forked from AuroraMiddleware/gtk
2500 lines
74 KiB
C
2500 lines
74 KiB
C
/* gtktreemodel.c
|
|
* Copyright (C) 2000 Red Hat, Inc., Jonathan Blandford <jrb@redhat.com>
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Library General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Library General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 02111-1307, USA.
|
|
*/
|
|
|
|
#include "config.h"
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <glib.h>
|
|
#include <glib/gprintf.h>
|
|
#include <gobject/gvaluecollector.h>
|
|
#include "gtktreemodel.h"
|
|
#include "gtktreeview.h"
|
|
#include "gtktreeprivate.h"
|
|
#include "gtkmarshalers.h"
|
|
#include "gtkintl.h"
|
|
|
|
/**
|
|
* SECTION:gtktreemodel
|
|
* @Title: GtkTreeModel
|
|
* @Short_description: The tree interface used by GtkTreeView
|
|
* @See_also: #GtkTreeView, #GtkTreeStore, #GtkListStore,
|
|
* <link linkend="gtk-GtkTreeView-drag-and-drop">GtkTreeDnd</link>,
|
|
* #GtkTreeSortable
|
|
*
|
|
* The #GtkTreeModel interface defines a generic tree interface for
|
|
* use by the #GtkTreeView widget. It is an abstract interface, and
|
|
* is designed to be usable with any appropriate data structure. The
|
|
* programmer just has to implement this interface on their own data
|
|
* type for it to be viewable by a #GtkTreeView widget.
|
|
*
|
|
* The model is represented as a hierarchical tree of strongly-typed,
|
|
* columned data. In other words, the model can be seen as a tree where
|
|
* every node has different values depending on which column is being
|
|
* queried. The type of data found in a column is determined by using
|
|
* the GType system (ie. #G_TYPE_INT, #GTK_TYPE_BUTTON, #G_TYPE_POINTER,
|
|
* etc). The types are homogeneous per column across all nodes. It is
|
|
* important to note that this interface only provides a way of examining
|
|
* a model and observing changes. The implementation of each individual
|
|
* model decides how and if changes are made.
|
|
*
|
|
* In order to make life simpler for programmers who do not need to
|
|
* write their own specialized model, two generic models are provided
|
|
* — the #GtkTreeStore and the #GtkListStore. To use these, the
|
|
* developer simply pushes data into these models as necessary. These
|
|
* models provide the data structure as well as all appropriate tree
|
|
* interfaces. As a result, implementing drag and drop, sorting, and
|
|
* storing data is trivial. For the vast majority of trees and lists,
|
|
* these two models are sufficient.
|
|
*
|
|
* Models are accessed on a node/column level of granularity. One can
|
|
* query for the value of a model at a certain node and a certain
|
|
* column on that node. There are two structures used to reference
|
|
* a particular node in a model. They are the #GtkTreePath and the
|
|
* #GtkTreeIter<footnote><para>Here, <abbrev>iter</abbrev> is short
|
|
* for <quote>iterator</quote></para></footnote>. Most of the interface
|
|
* consists of operations on a #GtkTreeIter.
|
|
*
|
|
* A path is essentially a potential node. It is a location on a model
|
|
* that may or may not actually correspond to a node on a specific
|
|
* model. The #GtkTreePath struct can be converted into either an
|
|
* array of unsigned integers or a string. The string form is a list
|
|
* of numbers separated by a colon. Each number refers to the offset
|
|
* at that level. Thus, the path <quote>0</quote> refers to the root
|
|
* node and the path <quote>2:4</quote> refers to the fifth child of
|
|
* the third node.
|
|
*
|
|
* By contrast, a #GtkTreeIter is a reference to a specific node on
|
|
* a specific model. It is a generic struct with an integer and three
|
|
* generic pointers. These are filled in by the model in a model-specific
|
|
* way. One can convert a path to an iterator by calling
|
|
* gtk_tree_model_get_iter(). These iterators are the primary way
|
|
* of accessing a model and are similar to the iterators used by
|
|
* #GtkTextBuffer. They are generally statically allocated on the
|
|
* stack and only used for a short time. The model interface defines
|
|
* a set of operations using them for navigating the model.
|
|
*
|
|
* It is expected that models fill in the iterator with private data.
|
|
* For example, the #GtkListStore model, which is internally a simple
|
|
* linked list, stores a list node in one of the pointers. The
|
|
* #GtkTreeModelSort stores an array and an offset in two of the
|
|
* pointers. Additionally, there is an integer field. This field is
|
|
* generally filled with a unique stamp per model. This stamp is for
|
|
* catching errors resulting from using invalid iterators with a model.
|
|
*
|
|
* The lifecycle of an iterator can be a little confusing at first.
|
|
* Iterators are expected to always be valid for as long as the model
|
|
* is unchanged (and doesn't emit a signal). The model is considered
|
|
* to own all outstanding iterators and nothing needs to be done to
|
|
* free them from the user's point of view. Additionally, some models
|
|
* guarantee that an iterator is valid for as long as the node it refers
|
|
* to is valid (most notably the #GtkTreeStore and #GtkListStore).
|
|
* Although generally uninteresting, as one always has to allow for
|
|
* the case where iterators do not persist beyond a signal, some very
|
|
* important performance enhancements were made in the sort model.
|
|
* As a result, the #GTK_TREE_MODEL_ITERS_PERSIST flag was added to
|
|
* indicate this behavior.
|
|
*
|
|
* To help show some common operation of a model, some examples are
|
|
* provided. The first example shows three ways of getting the iter at
|
|
* the location <quote>3:2:5</quote>. While the first method shown is
|
|
* easier, the second is much more common, as you often get paths from
|
|
* callbacks.
|
|
*
|
|
* <example>
|
|
* <title>Acquiring a <structname>GtkTreeIter</structname></title>
|
|
* <programlisting>
|
|
* /* Three ways of getting the iter pointing to the location */
|
|
* GtkTreePath *path;
|
|
* GtkTreeIter iter;
|
|
* GtkTreeIter parent_iter;
|
|
*
|
|
* /* get the iterator from a string */
|
|
* gtk_tree_model_get_iter_from_string (model, &iter, "3:2:5");
|
|
*
|
|
* /* get the iterator from a path */
|
|
* path = gtk_tree_path_new_from_string ("3:2:5");
|
|
* gtk_tree_model_get_iter (model, &iter, path);
|
|
* gtk_tree_path_free (path);
|
|
*
|
|
* /* walk the tree to find the iterator */
|
|
* gtk_tree_model_iter_nth_child (model, &iter, NULL, 3);
|
|
* parent_iter = iter;
|
|
* gtk_tree_model_iter_nth_child (model, &iter, &parent_iter, 2);
|
|
* parent_iter = iter;
|
|
* gtk_tree_model_iter_nth_child (model, &iter, &parent_iter, 5);
|
|
* </programlisting>
|
|
* </example>
|
|
*
|
|
* This second example shows a quick way of iterating through a list
|
|
* and getting a string and an integer from each row. The
|
|
* <function>populate_model</function> function used below is not
|
|
* shown, as it is specific to the #GtkListStore. For information on
|
|
* how to write such a function, see the #GtkListStore documentation.
