk_window_get_position()/ or
<tt/gdk_window_get_origin()/.
<item> If you want to get the position of the window (including the WM
decorations), you should use
<tt/gdk_window_get_root_origin()/.
<item> Last but not least, if you want to get a Window Manager frame
position, you should use
<tt/gdk_window_get_deskrelative_origin()/.
</itemize>
Your choice of Window Manager will have an effect of the results of
the above functions. You should keep this in mind when writing your
application. This is dependant upon how the Window Managers manage the
decorations that they add around windows.
<!-- ----------------------------------------------------------------- -->
<sect1>How do I set the size of a widget/window? How do I prevent the user resizing my window?
<p>
The <tt/gtk_widget_set_uposition()/ function is used to set the
position of any widget.
The <tt/gtk_widget_set_usize()/ function is used to set the size of a
widget. In order to use all the features that are provided by this
function when it acts on a window, you may want to use the
<tt/gtk_window_set_policy/ function. The definition of these functions
are:
<tscreen><verb>
void gtk_widget_set_usize (GtkWidget *widget,
gint width,
gint height);
void gtk_window_set_policy (GtkWindow *window,
gint allow_shrink,
gint allow_grow,
gint auto_shrink);
</verb></tscreen>
<tt/Auto_shrink/ will automatically shrink the window when the
requested size of the child widgets goes below the current size of the
window. <tt/Allow_shrink/ will give the user the authorisation to make
the window smaller that it should normally be. <tt/Allow_grow/ will
give the user will have the ability to make the window bigger. The
default values for these parameters are:
<tscreen><verb>
allow_shrink = FALSE
allow_grow = TRUE
auto_shrink = FALSE
</verb></tscreen>
The <tt/gtk_widget_set_usize()/ functions is not the easiest way to
set a window size since you cannot decrease this window size with
another call to this function unless you call it twice, as in:
<tscreen><verb>
gtk_widget_set_usize(your_widget, -1, -1);
gtk_widget_set_usize(your_widget, new_x_size, new_y_size);
</verb></tscreen>
Another way to set the size of and/or move a window is to use the
<tt/gdk_window_move_resize()/ function which uses to work fine both to
grow or to shrink the window:
<tscreen><verb>
gdk_window_move_resize(window->window,
x_pos, y_pos,
x_size, y_size);
</verb></tscreen>
<!-- ----------------------------------------------------------------- -->
<sect1>How do I add a popup menu to my GTK+ application?
<p>
The <tt/menu/ example in the examples/menu directory of the GTK+ distribution
implements a popup menu with this technique :
<tscreen><verb>
static gint button_press (GtkWidget *widget, GdkEvent *event)
{
if (event->type == GDK_BUTTON_PRESS) {
GdkEventButton *bevent = (GdkEventButton *) event;
gtk_menu_popup (GTK_MENU(widget), NULL, NULL, NULL, NULL,
bevent->button, bevent->time);
/* Tell calling code that we have handled this event; the buck
* stops here. */
return TRUE;
}
/* Tell calling code that we have not handled this event; pass it on. */
return FALSE;
}
</verb></tscreen>
<!-- ----------------------------------------------------------------- -->
<sect1>How do I disable or enable a widget, such as a button?
<p>
To disable (or to enable) a widget, use the
<tt/gtk_widget_set_sensitive()/ function. The first parameter is you
widget pointer. The second parameter is a boolean value: when this
value is TRUE, the widget is enabled.
<!-- ----------------------------------------------------------------- -->
<sect1>Shouldn't the text argument in the gtk_clist_* functions be declared const?
<p>
For example:
<verb>
gint gtk_clist_prepend (GtkCList *clist,
gchar *text[]);
</verb>
Answer: No, while a type "gchar*" (pointer to char) can automatically
be cast into "const gchar*" (pointer to const char), this does not
apply for "gchar *[]" (array of an unspecified number of pointers to
char) into "const gchar *[]" (array of an unspecified number of
pointers to const char).
The type qualifier "const" may be subject to automatic casting, but in
the array case, it is not the array itself that needs the (const)
qualified cast, but its members, thus changing the whole type.
<!-- ----------------------------------------------------------------- -->
<sect1>How do I render pixels (image data) to the screen?
<p>
There are several ways to approach this. The simplest way is to use
GdkRGB, see gdk/gdkrgb.h. You create an RGB buffer, render to your RGB
buffer, then use GdkRGB routines to copy your RGB buffer to a drawing
area or custom widget. The book "GTK+/Gnome Application Development"
gives some details; GdkRGB is also documented in the GTK+ reference
documentation.
If you're writing a game or other graphics-intensive application, you
might consider a more elaborate solution. OpenGL is the graphics
standard that will let you access hardware accelaration in future
versions of XFree86; so for maximum speed, you probably want to use
OpenGL. A GtkGLArea widget is available for using OpenGL with GTK+
(but GtkGLArea does not come with GTK+ itself). There are also several
open source game libraries, such as ClanLib and Loki's Simple
DirectMedia Layer library (SDL).
You do NOT want to use <tt/gdk_draw_point()/, that will be extremely
slow.