|
|
*
|
|
* <example>
|
|
* <title>Reading data from a <structname>GtkTreeModel</structname></title>
|
|
* <programlisting>
|
|
* enum
|
|
* {
|
|
* STRING_COLUMN,
|
|
* INT_COLUMN,
|
|
* N_COLUMNS
|
|
* };
|
|
*
|
|
* ...
|
|
*
|
|
* GtkTreeModel *list_store;
|
|
* GtkTreeIter iter;
|
|
* gboolean valid;
|
|
* gint row_count = 0;
|
|
*
|
|
* /* make a new list_store */
|
|
* list_store = gtk_list_store_new (N_COLUMNS, G_TYPE_STRING, G_TYPE_INT);
|
|
*
|
|
* /* Fill the list store with data */
|
|
* populate_model (list_store);
|
|
*
|
|
* /* Get the first iter in the list */
|
|
* valid = gtk_tree_model_get_iter_first (list_store, &iter);
|
|
*
|
|
* while (valid)
|
|
* {
|
|
* /* Walk through the list, reading each row */
|
|
* gchar *str_data;
|
|
* gint int_data;
|
|
*
|
|
* /* Make sure you terminate calls to gtk_tree_model_get()
|
|
* * with a '-1' value
|
|
* */
|
|
* gtk_tree_model_get (list_store, &iter,
|
|
* STRING_COLUMN, &str_data,
|
|
* INT_COLUMN, &int_data,
|
|
* -1);
|
|
*
|
|
* /* Do something with the data */
|
|
* g_print ("Row %d: (%s,%d)\n", row_count, str_data, int_data);
|
|
* g_free (str_data);
|
|
*
|
|
* row_count++;
|
|
* valid = gtk_tree_model_iter_next (list_store, &iter);
|
|
* }
|
|
* </programlisting>
|
|
* </example>
|
|
*
|
|
* The #GtkTreeModel interface contains two methods for reference
|
|
* counting: gtk_tree_model_ref_node() and gtk_tree_model_unref_node().
|
|
* These two methods are optional to implement. The reference counting
|
|
* is meant as a way for views to let models know when nodes are being
|
|
* displayed. #GtkTreeView will take a reference on a node when it is
|
|
* visible, which means the node is either in the toplevel or expanded.
|
|
* Being displayed does not mean that the node is currently directly
|
|
* visible to the user in the viewport. Based on this reference counting
|
|
* scheme a caching model, for example, can decide whether or not to cache
|
|
* a node based on the reference count. A file-system based model would
|
|
* not want to keep the entire file hierarchy in memory, but just the
|
|
* folders that are currently expanded in every current view.
|
|
*
|
|
* When working with reference counting, the following rules must be taken
|
|
* into account:
|
|
* <itemizedlist>
|
|
* <listitem><para>Never take a reference on a node without owning a
|
|
* reference on its parent. This means that all parent nodes of a referenced
|
|
* node must be referenced as well.</para></listitem>
|
|
* <listitem><para>Outstanding references on a deleted node are not released.
|
|
* This is not possible because the node has already been deleted by the
|
|
* time the row-deleted signal is received.
|
|
* </para></listitem>
|
|
* <listitem><para>Models are not obligated to emit a signal on rows of
|
|
* which none of its siblings are referenced. To phrase this differently,
|
|
* signals are only required for levels in which nodes are referenced. For
|
|
* the root level however, signals must be emitted at all times (however the
|
|
* root level is always referenced when any view is attached).
|
|
* </para></listitem>
|
|
* </itemizedlist>
|
|
*/
|
|
|
|
#define INITIALIZE_TREE_ITER(Iter) \
|
|
G_STMT_START{ \
|
|
(Iter)->stamp = 0; \
|
|
(Iter)->user_data = NULL; \
|
|
(Iter)->user_data2 = NULL; \
|
|
(Iter)->user_data3 = NULL; \
|
|
}G_STMT_END
|
|
|
|
#define ROW_REF_DATA_STRING "gtk-tree-row-refs"
|
|
|
|
enum {
|
|
ROW_CHANGED,
|
|
ROW_INSERTED,
|
|
ROW_HAS_CHILD_TOGGLED,
|
|
ROW_DELETED,
|
|
ROWS_REORDERED,
|
|
LAST_SIGNAL
|
|
};
|
|
|
|
static guint tree_model_signals[LAST_SIGNAL] = { 0 };
|
|
|
|
struct _GtkTreePath
|
|
{
|
|
gint depth; /* Number of elements */
|
|
gint alloc; /* Number of allocated elements */
|
|
gint *indices;
|
|
};
|
|
|
|
typedef struct
|
|
{
|
|
GSList *list;
|
|
} RowRefList;
|
|
|
|
static void gtk_tree_model_base_init (gpointer g_class);
|
|
|
|
/* custom closures */
|
|
static void row_inserted_marshal (GClosure *closure,
|
|
GValue /* out */ *return_value,
|
|
guint n_param_value,
|
|
const GValue *param_values,
|
|
gpointer invocation_hint,
|
|
gpointer marshal_data);
|
|
static void row_deleted_marshal (GClosure *closure,
|
|
GValue /* out */ *return_value,
|
|
guint n_param_value,
|
|
const GValue *param_values,
|
|
gpointer invocation_hint,
|
|
gpointer marshal_data);
|
|
static void rows_reordered_marshal (GClosure *closure,
|
|
GValue /* out */ *return_value,
|
|
guint n_param_value,
|
|
const GValue *param_values,
|
|
gpointer invocation_hint,
|
|
gpointer marshal_data);
|
|
|
|
static void gtk_tree_row_ref_inserted (RowRefList *refs,
|
|
GtkTreePath *path,
|
|
GtkTreeIter *iter);
|
|
static void gtk_tree_row_ref_deleted (RowRefList *refs,
|
|
GtkTreePath *path);
|
|
static void gtk_tree_row_ref_reordered (RowRefList *refs,
|
|
GtkTreePath *path,
|
|
GtkTreeIter *iter,
|
|
gint *new_order);
|
|
|
|
GType
|
|
gtk_tree_model_get_type (void)
|
|
{
|
|
static GType tree_model_type = 0;
|
|
|
|
if (! tree_model_type)
|
|
{
|
|
const GTypeInfo tree_model_info =
|
|
{
|
|
sizeof (GtkTreeModelIface), /* class_size */
|
|
gtk_tree_model_base_init, /* base_init */
|
|
NULL, /* base_finalize */
|
|
NULL,
|
|
NULL, /* class_finalize */
|
|
NULL, /* class_data */
|
|
0,
|
|
0, /* n_preallocs */
|
|
NULL
|
|
};
|
|
|
|
tree_model_type =
|
|
g_type_register_static (G_TYPE_INTERFACE, I_("GtkTreeModel"),
|
|
&tree_model_info, 0);
|
|
|
|
g_type_interface_add_prerequisite (tree_model_type, G_TYPE_OBJECT);
|
|
}
|
|
|
|
return tree_model_type;
|
|
}
|
|
|
|
static void
|
|
gtk_tree_model_base_init (gpointer g_class)
|
|
{
|
|
static gboolean initialized = FALSE;
|
|
GClosure *closure;
|
|
|
|
if (! initialized)
|
|
{
|
|
GType row_inserted_params[2];
|
|
GType row_deleted_params[1];
|
|
GType rows_reordered_params[3];
|
|
|
|
row_inserted_params[0] = GTK_TYPE_TREE_PATH | G_SIGNAL_TYPE_STATIC_SCOPE;
|
|
row_inserted_params[1] = GTK_TYPE_TREE_ITER;
|
|
|
|
row_deleted_params[0] = GTK_TYPE_TREE_PATH | G_SIGNAL_TYPE_STATIC_SCOPE;
|
|
|
|
rows_reordered_params[0] = GTK_TYPE_TREE_PATH | G_SIGNAL_TYPE_STATIC_SCOPE;
|
|
rows_reordered_params[1] = GTK_TYPE_TREE_ITER;
|
|
rows_reordered_params[2] = G_TYPE_POINTER;
|
|
|
|
/**
|
|
* GtkTreeModel::row-changed:
|
|
* @tree_model: the #GtkTreeModel on which the signal is emitted
|
|
* @path: a #GtkTreePath identifying the changed row
|
|
* @iter: a valid #GtkTreeIter pointing to the changed row
|
|
*
|
|
* This signal is emitted when a row in the model has changed.
|
|
*/
|
|
tree_model_signals[ROW_CHANGED] =
|
|
g_signal_new (I_("row-changed"),
|
|
GTK_TYPE_TREE_MODEL,
|
|
G_SIGNAL_RUN_LAST,
|
|
G_STRUCT_OFFSET (GtkTreeModelIface, row_changed),
|
|
NULL, NULL,
|
|
_gtk_marshal_VOID__BOXED_BOXED,
|
|
G_TYPE_NONE, 2,
|
|
GTK_TYPE_TREE_PATH | G_SIGNAL_TYPE_STATIC_SCOPE,
|
|
GTK_TYPE_TREE_ITER);
|
|
|
|
/* We need to get notification about structure changes
|
|
* to update row references., so instead of using the
|
|
* standard g_signal_new() with an offset into our interface
|
|
* structure, we use a customs closures for the class
|
|
* closures (default handlers) that first update row references
|
|
* and then calls the function from the interface structure.
|
|
*
|
|
* The reason we don't simply update the row references from
|
|
* the wrapper functions (gtk_tree_model_row_inserted(), etc.)
|
|
* is to keep proper ordering with respect to signal handlers
|
|
* connected normally and after.
|
|
*/
|
|
|
|
/**
|
|
* GtkTreeModel::row-inserted:
|
|
* @tree_model: the #GtkTreeModel on which the signal is emitted
|
|
* @path: a #GtkTreePath identifying the new row
|
|
* @iter: a valid #GtkTreeIter pointing to the new row
|
|
*
|
|
* This signal is emitted when a new row has been inserted in
|
|
* the model.
|
|
*
|
|
* Note that the row may still be empty at this point, since
|
|
* it is a common pattern to first insert an empty row, and
|
|
* then fill it with the desired values.
|
|
*/
|
|
closure = g_closure_new_simple (sizeof (GClosure), NULL);
|
|
g_closure_set_marshal (closure, row_inserted_marshal);
|
|
tree_model_signals[ROW_INSERTED] =
|
|
g_signal_newv (I_("row-inserted"),
|
|
GTK_TYPE_TREE_MODEL,
|
|
G_SIGNAL_RUN_FIRST,
|
|
closure,
|
|
NULL, NULL,
|
|
_gtk_marshal_VOID__BOXED_BOXED,
|
|
G_TYPE_NONE, 2,
|
|
row_inserted_params);
|
|
|
|
/**
|
|
* GtkTreeModel::row-has-child-toggled:
|
|
* @tree_model: the #GtkTreeModel on which the signal is emitted
|
|
* @path: a #GtkTreePath identifying the row
|
|
* @iter: a valid #GtkTreeIter pointing to the row
|
|
*
|
|
* This signal is emitted when a row has gotten the first child
|
|
* row or lost its last child row.
|
|
*/
|
|
tree_model_signals[ROW_HAS_CHILD_TOGGLED] =
|
|
g_signal_new (I_("row-has-child-toggled"),
|
|
GTK_TYPE_TREE_MODEL,
|
|
G_SIGNAL_RUN_LAST,
|
|
G_STRUCT_OFFSET (GtkTreeModelIface, row_has_child_toggled),
|
|
NULL, NULL,
|
|
_gtk_marshal_VOID__BOXED_BOXED,
|
|
G_TYPE_NONE, 2,
|
|
GTK_TYPE_TREE_PATH | G_SIGNAL_TYPE_STATIC_SCOPE,
|
|
GTK_TYPE_TREE_ITER);
|
|
|
|
/**
|
|
* GtkTreeModel::row-deleted:
|
|
* @tree_model: the #GtkTreeModel on which the signal is emitted
|
|
* @path: a #GtkTreePath identifying the row
|
|
*
|
|
* This signal is emitted when a row has been deleted.
|
|
*
|
|
* Note that no iterator is passed to the signal handler,
|
|
* since the row is already deleted.
|
|
*
|
|
* This should be called by models after a row has been removed.
|
|
* The location pointed to by @path should be the location that
|
|
* the row previously was at. It may not be a valid location anymore.
|
|
*/
|
|
closure = g_closure_new_simple (sizeof (GClosure), NULL);
|
|
g_closure_set_marshal (closure, row_deleted_marshal);
|
|
tree_model_signals[ROW_DELETED] =
|
|
g_signal_newv (I_("row-deleted"),
|
|
GTK_TYPE_TREE_MODEL,
|
|
G_SIGNAL_RUN_FIRST,
|
|
closure,
|
|
NULL, NULL,
|
|
_gtk_marshal_VOID__BOXED,
|
|
G_TYPE_NONE, 1,
|
|
row_deleted_params);
|
|
|
|
/**
|
|
* GtkTreeModel::rows-reordered: (skip)
|
|
* @tree_model: the #GtkTreeModel on which the signal is emitted
|
|
* @path: a #GtkTreePath identifying the tree node whose children
|
|
* have been reordered
|
|
* @iter: a valid #GtkTreeIter pointing to the node whose
|
|
* @new_order: an array of integers mapping the current position
|
|
* of each child to its old position before the re-ordering,
|
|
* i.e. @new_order<literal>[newpos] = oldpos</literal>
|
|
*
|
|
* This signal is emitted when the children of a node in the
|
|
* #GtkTreeModel have been reordered.