<!-- ----------------------------------------------------------------- -->
<sect1>How do I create a pixmap without having my window realized/shown?
<p>
Functions such as <tt/gdk_pixmap_create_from_xpm()/ require a valid
window as a parameter. During the initialisation phase of an
application, a valid window may not be available without showing a
window, which may be inappropriate. In order to avoid this, a
function such as <tt/gdk_pixmap_colormap_create_from_xpm/ can be used,
as in:
<tscreen><verb>
char *pixfile = "foo.xpm";
GtkWidget *top, *box, *pixw;
GdkPixmap *pixmap, *pixmap_mask;
top = gtk_window_new (GKT_WINDOW_TOPLEVEL);
box = gtk_hbox_new (FALSE, 4);
gtk_conainer_add (GTK_CONTAINER(top), box);
pixmap = gdk_pixmap_colormap_create_from_xpm (
NULL, gtk_widget_get_colormap(top),
&amp;pixmap_mask, NULL, pixfile);
pixw = gtk_pixmap_new (pixmap, pixmap_mask);
gdk_pixmap_unref (pixmap);
gdk_pixmap_unref (pixmap_mask);
</verb></tscreen>
<!-- ***************************************************************** -->
<sect>Development with GTK+: widget specific questions
<!-- ***************************************************************** -->
<!-- ----------------------------------------------------------------- -->
<sect1>How do I find out about the selection of a GtkList?
<p>
Get the selection something like this:
<tscreen><verb>
GList *sel;
sel = GTK_LIST(list)->selection;
</verb></tscreen>
This is how GList is defined (quoting glist.h):
<tscreen><verb>
typedef struct _GList GList;
struct _GList
{
gpointer data;
GList *next;
GList *prev;
};
</verb></tscreen>
A GList structure is just a simple structure for doubly linked lists.
there exist several g_list_*() functions to modify a linked list in
glib.h. However the GTK_LIST(MyGtkList)->selection is maintained
by the gtk_list_*() functions and should not be modified.
The selection_mode of the GtkList determines the selection
facilities of a GtkList and therefore the contents
of GTK_LIST(AnyGtkList)->selection:
<verb>
selection_mode GTK_LIST()->selection contents
------------------------------------------------------
GTK_SELECTION_SINGLE selection is either NULL
or contains a GList* pointer
for a single selected item.
GTK_SELECTION_BROWSE selection is NULL if the list
contains no widgets, otherwise
it contains a GList* pointer
for one GList structure.
GTK_SELECTION_MULTIPLE selection is NULL if no listitems
are selected or a a GList* pointer
for the first selected item. that
in turn points to a GList structure
for the second selected item and so
on.
GTK_SELECTION_EXTENDED selection is NULL.
</verb>
The data field of the GList structure GTK_LIST(MyGtkList)->selection points
to the first GtkListItem that is selected. So if you would like to determine
which listitems are selected you should go like this:
Upon Initialization:
<tscreen><verb>
{
gchar *list_items[]={
"Item0",
"Item1",
"foo",
"last Item",
};
guint nlist_items=sizeof(list_items)/sizeof(list_items[0]);
GtkWidget *list_item;
guint i;
list=gtk_list_new();
gtk_list_set_selection_mode(GTK_LIST(list), GTK_SELECTION_MULTIPLE);
gtk_container_add(GTK_CONTAINER(AnyGtkContainer), list);
gtk_widget_show (list);
for (i = 0; i < nlist_items; i++)
{
list_item=gtk_list_item_new_with_label(list_items[i]);
gtk_object_set_user_data(GTK_OBJECT(list_item), (gpointer)i);
gtk_container_add(GTK_CONTAINER(list), list_item);
gtk_widget_show(list_item);
}
}
</verb></tscreen>
To get known about the selection:
<tscreen><verb>
{
GList *items;
items=GTK_LIST(list)->selection;
printf("Selected Items: ");
while (items) {
if (GTK_IS_LIST_ITEM(items->data))
printf("%d ", (guint)
gtk_object_get_user_data(items->data));
items=items->next;
}
printf("\n");
}
</verb></tscreen>
<!-- ----------------------------------------------------------------- -->
<sect1>How do I stop the column headings of a GtkCList disappearing
when the list is scrolled?
<p>
This happens when a GtkCList is packed into a GtkScrolledWindow using
the function <tt/gtk_scroll_window_add_with_viewport()/. The prefered
method of adding a CList to a scrolled window is to use the function
<tt/gtk_container_add/, as in:
<tscreen><verb>
GtkWidget *scrolled, *clist;
char *titles[] = { "Title1" , "Title2" };
scrolled = gtk_scrolled_window_new(NULL, NULL);
clist = gtk_clist_new_with_titles(2, titles);
gtk_container_add(GTK_CONTAINER(scrolled), clist);
</verb></tscreen>
<!-- ----------------------------------------------------------------- --><p>
<sect1>I don't want the user of my applications to enter text into a GtkCombo. Any idea?