|
|
*
|
|
* Note that this signal is <emphasis>not</emphasis> emitted
|
|
* when rows are reordered by DND, since this is implemented
|
|
* by removing and then reinserting the row.
|
|
*/
|
|
closure = g_closure_new_simple (sizeof (GClosure), NULL);
|
|
g_closure_set_marshal (closure, rows_reordered_marshal);
|
|
tree_model_signals[ROWS_REORDERED] =
|
|
g_signal_newv (I_("rows-reordered"),
|
|
GTK_TYPE_TREE_MODEL,
|
|
G_SIGNAL_RUN_FIRST,
|
|
closure,
|
|
NULL, NULL,
|
|
_gtk_marshal_VOID__BOXED_BOXED_POINTER,
|
|
G_TYPE_NONE, 3,
|
|
rows_reordered_params);
|
|
initialized = TRUE;
|
|
}
|
|
}
|
|
|
|
static void
|
|
row_inserted_marshal (GClosure *closure,
|
|
GValue /* out */ *return_value,
|
|
guint n_param_values,
|
|
const GValue *param_values,
|
|
gpointer invocation_hint,
|
|
gpointer marshal_data)
|
|
{
|
|
GtkTreeModelIface *iface;
|
|
|
|
void (* row_inserted_callback) (GtkTreeModel *tree_model,
|
|
GtkTreePath *path,
|
|
GtkTreeIter *iter) = NULL;
|
|
|
|
GObject *model = g_value_get_object (param_values + 0);
|
|
GtkTreePath *path = (GtkTreePath *)g_value_get_boxed (param_values + 1);
|
|
GtkTreeIter *iter = (GtkTreeIter *)g_value_get_boxed (param_values + 2);
|
|
|
|
/* first, we need to update internal row references */
|
|
gtk_tree_row_ref_inserted ((RowRefList *)g_object_get_data (model, ROW_REF_DATA_STRING),
|
|
path, iter);
|
|
|
|
/* fetch the interface ->row_inserted implementation */
|
|
iface = GTK_TREE_MODEL_GET_IFACE (model);
|
|
row_inserted_callback = G_STRUCT_MEMBER (gpointer, iface,
|
|
G_STRUCT_OFFSET (GtkTreeModelIface,
|
|
row_inserted));
|
|
|
|
/* Call that default signal handler, it if has been set */
|
|
if (row_inserted_callback)
|
|
row_inserted_callback (GTK_TREE_MODEL (model), path, iter);
|
|
}
|
|
|
|
static void
|
|
row_deleted_marshal (GClosure *closure,
|
|
GValue /* out */ *return_value,
|
|
guint n_param_values,
|
|
const GValue *param_values,
|
|
gpointer invocation_hint,
|
|
gpointer marshal_data)
|
|
{
|
|
GtkTreeModelIface *iface;
|
|
void (* row_deleted_callback) (GtkTreeModel *tree_model,
|
|
GtkTreePath *path) = NULL;
|
|
GObject *model = g_value_get_object (param_values + 0);
|
|
GtkTreePath *path = (GtkTreePath *)g_value_get_boxed (param_values + 1);
|
|
|
|
/* first, we need to update internal row references */
|
|
gtk_tree_row_ref_deleted ((RowRefList *)g_object_get_data (model, ROW_REF_DATA_STRING),
|
|
path);
|
|
|
|
/* fetch the interface ->row_deleted implementation */
|
|
iface = GTK_TREE_MODEL_GET_IFACE (model);
|
|
row_deleted_callback = G_STRUCT_MEMBER (gpointer, iface,
|
|
G_STRUCT_OFFSET (GtkTreeModelIface,
|
|
row_deleted));
|
|
|
|
/* Call that default signal handler, it if has been set */
|
|
if (row_deleted_callback)
|
|
row_deleted_callback (GTK_TREE_MODEL (model), path);
|
|
}
|
|
|
|
static void
|
|
rows_reordered_marshal (GClosure *closure,
|
|
GValue /* out */ *return_value,
|
|
guint n_param_values,
|
|
const GValue *param_values,
|
|
gpointer invocation_hint,
|
|
gpointer marshal_data)
|
|
{
|
|
GtkTreeModelIface *iface;
|
|
void (* rows_reordered_callback) (GtkTreeModel *tree_model,
|
|
GtkTreePath *path,
|
|
GtkTreeIter *iter,
|
|
gint *new_order);
|
|
|
|
GObject *model = g_value_get_object (param_values + 0);
|
|
GtkTreePath *path = (GtkTreePath *)g_value_get_boxed (param_values + 1);
|
|
GtkTreeIter *iter = (GtkTreeIter *)g_value_get_boxed (param_values + 2);
|
|
gint *new_order = (gint *)g_value_get_pointer (param_values + 3);
|
|
|
|
/* first, we need to update internal row references */
|
|
gtk_tree_row_ref_reordered ((RowRefList *)g_object_get_data (model, ROW_REF_DATA_STRING),
|
|
path, iter, new_order);
|
|
|
|
/* fetch the interface ->rows_reordered implementation */
|
|
iface = GTK_TREE_MODEL_GET_IFACE (model);
|
|
rows_reordered_callback = G_STRUCT_MEMBER (gpointer, iface,
|
|
G_STRUCT_OFFSET (GtkTreeModelIface,
|
|
rows_reordered));
|
|
|
|
/* Call that default signal handler, it if has been set */
|
|
if (rows_reordered_callback)
|
|
rows_reordered_callback (GTK_TREE_MODEL (model), path, iter, new_order);
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_path_new:
|
|
*
|
|
* Creates a new #GtkTreePath.
|
|
* This structure refers to a row.
|
|
*
|
|
* Return value: A newly created #GtkTreePath.
|
|
*/
|
|
GtkTreePath *
|
|
gtk_tree_path_new (void)
|
|
{
|
|
GtkTreePath *retval;
|
|
retval = g_slice_new (GtkTreePath);
|
|
retval->depth = 0;
|
|
retval->alloc = 0;
|
|
retval->indices = NULL;
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_path_new_from_string:
|
|
* @path: The string representation of a path
|
|
*
|
|
* Creates a new #GtkTreePath initialized to @path.
|
|
*
|
|
* @path is expected to be a colon separated list of numbers.
|
|
* For example, the string "10:4:0" would create a path of depth
|
|
* 3 pointing to the 11th child of the root node, the 5th
|
|
* child of that 11th child, and the 1st child of that 5th child.
|
|
* If an invalid path string is passed in, %NULL is returned.