<p>
A GtkCombo has an associated entry which can be accessed using the
following expression:
<tscreen><verb>
GTK_COMBO(combo_widget)->entry
</verb></tscreen>
If you don't want the user to be able to modify the content of this
entry, you can use the gtk_entry_set_editable() function:
<tscreen><verb>
void gtk_entry_set_editable(GtkEntry *entry,
gboolean editable);
</verb></tscreen>
Set the editable parameter to FALSE to disable typing into the entry.
<!-- ----------------------------------------------------------------- -->
<sect1>How do I catch a combo box change?
<p>
The entry which is associated to your GtkCombo send a "changed" signal
when:
<itemize>
<item>some text is typed in
<item>the selection of the combo box is changed
</itemize>
To catch any combo box change, simply connect your signal handler with
<tscreen><verb>
gtk_signal_connect(GTK_COMBO(cb)->entry,
"changed",
GTK_SIGNAL_FUNC(my_cb_change_handler),
NULL);
</verb></tscreen>
<!-- ----------------------------------------------------------------- -->
<sect1>How can I define a separation line in a menu?
<p>
See the <htmlurl url="http://www.gtk.org/tutorial/"
name="Tutorial"> for information on how to create menus.
However, to create a separation line in a menu, just insert an
empty menu item:
<tscreen><verb>
menuitem = gtk_menu_item_new();
gtk_menu_append(GTK_MENU(menu), menuitem);
gtk_widget_show(menuitem);
</verb></tscreen>
<!-- ----------------------------------------------------------------- -->
<sect1>How can I right justify a menu, such as Help?
<p>
Depending on if you use the MenuFactory or not, there are two ways to
proceed. With the MenuFactory, use something like the following:
<tscreen><verb>
menu_path = gtk_menu_factory_find (factory, "<MyApp>/Help");
gtk_menu_item_right_justify(menu_path->widget);
</verb></tscreen>
If you do not use the MenuFactory, you should simply use:
<tscreen><verb>
gtk_menu_item_right_justify(my_menu_item);
</verb></tscreen>
<!-- ----------------------------------------------------------------- -->
<sect1>How do I add some underlined accelerators to menu items?
<p>
Damon Chaplin, the technical force behind the Glade project, provided
the following code sample (this code is an output from Glade). It
creates a small <tt/File/ menu item with only one child
(<tt/New/). The F in <tt/File/ and the N in <tt/New/ are underlined,
and the relevant accelerators are created.
<tscreen><verb>
menubar1 = gtk_menu_bar_new ();
gtk_object_set_data (GTK_OBJECT (window1), "menubar1", menubar1);
gtk_widget_show (menubar1);
gtk_box_pack_start (GTK_BOX (vbox1), menubar1, FALSE, FALSE, 0);
file1 = gtk_menu_item_new_with_label ("");
tmp_key = gtk_label_parse_uline (GTK_LABEL (GTK_BIN (file1)->child),
_("_File"));
gtk_widget_add_accelerator (file1, "activate_item", accel_group,
tmp_key, GDK_MOD1_MASK, 0);
gtk_object_set_data (GTK_OBJECT (window1), "file1", file1);
gtk_widget_show (file1);
gtk_container_add (GTK_CONTAINER (menubar1), file1);
file1_menu = gtk_menu_new ();
file1_menu_accels = gtk_menu_ensure_uline_accel_group (GTK_MENU (file1_menu));
gtk_object_set_data (GTK_OBJECT (window1), "file1_menu", file1_menu);
gtk_menu_item_set_submenu (GTK_MENU_ITEM (file1), file1_menu);
new1 = gtk_menu_item_new_with_label ("");
tmp_key = gtk_label_parse_uline (GTK_LABEL (GTK_BIN (new1)->child),
_("_New"));
gtk_widget_add_accelerator (new1, "activate_item", file1_menu_accels,
tmp_key, 0, 0);
gtk_object_set_data (GTK_OBJECT (window1), "new1", new1);
gtk_widget_show (new1);
gtk_container_add (GTK_CONTAINER (file1_menu), new1);
</verb></tscreen>
<!-- ----------------------------------------------------------------- -->
<sect1>How can I retrieve the text from a GtkMenuItem?
<p>
You can usually retrieve the label of a specific GtkMenuItem with:
<tscreen><verb>
if (GTK_BIN (menu_item)->child)
{
GtkWidget *child = GTK_BIN (menu_item)->child;
/* do stuff with child */
if (GTK_IS_LABEL (child))
{
gchar *text;
gtk_label_get (GTK_LABEL (child), &amp;text);
g_print ("menu item text: %s\n", text);
}
}
</verb></tscreen>
To get the active menu item from a GtkOptionMenu you can do:
<tscreen><verb>
if (GTK_OPTION_MENU (option_menu)->menu_item)
{
GtkWidget *menu_item = GTK_OPTION_MENU (option_menu)->menu_item;
}
</verb></tscreen>
But, there's a catch. For this specific case, you can <bf>not</bf> get
the label widget from <tt/menu_item/ with the above code, because the
option menu reparents the menu_item's child temporarily to display the
currently active contents. So to retrive the child of the currently
active menu_item of an option menu, you'll have to do:
<tscreen><verb>
if (GTK_BIN (option_menu)->child)
{
GtkWidget *child = GTK_BIN (option_menu)->child;
/* do stuff with child */
}
</verb></tscreen>
<!-- ----------------------------------------------------------------- -->
<sect1>How do I right (or otherwise) justify a GtkLabel?