|
|
*
|
|
* Return value: A newly-created #GtkTreePath, or %NULL
|
|
*/
|
|
GtkTreePath *
|
|
gtk_tree_path_new_from_string (const gchar *path)
|
|
{
|
|
GtkTreePath *retval;
|
|
const gchar *orig_path = path;
|
|
gchar *ptr;
|
|
gint i;
|
|
|
|
g_return_val_if_fail (path != NULL, NULL);
|
|
g_return_val_if_fail (*path != '\000', NULL);
|
|
|
|
retval = gtk_tree_path_new ();
|
|
|
|
while (1)
|
|
{
|
|
i = strtol (path, &ptr, 10);
|
|
if (i < 0)
|
|
{
|
|
g_warning (G_STRLOC ": Negative numbers in path %s passed to gtk_tree_path_new_from_string", orig_path);
|
|
gtk_tree_path_free (retval);
|
|
return NULL;
|
|
}
|
|
|
|
gtk_tree_path_append_index (retval, i);
|
|
|
|
if (*ptr == '\000')
|
|
break;
|
|
if (ptr == path || *ptr != ':')
|
|
{
|
|
g_warning (G_STRLOC ": Invalid path %s passed to gtk_tree_path_new_from_string", orig_path);
|
|
gtk_tree_path_free (retval);
|
|
return NULL;
|
|
}
|
|
path = ptr + 1;
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_path_new_from_indices:
|
|
* @first_index: first integer
|
|
* @varargs: list of integers terminated by -1
|
|
*
|
|
* Creates a new path with @first_index and @varargs as indices.
|
|
*
|
|
* Return value: A newly created #GtkTreePath
|
|
*
|
|
* Since: 2.2
|
|
*/
|
|
GtkTreePath *
|
|
gtk_tree_path_new_from_indices (gint first_index,
|
|
...)
|
|
{
|
|
int arg;
|
|
va_list args;
|
|
GtkTreePath *path;
|
|
|
|
path = gtk_tree_path_new ();
|
|
|
|
va_start (args, first_index);
|
|
arg = first_index;
|
|
|
|
while (arg != -1)
|
|
{
|
|
gtk_tree_path_append_index (path, arg);
|
|
arg = va_arg (args, gint);
|
|
}
|
|
|
|
va_end (args);
|
|
|
|
return path;
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_path_to_string:
|
|
* @path: A #GtkTreePath
|
|
*
|
|
* Generates a string representation of the path.
|
|
*
|
|
* This string is a ':' separated list of numbers.
|
|
* For example, "4:10:0:3" would be an acceptable
|
|
* return value for this string.
|
|
*
|
|
* Return value: A newly-allocated string.
|
|
* Must be freed with g_free().
|
|
*/
|
|
gchar *
|
|
gtk_tree_path_to_string (GtkTreePath *path)
|
|
{
|
|
gchar *retval, *ptr, *end;
|
|
gint i, n;
|
|
|
|
g_return_val_if_fail (path != NULL, NULL);
|
|
|
|
if (path->depth == 0)
|
|
return NULL;
|
|
|
|
n = path->depth * 12;
|
|
ptr = retval = g_new0 (gchar, n);
|
|
end = ptr + n;
|
|
g_snprintf (retval, end - ptr, "%d", path->indices[0]);
|
|
while (*ptr != '\000')
|
|
ptr++;
|
|
|
|
for (i = 1; i < path->depth; i++)
|
|
{
|
|
g_snprintf (ptr, end - ptr, ":%d", path->indices[i]);
|
|
while (*ptr != '\000')
|
|
ptr++;
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_path_new_first:
|
|
*
|
|
* Creates a new #GtkTreePath.
|
|
*
|
|
* The string representation of this path is "0".
|
|
*
|
|
* Return value: A new #GtkTreePath
|
|
*/
|
|
GtkTreePath *
|
|
gtk_tree_path_new_first (void)
|
|
{
|
|
GtkTreePath *retval;
|
|
|
|
retval = gtk_tree_path_new ();
|
|
gtk_tree_path_append_index (retval, 0);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_path_append_index:
|
|
* @path: a #GtkTreePath
|
|
* @index_: the index
|
|
*
|
|
* Appends a new index to a path.
|
|
*
|
|
* As a result, the depth of the path is increased.
|
|
*/
|
|
void
|
|
gtk_tree_path_append_index (GtkTreePath *path,
|
|
gint index_)
|
|
{
|
|
g_return_if_fail (path != NULL);
|
|
g_return_if_fail (index_ >= 0);
|
|
|
|
if (path->depth == path->alloc)
|
|
{
|
|
gint *indices;
|
|
path->alloc = MAX (path->alloc * 2, 1);
|
|
indices = g_new (gint, path->alloc);
|
|
memcpy (indices, path->indices, path->depth * sizeof (gint));
|
|
g_free (path->indices);
|
|
path->indices = indices;
|
|
}
|
|
|
|
path->depth += 1;
|
|
path->indices[path->depth - 1] = index_;
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_path_prepend_index:
|
|
* @path: a #GtkTreePath
|
|
* @index_: the index
|
|
*
|
|
* Prepends a new index to a path.
|
|
*
|
|
* As a result, the depth of the path is increased.
|
|
*/
|
|
void
|
|
gtk_tree_path_prepend_index (GtkTreePath *path,
|
|
gint index)
|
|
{
|
|
if (path->depth == path->alloc)
|
|
{
|
|
gint *indices;
|
|
path->alloc = MAX (path->alloc * 2, 1);
|
|
indices = g_new (gint, path->alloc);
|
|
memcpy (indices + 1, path->indices, path->depth * sizeof (gint));
|
|
g_free (path->indices);
|
|
path->indices = indices;
|
|
}
|
|
else if (path->depth > 0)
|
|
memmove (path->indices + 1, path->indices, path->depth * sizeof (gint));
|
|
|
|
path->depth += 1;
|
|
path->indices[0] = index;
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_path_get_depth:
|
|
* @path: a #GtkTreePath
|
|
*
|
|
* Returns the current depth of @path.
|
|
*
|
|
* Return value: The depth of @path
|
|
*/
|
|
gint
|
|
gtk_tree_path_get_depth (GtkTreePath *path)
|
|
{
|
|
g_return_val_if_fail (path != NULL, 0);
|
|
|
|
return path->depth;
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_path_get_indices: (skip)
|
|
* @path: a #GtkTreePath
|
|
*
|
|
* Returns the current indices of @path.
|
|
*
|
|
* This is an array of integers, each representing a node in a tree.
|
|
* This value should not be freed.
|
|
*
|
|
* The length of the array can be obtained with gtk_tree_path_get_depth().
|
|
*
|
|
* Return value: The current indices, or %NULL
|
|
*/
|
|
gint *
|
|
gtk_tree_path_get_indices (GtkTreePath *path)
|
|
{
|
|
g_return_val_if_fail (path != NULL, NULL);
|
|
|
|
return path->indices;
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_path_get_indices_with_depth:
|
|
* @path: a #GtkTreePath
|
|
* @depth: (allow-none): return location for number of elements
|
|
* returned in the integer array, or %NULL
|
|
*
|
|
* Returns the current indices of @path.
|
|
*
|
|
* This is an array of integers, each representing a node in a tree.
|
|
* It also returns the number of elements in the array.