<p>
Are you sure you want to <em>justify</em> the labels? The label class
contains the <tt/gtk_label_set_justify()/ function that is used to
control the justification of a multi-line label.
What you probably want is to set the <em>alignment</em> of the label,
ie right align it, center it or left align it. If you want to do this,
you should use:
<tscreen><verb>
void gtk_misc_set_alignment (GtkMisc *misc,
gfloat xalign,
gfloat yalign);
</verb></tscreen>
where the <tt/xalign/ and <tt/yalign/ values are floats in [0.00;1.00].
<tscreen><verb>
GtkWidget *label;
/* horizontal : left align, vertical : top */
gtk_misc_set_alignment(GTK_MISK(label), 0.0f, 0.0f);
/* horizontal : centered, vertical : centered */
gtk_misc_set_alignment(GTK_MISK(label), 0.5f, 0.5f);
/* horizontal : right align, vertical : bottom */
gtk_misc_set_alignment(GTK_MISK(label), 1.0f, 1.0f);
</verb></tscreen>
<!-- ----------------------------------------------------------------- -->
<sect1>How do I set the background color of a GtkLabel widget?
<p>
The Gtklabel widget is one of a few GTK+ widgets that don't create
their own window to render themselves into. Instead, they draw
themselves directly onto their parents window.
This means that in order to set the background color for a GtkLabel
widget, you need to change the background color of its parent,
i.e. the object that you pack it into.
<!-- ----------------------------------------------------------------- -->
<sect1>How do I set the color and font of a GtkLabel using a Resource File?
<p>
The widget name path constructed for a Label consists of the widget
names of its object hierarchy as well, e.g.
<verb>
window (name: humphrey)
hbox
label (name: mylabel)
</verb>
The widget path your pattern needs to match would be:
<tt/humphrey.GtkHBox.mylabel/
The resource file may look something like:
<verb>
style "title"
{
fg[NORMAL] = {1.0, 0.0, 0.0}
font = "-adobe-helvetica-bold-r-normal--*-140-*-*-*-*-*-*"
}
widget "*mylabel" style "title"
</verb>
In your program, you would also need to give a name to the Label
widget, which can be done using:
<verb>
label = gtk_label_new("Some Label Text");
gtk_widget_set_name(label, "mylabel");
gtk_widget_show(label);
</verb>
<!-- ----------------------------------------------------------------- -->
<sect1>How do I configure Tooltips in a Resource File?
<p>
The tooltip's window is named "gtk-tooltips", GtkTooltips in itself is
not a GtkWidget (though a GtkObject) and as such is not attempted to
match any widget styles.
So, you resource file should look something like:
<verb>
style "postie"
{
bg[NORMAL] = {1.0, 1.0, 0.0}
}
widget "gtk-tooltips*" style "postie"
</verb>
<!-- ----------------------------------------------------------------- -->
<sect1>I can't add more than (something like) 2000 chars in a GtkEntry. What's wrong?
<p>
There is now a known problem in the GtkEntry widget. In the
<tt/gtk_entry_insert_text()/ function, the following lines limit
the number of chars in the entry to 2047.
<tscreen><verb>
/* The algorithms here will work as long as, the text size (a
* multiple of 2), fits into a guint16 but we specify a shorter
* maximum length so that if the user pastes a very long text, there
* is not a long hang from the slow X_LOCALE functions. */
if (entry->text_max_length == 0)
max_length = 2047;
else
max_length = MIN (2047, entry->text_max_length);
</verb></tscreen>
<!-- ----------------------------------------------------------------- -->
<sect1>How do I make a GtkEntry widget activate on pressing the Return key?
<p>
The Entry widget emits an 'activate' signal when you press return in
it. Just attach to the activate signal on the entry and do whatever you
want to do. Typical code would be:
<tscreen><verb>
entry = gtk_entry_new();
gtk_signal_connect (GTK_OBJECT(entry), "activate",
GTK_SIGNAL_FUNC(entry_callback),
NULL);
</verb></tscreen>
<!-- ----------------------------------------------------------------- -->
<sect1>How do I validate/limit/filter the input to a GtkEntry?
<p>
If you want to validate the text that a user enters into a GtkEntry
widget you can attach to the "insert_text" signal of the entry, and
modify the text within the callback function. The example below forces
all characters to uppercase, and limits the range of characters to
A-Z. Note that the entry is cast to an object of type GtkEditable,
from which GtkEntry is derived.
<tscreen><verb>
#include <ctype.h>
#include <gtk/gtk.h>
void insert_text_handler (GtkEntry *entry,
const gchar *text,
gint length,
gint *position,
gpointer data)
{
GtkEditable *editable = GTK_EDITABLE(entry);
int i, count=0;
gchar *result = g_new (gchar, length);
for (i=0; i < length; i++) {
if (!isalpha(text[i]))
continue;
result[count++] = islower(text[i]) ? toupper(text[i]) : text[i];
}
if (count > 0) {
gtk_signal_handler_block_by_func (GTK_OBJECT (editable),
GTK_SIGNAL_FUNC (insert_text_handler),
data);
gtk_editable_insert_text (editable, result, count, position);
gtk_signal_handler_unblock_by_func (GTK_OBJECT (editable),
GTK_SIGNAL_FUNC (insert_text_handler),
data);
}
gtk_signal_emit_stop_by_name (GTK_OBJECT (editable), "insert_text");
g_free (result);
}
int main (int argc,
char *argv[])
{
GtkWidget *window;
GtkWidget *entry;
gtk_init (&amp;argc, &amp;argv);
/* create a new window */
window = gtk_window_new(GTK_WINDOW_TOPLEVEL);
gtk_window_set_title(GTK_WINDOW (window), "GTK Entry");
gtk_signal_connect(GTK_OBJECT (window), "delete_event",
(GtkSignalFunc) gtk_exit, NULL);
entry = gtk_entry_new();
gtk_signal_connect(GTK_OBJECT(entry), "insert_text",
GTK_SIGNAL_FUNC(insert_text_handler),
NULL);
gtk_container_add(GTK_CONTAINER (window), entry);
gtk_widget_show(entry);
gtk_widget_show(window);
gtk_main();
return(0);
}
</verb></tscreen>
<!-- ----------------------------------------------------------------- -->
<sect1>How do I use horizontal scrollbars with a GtkText widget?
<p>
The short answer is that you can't. The current version of the GtkText
widget does not support horizontal scrolling. There is an intention to
completely rewrite the GtkText widget, at which time this limitation
will be removed.
<!-- ----------------------------------------------------------------- -->
<sect1>How do I change the font of a GtkText widget?
<p>
There are a couple of ways of doing this. As GTK+ allows the
appearance of applications to be changed at run time using resources
you can use something like the following in the appropriate
file:
<tscreen><verb>
style "text"
{
font = "-adobe-helvetica-medium-r-normal--*-100-*-*-*-*-*-*"
}
</verb></tscreen>
Another way to do this is to load a font within your program, and then
use this in the functions for adding text to the text widget. You can
load a font using, for example:
<tscreen><verb>
GdkFont *font;
font = gdk_font_load("-adobe-helvetica-medium-r-normal--*-140-*-*-*-*-*-*");
</verb></tscreen>
<!-- ----------------------------------------------------------------- -->
<sect1>How do I set the cursor position in a GtkText object?
<p>
Notice that the response is valid for any object that inherits from the
GtkEditable class.
Are you sure that you want to move the cursor position? Most of the
time, while the cursor position is good, the insertion point does not
match the cursor position. If this apply to what you really want, then
you should use the <tt/gtk_text_set_point()/ function. If you want to
set the insertion point at the current cursor position, use the
following:
<tscreen><verb>
gtk_text_set_point(GTK_TEXT(text),
gtk_editable_get_position(GTK_EDITABLE(text)));
</verb></tscreen>
If you want the insertion point to follow the cursor at all time, you
should probably catch the button press event, and then move the
insertion point. Be careful : you'll have to catch it after the widget
has changed the cursor position though. Thomas Mailund Jensen proposed
the following code:
<tscreen><verb>
static void
insert_bar (GtkWidget *text)
{
/* jump to cursor mark */
gtk_text_set_point (GTK_TEXT (text),
gtk_editable_get_position (GTK_EDITABLE (text)));
gtk_text_insert (GTK_TEXT (text), NULL, NULL, NULL,
"bar", strlen ("bar"));
}
int
main (int argc, char *argv[])
{
GtkWidget *window, *text;
gtk_init (&amp;argc, &amp;argv);
window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
text = gtk_text_new (NULL, NULL);
gtk_text_set_editable (GTK_TEXT (text), TRUE);
gtk_container_add (GTK_CONTAINER (window), text);
/* connect after everything else */
gtk_signal_connect_after (GTK_OBJECT(text), "button_press_event",
GTK_SIGNAL_FUNC (insert_bar), NULL);
gtk_widget_show_all(window);
gtk_main();
return 0;
}
</verb></tscreen>
Now, if you really want to change the cursor position, you should use the
<tt/gtk_editable_set_position()/ function.
<!-- ***************************************************************** -->
<sect>About gdk
<!-- ***************************************************************** -->
<!-- ----------------------------------------------------------------- -->
<sect1>What is GDK?
<p>
GDK is basically a wrapper around the standard Xlib function calls. If
you are at all familiar with Xlib, a lot of the functions in GDK will
require little or no getting used to. All functions are written to
provide an way to access Xlib functions in an easier and slightly more
intuitive manner. In addition, since GDK uses GLib (see below), it
will be more portable and safer to use on multiple platforms.
<!-- Examples, anybody? I've been mulling some over. NF -->
<!-- ----------------------------------------------------------------- -->
<sect1>How do I use color allocation?