|
|
* The array should not be freed.
|
|
*
|
|
* Return value: (array length=depth) (transfer none): The current
|
|
* indices, or %NULL
|
|
*
|
|
* Since: 3.0
|
|
*
|
|
* Rename to: gtk_tree_path_get_indices
|
|
*/
|
|
gint *
|
|
gtk_tree_path_get_indices_with_depth (GtkTreePath *path,
|
|
gint *depth)
|
|
{
|
|
g_return_val_if_fail (path != NULL, NULL);
|
|
|
|
if (depth)
|
|
*depth = path->depth;
|
|
|
|
return path->indices;
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_path_free:
|
|
* @path: a #GtkTreePath
|
|
*
|
|
* Frees @path.
|
|
*/
|
|
void
|
|
gtk_tree_path_free (GtkTreePath *path)
|
|
{
|
|
if (!path)
|
|
return;
|
|
|
|
g_free (path->indices);
|
|
g_slice_free (GtkTreePath, path);
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_path_copy:
|
|
* @path: a #GtkTreePath
|
|
*
|
|
* Creates a new #GtkTreePath as a copy of @path.
|
|
*
|
|
* Return value: a new #GtkTreePath
|
|
*/
|
|
GtkTreePath *
|
|
gtk_tree_path_copy (const GtkTreePath *path)
|
|
{
|
|
GtkTreePath *retval;
|
|
|
|
g_return_val_if_fail (path != NULL, NULL);
|
|
|
|
retval = g_slice_new (GtkTreePath);
|
|
retval->depth = path->depth;
|
|
retval->alloc = retval->depth;
|
|
retval->indices = g_new (gint, path->alloc);
|
|
memcpy (retval->indices, path->indices, path->depth * sizeof (gint));
|
|
return retval;
|
|
}
|
|
|
|
G_DEFINE_BOXED_TYPE (GtkTreePath, gtk_tree_path,
|
|
gtk_tree_path_copy,
|
|
gtk_tree_path_free)
|
|
|
|
/**
|
|
* gtk_tree_path_compare:
|
|
* @a: a #GtkTreePath
|
|
* @b: a #GtkTreePath to compare with
|
|
*
|
|
* Compares two paths.
|
|
*
|
|
* If @a appears before @b in a tree, then -1 is returned.
|
|
* If @b appears before @a, then 1 is returned.
|
|
* If the two nodes are equal, then 0 is returned.
|
|
*
|
|
* Return value: the relative positions of @a and @b
|
|
*/
|
|
gint
|
|
gtk_tree_path_compare (const GtkTreePath *a,
|
|
const GtkTreePath *b)
|
|
{
|
|
gint p = 0, q = 0;
|
|
|
|
g_return_val_if_fail (a != NULL, 0);
|
|
g_return_val_if_fail (b != NULL, 0);
|
|
g_return_val_if_fail (a->depth > 0, 0);
|
|
g_return_val_if_fail (b->depth > 0, 0);
|
|
|
|
do
|
|
{
|
|
if (a->indices[p] == b->indices[q])
|
|
continue;
|
|
return (a->indices[p] < b->indices[q]?-1:1);
|
|
}
|
|
while (++p < a->depth && ++q < b->depth);
|
|
if (a->depth == b->depth)
|
|
return 0;
|
|
return (a->depth < b->depth?-1:1);
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_path_is_ancestor:
|
|
* @path: a #GtkTreePath
|
|
* @descendant: another #GtkTreePath
|
|
*
|
|
* Returns %TRUE if @descendant is a descendant of @path.
|
|
*
|
|
* Return value: %TRUE if @descendant is contained inside @path
|
|
*/
|
|
gboolean
|
|
gtk_tree_path_is_ancestor (GtkTreePath *path,
|
|
GtkTreePath *descendant)
|
|
{
|
|
gint i;
|
|
|
|
g_return_val_if_fail (path != NULL, FALSE);
|
|
g_return_val_if_fail (descendant != NULL, FALSE);
|
|
|
|
/* can't be an ancestor if we're deeper */
|
|
if (path->depth >= descendant->depth)
|
|
return FALSE;
|
|
|
|
i = 0;
|
|
while (i < path->depth)
|
|
{
|
|
if (path->indices[i] != descendant->indices[i])
|
|
return FALSE;
|
|
++i;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_path_is_descendant:
|
|
* @path: a #GtkTreePath
|
|
* @ancestor: another #GtkTreePath
|
|
*
|
|
* Returns %TRUE if @path is a descendant of @ancestor.
|
|
*
|
|
* Return value: %TRUE if @ancestor contains @path somewhere below it
|
|
*/
|
|
gboolean
|
|
gtk_tree_path_is_descendant (GtkTreePath *path,
|
|
GtkTreePath *ancestor)
|
|
{
|
|
gint i;
|
|
|
|
g_return_val_if_fail (path != NULL, FALSE);
|
|
g_return_val_if_fail (ancestor != NULL, FALSE);
|
|
|
|
/* can't be a descendant if we're shallower in the tree */
|
|
if (path->depth <= ancestor->depth)
|
|
return FALSE;
|
|
|
|
i = 0;
|
|
while (i < ancestor->depth)
|
|
{
|
|
if (path->indices[i] != ancestor->indices[i])
|
|
return FALSE;
|
|
++i;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/**
|
|
* gtk_tree_path_next:
|
|
* @path: a #GtkTreePath
|
|
*
|
|
* Moves the @path to point to the next node at the current depth.
|
|
*/
|
|
void
|
|
gtk_tree_path_next (GtkTreePath *path)
|
|
{
|
|
g_return_if_fail (path != NULL);
|
|
g_return_if_fail (path->depth > 0);
|
|
|
|
path->indices[path->depth - 1] ++;
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_path_prev:
|
|
* @path: a #GtkTreePath
|
|
*
|
|
* Moves the @path to point to the previous node at the
|
|
* current depth, if it exists.
|
|
*
|
|
* Return value: %TRUE if @path has a previous node, and
|
|
* the move was made
|
|
*/
|
|
gboolean
|
|
gtk_tree_path_prev (GtkTreePath *path)
|
|
{
|
|
g_return_val_if_fail (path != NULL, FALSE);
|
|
|
|
if (path->depth == 0)
|
|
return FALSE;
|
|
|
|
if (path->indices[path->depth - 1] == 0)
|
|
return FALSE;
|
|
|
|
path->indices[path->depth - 1] -= 1;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_path_up:
|
|
* @path: a #GtkTreePath
|
|
*
|
|
* Moves the @path to point to its parent node, if it has a parent.
|
|
*
|
|
* Return value: %TRUE if @path has a parent, and the move was made
|
|
*/
|
|
gboolean
|
|
gtk_tree_path_up (GtkTreePath *path)
|
|
{
|
|
g_return_val_if_fail (path != NULL, FALSE);
|
|
|
|
if (path->depth == 0)
|
|
return FALSE;
|
|
|
|
path->depth--;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_path_down:
|
|
* @path: a #GtkTreePath
|
|
*
|
|
* Moves @path to point to the first child of the current path.