<p>
One of the nice things about GDK is that it's based on top of Xlib; this is
also a problem, especially in the area of color management. If you want
to use color in your program (drawing a rectangle or such, your code
should look something like this:
<tscreen>
<verb>
{
GdkColor *color;
int width, height;
GtkWidget *widget;
GdkGC *gc;
...
/* first, create a GC to draw on */
gc = gdk_gc_new(widget->window);
/* find proper dimensions for rectangle */
gdk_window_get_size(widget->window, &amp;width, &amp;height);
/* the color we want to use */
color = (GdkColor *)malloc(sizeof(GdkColor));
/* red, green, and blue are passed values, indicating the RGB triple
* of the color we want to draw. Note that the values of the RGB components
* within the GdkColor are taken from 0 to 65535, not 0 to 255.
*/
color->red = red * (65535/255);
color->green = green * (65535/255);
color->blue = blue * (65535/255);
/* the pixel value indicates the index in the colormap of the color.
* it is simply a combination of the RGB values we set earlier
*/
color->pixel = (gulong)(red*65536 + green*256 + blue);
/* However, the pixel valule is only truly valid on 24-bit (TrueColor)
* displays. Therefore, this call is required so that GDK and X can
* give us the closest color available in the colormap
*/
gdk_color_alloc(gtk_widget_get_colormap(widget), color);
/* set the foreground to our color */
gdk_gc_set_foreground(gc, color);
/* draw the rectangle */
gdk_draw_rectangle(widget->window, gc, 1, 0, 0, width, height);
...
}
</verb>
</tscreen>
<!-- ***************************************************************** -->
<sect>About GLib
<!-- ***************************************************************** -->
<!-- ----------------------------------------------------------------- -->
<sect1>What is GLib?
<p>
GLib is a library of useful functions and definitions available for use
when creating GDK and GTK applications. It provides replacements for some
standard libc functions, such as malloc, which are buggy on some systems.
<p>
It also provides routines for handling:
<itemize>
<item>Doubly Linked Lists
<item>Singly Linked Lists
<item>Timers
<item>String Handling
<item>A Lexical Scanner
<item>Error Functions
</itemize>
<!-- ----------------------------------------------------------------- -->
<sect1>How can I use the doubly linked lists?
<p>
The GList object is defined as:
<tscreen><verb>
typedef struct _GList GList;
struct _GList
{
gpointer data;
GList *next;
GList *prev;
};
</verb></tscreen>
To use the GList objects, simply :
<tscreen><verb>
GList *list = NULL;
GList *listrunner;
gint array[] = { 1, 2, 3, 4, 5, 6 };
gint pos;
gint *value;
/* add data to the list */
for (pos=0;pos < sizeof array; pos++) {
list = g_list_append(list, (gpointer)&amp;array[pos]);
}
/* run through the list */
listrunner = g_list_first(list);
while (listrunner) {
value = (gint *)listrunner->data;
printf("%d\n", *value);
listrunner = g_list_next(listrunner);
}
/* removing datas from the list */
listrunner = g_list_first(list);
list = g_list_remove_link(list, listrunner);
list = g_list_remove(list, &amp;array[4]);
</verb></tscreen>
The same code is usable with singly linked lists (GSList objects) by replacing
g_list_* functions with the relevant g_slist_* ones (g_slist_append,
g_slist_remove, ...). Just remember that since you can't go backward in a singly
linked list, there is no g_slist_first function - you'll need to keep a
reference on the first node of the list.
<!-- Some Examples might be useful here! NF -->
<!-- I believe it should be better :) ED -->
<!-- Linked lists are pretty standard data structures - don't want to
over do it - TRG -->
<!-- ----------------------------------------------------------------- -->
<sect1>Memory does not seem to be released when I free the list nodes I've allocated
<p>
GLib tries to be "intelligent" on this special issue: it assumes that
you are likely to reuse the objects, so caches the allocated memory.
If you do not want to use this behavior, you'll probably want to set
up a special allocator.
To quote Tim Janik:
<quote>
If you have a certain portion of code that uses *lots* of GLists or
GNodes, and you know you'd better want to release all of them after a
short while, you'd want to use a GAllocator. Pushing an allocator into
g_list will make all subsequent glist operations private to that
allocator's memory pool (and thus you have to take care to pop the
allocator again, before making any external calls):
</quote>
<tscreen><verb>
GAllocator *allocator;
GList *list = NULL;
guint i;
/* set a new allocation pool for GList nodes */
allocator = g_allocator_new ("list heap", 1024);
g_list_push_allocator (allocator);
/* do some list operations */
for (i = 0; i < 4096; i++)
list = g_list_prepend (list, NULL);
list = g_list_reverse (list);
/* beware to pop allocator befor calling external functions */
g_list_pop_allocator ();
gtk_label_set_text (GTK_LABEL (some_label), "some text");
/* and set our private glist pool again */
g_list_push_allocator (allocator);
/* do some list operations */
g_list_free (list);
list = NULL;
for (i = 0; i < 4096; i++)
list = g_list_prepend (list, NULL);
/* and back out (while freeing all of the list nodes in our pool) */
g_list_pop_allocator ();
g_allocator_free (allocator);
</verb></tscreen>
<!-- ----------------------------------------------------------------- -->
<sect1>Why use g_print, g_malloc, g_strdup and fellow glib functions?
<p>
Thanks to Tim Janik who wrote to gtk-list: (slightly modified)
<quote>
Regarding g_malloc(), g_free() and siblings, these functions are much
safer than their libc equivalents. For example, g_free() just returns
if called with NULL. Also, if USE_DMALLOC is defined, the definition
for these functions changes (in glib.h) to use MALLOC(), FREE() etc...
If MEM_PROFILE or MEM_CHECK are defined, there are even small
statistics made counting the used block sizes (shown by
g_mem_profile() / g_mem_check()).
<p>
Considering the fact that glib provides an interface for memory chunks
to save space if you have lots of blocks that are always the same size
and to mark them ALLOC_ONLY if needed, it is just straight forward to
create a small saver (debug able) wrapper around the normal malloc/free
stuff as well - just like gdk covers Xlib. ;)
<p>
Using g_error() and g_warning() inside of applications like the GIMP
that fully rely on gtk even gives the opportunity to pop up a window
showing the messages inside of a gtk window with your own handler
(by using g_set_error_handler()) along the lines of <tt/gtk_print()/
(inside of gtkmain.c).
</quote>
<!-- ----------------------------------------------------------------- -->
<sect1>What's a GScanner and how do I use one?
<p>
A GScanner will tokenize your text, that is, it'll return an integer
for every word or number that appears in its input stream, following
certain (customizable) rules to perform this translation.
You still need to write the parsing functions on your own though.
Here's a little test program supplied by Tim Janik that will parse
<verb>
<SYMBOL> = <OPTIONAL-MINUS> <NUMBER> ;
</verb>
constructs, while skipping "#\n" and "/**/" style comments.
<verb>
#include <glib.h>
/* some test text to be fed into the scanner */
static const gchar *test_text =
( "ping = 5;\n"
"/* slide in some \n"
" * comments, just for the\n"
" * fun of it \n"
" */\n"
"pong = -6; \n"
"\n"
"# the next value is a float\n"
"zonk = 0.7;\n"
"# redefine ping\n"
"ping = - 0.5;\n" );
/* define enumeration values to be returned for specific symbols */
enum {
SYMBOL_PING = G_TOKEN_LAST + 1,
SYMBOL_PONG = G_TOKEN_LAST + 2,
SYMBOL_ZONK = G_TOKEN_LAST + 3
};
/* symbol array */
static const struct {
gchar *symbol_name;
guint symbol_token;
} symbols[] = {
{ "ping", SYMBOL_PING, },
{ "pong", SYMBOL_PONG, },
{ "zonk", SYMBOL_ZONK, },
{ NULL, 0, },
}, *symbol_p = symbols;
static gfloat ping = 0;
static gfloat pong = 0;
static gfloat zonk = 0;
static guint
parse_symbol (GScanner *scanner)
{
guint symbol;
gboolean negate = FALSE;
/* expect a valid symbol */
g_scanner_get_next_token (scanner);
symbol = scanner->token;
if (symbol < SYMBOL_PING ||
symbol > SYMBOL_ZONK)
return G_TOKEN_SYMBOL;
/* expect '=' */
g_scanner_get_next_token (scanner);
if (scanner->token != '=')
return '=';
/* feature optional '-' */
g_scanner_peek_next_token (scanner);
if (scanner->next_token == '-')
{
g_scanner_get_next_token (scanner);
negate = !negate;
}
/* expect a float (ints are converted to floats on the fly) */
g_scanner_get_next_token (scanner);
if (scanner->token != G_TOKEN_FLOAT)
return G_TOKEN_FLOAT;
/* make sure the next token is a ';' */
if (g_scanner_peek_next_token (scanner) != ';')
{
/* not so, eat up the non-semicolon and error out */
g_scanner_get_next_token (scanner);
return ';';
}
/* assign value, eat the semicolon and exit successfully */
switch (symbol)
{
case SYMBOL_PING:
ping = negate ? - scanner->value.v_float : scanner->value.v_float;
break;
case SYMBOL_PONG:
pong = negate ? - scanner->value.v_float : scanner->value.v_float;
break;
case SYMBOL_ZONK:
zonk = negate ? - scanner->value.v_float : scanner->value.v_float;
break;
}
g_scanner_get_next_token (scanner);
return G_TOKEN_NONE;
}
int
main (int argc, char *argv[])
{
GScanner *scanner;
guint expected_token;
scanner = g_scanner_new (NULL);
/* adjust lexing behaviour to suit our needs
*/
/* convert non-floats (octal values, hex values...) to G_TOKEN_INT */
scanner->config->numbers_2_int = TRUE;
/* convert G_TOKEN_INT to G_TOKEN_FLOAT */
scanner->config->int_2_float = TRUE;
/* don't return G_TOKEN_SYMBOL, but the symbol's value */
scanner->config->symbol_2_token = TRUE;
/* load symbols into the scanner */
while (symbol_p->symbol_name)
{
g_scanner_add_symbol (scanner,
symbol_p->symbol_name,
GINT_TO_POINTER (symbol_p->symbol_token));
symbol_p++;
}
/* feed in the text */
g_scanner_input_text (scanner, test_text, strlen (test_text));
/* give the error handler an idea on how the input is named */
scanner->input_name = "test text";