|
|
*/
|
|
void
|
|
gtk_tree_path_down (GtkTreePath *path)
|
|
{
|
|
g_return_if_fail (path != NULL);
|
|
|
|
gtk_tree_path_append_index (path, 0);
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_iter_copy:
|
|
* @iter: a #GtkTreeIter
|
|
*
|
|
* Creates a dynamically allocated tree iterator as a copy of @iter.
|
|
*
|
|
* This function is not intended for use in applications,
|
|
* because you can just copy the structs by value
|
|
* (<literal>GtkTreeIter new_iter = iter;</literal>).
|
|
* You must free this iter with gtk_tree_iter_free().
|
|
*
|
|
* Return value: a newly-allocated copy of @iter
|
|
*/
|
|
GtkTreeIter *
|
|
gtk_tree_iter_copy (GtkTreeIter *iter)
|
|
{
|
|
GtkTreeIter *retval;
|
|
|
|
g_return_val_if_fail (iter != NULL, NULL);
|
|
|
|
retval = g_slice_new (GtkTreeIter);
|
|
*retval = *iter;
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_iter_free:
|
|
* @iter: a dynamically allocated tree iterator
|
|
*
|
|
* Frees an iterator that has been allocated by gtk_tree_iter_copy().
|
|
*
|
|
* This function is mainly used for language bindings.
|
|
*/
|
|
void
|
|
gtk_tree_iter_free (GtkTreeIter *iter)
|
|
{
|
|
g_return_if_fail (iter != NULL);
|
|
|
|
g_slice_free (GtkTreeIter, iter);
|
|
}
|
|
|
|
G_DEFINE_BOXED_TYPE (GtkTreeIter, gtk_tree_iter,
|
|
gtk_tree_iter_copy,
|
|
gtk_tree_iter_free)
|
|
|
|
/**
|
|
* gtk_tree_model_get_flags:
|
|
* @tree_model: a #GtkTreeModel
|
|
*
|
|
* Returns a set of flags supported by this interface.
|
|
*
|
|
* The flags are a bitwise combination of #GtkTreeModelFlags.
|
|
* The flags supported should not change during the lifetime
|
|
* of the @tree_model.
|
|
*
|
|
* Return value: the flags supported by this interface
|
|
*/
|
|
GtkTreeModelFlags
|
|
gtk_tree_model_get_flags (GtkTreeModel *tree_model)
|
|
{
|
|
GtkTreeModelIface *iface;
|
|
|
|
g_return_val_if_fail (GTK_IS_TREE_MODEL (tree_model), 0);
|
|
|
|
iface = GTK_TREE_MODEL_GET_IFACE (tree_model);
|
|
if (iface->get_flags)
|
|
return (* iface->get_flags) (tree_model);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_model_get_n_columns:
|
|
* @tree_model: a #GtkTreeModel
|
|
*
|
|
* Returns the number of columns supported by @tree_model.
|
|
*
|
|
* Return value: the number of columns
|
|
*/
|
|
gint
|
|
gtk_tree_model_get_n_columns (GtkTreeModel *tree_model)
|
|
{
|
|
GtkTreeModelIface *iface;
|
|
g_return_val_if_fail (GTK_IS_TREE_MODEL (tree_model), 0);
|
|
|
|
iface = GTK_TREE_MODEL_GET_IFACE (tree_model);
|
|
g_return_val_if_fail (iface->get_n_columns != NULL, 0);
|
|
|
|
return (* iface->get_n_columns) (tree_model);
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_model_get_column_type:
|
|
* @tree_model: a #GtkTreeModel
|
|
* @index_: the column index
|
|
*
|
|
* Returns the type of the column.
|
|
*
|
|
* Return value: (transfer none): the type of the column
|
|
*/
|
|
GType
|
|
gtk_tree_model_get_column_type (GtkTreeModel *tree_model,
|
|
gint index)
|
|
{
|
|
GtkTreeModelIface *iface;
|
|
|
|
g_return_val_if_fail (GTK_IS_TREE_MODEL (tree_model), G_TYPE_INVALID);
|
|
|
|
iface = GTK_TREE_MODEL_GET_IFACE (tree_model);
|
|
g_return_val_if_fail (iface->get_column_type != NULL, G_TYPE_INVALID);
|
|
g_return_val_if_fail (index >= 0, G_TYPE_INVALID);
|
|
|
|
return (* iface->get_column_type) (tree_model, index);
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_model_get_iter:
|
|
* @tree_model: a #GtkTreeModel
|
|
* @iter: (out): the uninitialized #GtkTreeIter
|
|
* @path: the #GtkTreePath
|
|
*
|
|
* Sets @iter to a valid iterator pointing to @path. If @path does
|
|
* not exist, @iter is set to an invalid iterator and %FALSE is returned.
|
|
*
|
|
* Return value: %TRUE, if @iter was set
|
|
*/
|
|
gboolean
|
|
gtk_tree_model_get_iter (GtkTreeModel *tree_model,
|
|
GtkTreeIter *iter,
|
|
GtkTreePath *path)
|
|
{
|
|
GtkTreeModelIface *iface;
|
|
|
|
g_return_val_if_fail (GTK_IS_TREE_MODEL (tree_model), FALSE);
|
|
g_return_val_if_fail (iter != NULL, FALSE);
|
|
g_return_val_if_fail (path != NULL, FALSE);
|
|
|
|
iface = GTK_TREE_MODEL_GET_IFACE (tree_model);
|
|
g_return_val_if_fail (iface->get_iter != NULL, FALSE);
|
|
g_return_val_if_fail (path->depth > 0, FALSE);
|
|
|
|
INITIALIZE_TREE_ITER (iter);
|
|
|
|
return (* iface->get_iter) (tree_model, iter, path);
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_model_get_iter_from_string:
|
|
* @tree_model: a #GtkTreeModel
|
|
* @iter: (out): an uninitialized #GtkTreeIter
|
|
* @path_string: a string representation of a #GtkTreePath
|
|
*
|
|
* Sets @iter to a valid iterator pointing to @path_string, if it
|
|
* exists. Otherwise, @iter is left invalid and %FALSE is returned.
|
|
*
|
|
* Return value: %TRUE, if @iter was set
|
|
*/
|
|
gboolean
|
|
gtk_tree_model_get_iter_from_string (GtkTreeModel *tree_model,
|
|
GtkTreeIter *iter,
|
|
const gchar *path_string)
|
|
{
|
|
gboolean retval;
|
|
GtkTreePath *path;
|
|
|
|
g_return_val_if_fail (GTK_IS_TREE_MODEL (tree_model), FALSE);
|
|
g_return_val_if_fail (iter != NULL, FALSE);
|
|
g_return_val_if_fail (path_string != NULL, FALSE);
|
|
|
|
path = gtk_tree_path_new_from_string (path_string);
|
|
|
|
g_return_val_if_fail (path != NULL, FALSE);
|
|
|
|
retval = gtk_tree_model_get_iter (tree_model, iter, path);
|
|
gtk_tree_path_free (path);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_model_get_string_from_iter:
|
|
* @tree_model: a #GtkTreeModel
|
|
* @iter: a #GtkTreeIter
|
|
*
|
|
* Generates a string representation of the iter.