/* scanning loop, we parse the input until its end is reached,
* the scanner encountered a lexing error, or our sub routine came
* across invalid syntax
*/
do
{
expected_token = parse_symbol (scanner);
g_scanner_peek_next_token (scanner);
}
while (expected_token == G_TOKEN_NONE &&
scanner->next_token != G_TOKEN_EOF &&
scanner->next_token != G_TOKEN_ERROR);
/* give an error message upon syntax errors */
if (expected_token != G_TOKEN_NONE)
g_scanner_unexp_token (scanner, expected_token, NULL, "symbol", NULL, NULL, TRUE);
/* finsish parsing */
g_scanner_destroy (scanner);
/* print results */
g_print ("ping: %f\n", ping);
g_print ("pong: %f\n", pong);
g_print ("zonk: %f\n", zonk);
return 0;
}
</verb>
You need to understand that the scanner will parse its input and
tokenize it, it is up to you to interpret these tokens, not define
their types before they get parsed, e.g. watch gscanner parse a
string:
<verb>
"hi i am 17"
| | | |
| | | v
| | v TOKEN_INT, value: 17
| v TOKEN_IDENTIFIER, value: "am"
v TOKEN_CHAR, value: 'i'
TOKEN_IDENTIFIER, value: "hi"
</verb>
If you configure the scanner with:
<verb>
scanner->config->int_2_float = TRUE;
scanner->config->char_2_token = TRUE;
scanner->config->scan_symbols = TRUE;
</verb>
and add "am" as a symbol with
<verb>
g_scanner_add_symbol (scanner, "am", "symbol value");
</verb>
GScanner will parse it as
<verb>
"hi i am 17"
| | | |
| | | v
| | v TOKEN_FLOAT, value: 17.0 (automatic int->float conversion)
| | TOKEN_SYMBOL, value: "symbol value" (a successfull hash table lookup
| | turned a TOKEN_IDENTIFIER into a
| | TOKEN_SYMBOL and took over the
| v symbol's value)
v 'i' ('i' can be a valid token as well, as all chars >0 and <256)
TOKEN_IDENTIFIER, value: "hi"
</verb>
You need to match the token sequence with your code, and if you encounter
something that you don't want, you error out:
<verb>
/* expect an identifier ("hi") */
g_scanner_get_next_token (scanner);
if (scanner->token != G_TOKEN_IDENTIFIER)
return G_TOKEN_IDENTIFIER;
/* expect a token 'i' */
g_scanner_get_next_token (scanner);
if (scanner->token != 'i')
return 'i';
/* expect a symbol ("am") */
g_scanner_get_next_token (scanner);
if (scanner->token != G_TOKEN_SYMBOL)
return G_TOKEN_SYMBOL;
/* expect a float (17.0) */
g_scanner_get_next_token (scanner);
if (scanner->token != G_TOKEN_FLOAT)
return G_TOKEN_FLOAT;
</verb>
If you got past here, you have parsed "hi i am 17" and would have
accepted "dooh i am 42" and "bah i am 0.75" as well, but you would
have not accepted "hi 7 am 17" or "hi i hi 17".
<!-- ***************************************************************** -->
<sect>GTK+ FAQ Contributions, Maintainers and Copyright
<p>
If you would like to make a contribution to the FAQ, send either one
of us an e-mail message with the exact text you think should be
included (question and answer). With your help, this document can grow
and become more useful!
This document is maintained by
Tony Gale <htmlurl url="mailto:gale@gtk.org"
name="&lt;gale@gtk.org&gt;">
Nathan Froyd <htmlurl url="mailto:maestrox@geocities.com"
name="&lt;maestrox@geocities.com&gt;">,
and
Emmanuel Deloget <htmlurl url="mailto:logout@free.fr"
name="&lt;logout@free.fr&gt;">.
This FAQ was created by Shawn T. Amundson
<htmlurl url="mailto:amundson@gimp.org"
name="&lt;amundson@gimp.org&gt;"> who continues to provide support.
Contributions should be sent to Tony Gale <htmlurl
url="mailto:gale@gtk.org" name="&lt;gale@gtk.org&gt;">
The GTK+ FAQ is Copyright (C) 1997-2000 by Shawn T. Amundson,
Tony Gale, Emmanuel Deloget and Nathan Froyd.
Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.
Permission is granted to copy and distribute modified versions of this
document under the conditions for verbatim copying, provided that this
copyright notice is included exactly as in the original, and that the
entire resulting derived work is distributed under the terms of a
permission notice identical to this one.
Permission is granted to copy and distribute translations of this
document into another language, under the above conditions for
modified versions.
If you are intending to incorporate this document into a published
work, please contact one of the maintainers, and we will make an
effort to ensure that you have the most up to date information
available.
There is no guarentee that this document lives up to its intended
purpose. This is simply provided as a free resource. As such, the
authors and maintainers of the information provided within can not
make any guarentee that the information is even accurate.
</article>