|
|
*
|
|
* This string is a ':' separated list of numbers.
|
|
* For example, "4:10:0:3" would be an acceptable
|
|
* return value for this string.
|
|
*
|
|
* Return value: a newly-allocated string.
|
|
* Must be freed with g_free().
|
|
*
|
|
* Since: 2.2
|
|
*/
|
|
gchar *
|
|
gtk_tree_model_get_string_from_iter (GtkTreeModel *tree_model,
|
|
GtkTreeIter *iter)
|
|
{
|
|
GtkTreePath *path;
|
|
gchar *ret;
|
|
|
|
g_return_val_if_fail (GTK_IS_TREE_MODEL (tree_model), NULL);
|
|
g_return_val_if_fail (iter != NULL, NULL);
|
|
|
|
path = gtk_tree_model_get_path (tree_model, iter);
|
|
|
|
g_return_val_if_fail (path != NULL, NULL);
|
|
|
|
ret = gtk_tree_path_to_string (path);
|
|
gtk_tree_path_free (path);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_model_get_iter_first:
|
|
* @tree_model: a #GtkTreeModel
|
|
* @iter: (out): the uninitialized #GtkTreeIter
|
|
*
|
|
* Initializes @iter with the first iterator in the tree
|
|
* (the one at the path "0") and returns %TRUE. Returns
|
|
* %FALSE if the tree is empty.
|
|
*
|
|
* Return value: %TRUE, if @iter was set
|
|
*/
|
|
gboolean
|
|
gtk_tree_model_get_iter_first (GtkTreeModel *tree_model,
|
|
GtkTreeIter *iter)
|
|
{
|
|
GtkTreePath *path;
|
|
gboolean retval;
|
|
|
|
g_return_val_if_fail (GTK_IS_TREE_MODEL (tree_model), FALSE);
|
|
g_return_val_if_fail (iter != NULL, FALSE);
|
|
|
|
path = gtk_tree_path_new_first ();
|
|
retval = gtk_tree_model_get_iter (tree_model, iter, path);
|
|
gtk_tree_path_free (path);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_model_get_path:
|
|
* @tree_model: a #GtkTreeModel
|
|
* @iter: the #GtkTreeIter
|
|
*
|
|
* Returns a newly-created #GtkTreePath referenced by @iter.
|
|
*
|
|
* This path should be freed with gtk_tree_path_free().
|
|
*
|
|
* Return value: a newly-created #GtkTreePath
|
|
*/
|
|
GtkTreePath *
|
|
gtk_tree_model_get_path (GtkTreeModel *tree_model,
|
|
GtkTreeIter *iter)
|
|
{
|
|
GtkTreeModelIface *iface;
|
|
|
|
g_return_val_if_fail (GTK_IS_TREE_MODEL (tree_model), NULL);
|
|
g_return_val_if_fail (iter != NULL, NULL);
|
|
|
|
iface = GTK_TREE_MODEL_GET_IFACE (tree_model);
|
|
g_return_val_if_fail (iface->get_path != NULL, NULL);
|
|
|
|
return (* iface->get_path) (tree_model, iter);
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_model_get_value:
|
|
* @tree_model: a #GtkTreeModel
|
|
* @iter: the #GtkTreeIter
|
|
* @column: the column to lookup the value at
|
|
* @value: (out) (transfer none): an empty #GValue to set
|
|
*
|
|
* Initializes and sets @value to that at @column.
|
|
*
|
|
* When done with @value, g_value_unset() needs to be called
|
|
* to free any allocated memory.
|
|
*/
|
|
void
|
|
gtk_tree_model_get_value (GtkTreeModel *tree_model,
|
|
GtkTreeIter *iter,
|
|
gint column,
|
|
GValue *value)
|
|
{
|
|
GtkTreeModelIface *iface;
|
|
|
|
g_return_if_fail (GTK_IS_TREE_MODEL (tree_model));
|
|
g_return_if_fail (iter != NULL);
|
|
g_return_if_fail (value != NULL);
|
|
|
|
iface = GTK_TREE_MODEL_GET_IFACE (tree_model);
|
|
g_return_if_fail (iface->get_value != NULL);
|
|
|
|
(* iface->get_value) (tree_model, iter, column, value);
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_model_iter_next:
|
|
* @tree_model: a #GtkTreeModel
|
|
* @iter: (in): the #GtkTreeIter
|
|
*
|
|
* Sets @iter to point to the node following it at the current level.
|
|
*
|
|
* If there is no next @iter, %FALSE is returned and @iter is set
|
|
* to be invalid.
|
|
*
|
|
* Return value: %TRUE if @iter has been changed to the next node
|
|
*/
|
|
gboolean
|
|
gtk_tree_model_iter_next (GtkTreeModel *tree_model,
|
|
GtkTreeIter *iter)
|
|
{
|
|
GtkTreeModelIface *iface;
|
|
|
|
g_return_val_if_fail (GTK_IS_TREE_MODEL (tree_model), FALSE);
|
|
g_return_val_if_fail (iter != NULL, FALSE);
|
|
|
|
iface = GTK_TREE_MODEL_GET_IFACE (tree_model);
|
|
g_return_val_if_fail (iface->iter_next != NULL, FALSE);
|
|
|
|
return (* iface->iter_next) (tree_model, iter);
|
|
}
|
|
|
|
static gboolean
|
|
gtk_tree_model_iter_previous_default (GtkTreeModel *tree_model,
|
|
GtkTreeIter *iter)
|
|
{
|
|
gboolean retval;
|
|
GtkTreePath *path;
|
|
|
|
path = gtk_tree_model_get_path (tree_model, iter);
|
|
if (path == NULL)
|
|
return FALSE;
|
|
|
|
retval = gtk_tree_path_prev (path) &&
|
|
gtk_tree_model_get_iter (tree_model, iter, path);
|
|
if (retval == FALSE)
|
|
iter->stamp = 0;
|
|
|
|
gtk_tree_path_free (path);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_model_iter_previous:
|
|
* @tree_model: a #GtkTreeModel
|
|
* @iter: (in): the #GtkTreeIter
|
|
*
|
|
* Sets @iter to point to the previous node at the current level.
|
|
*
|
|
* If there is no previous @iter, %FALSE is returned and @iter is
|
|
* set to be invalid.
|
|
*
|
|
* Return value: %TRUE if @iter has been changed to the previous node
|
|
*
|
|
* Since: 3.0
|
|
*/
|
|
gboolean
|
|
gtk_tree_model_iter_previous (GtkTreeModel *tree_model,
|
|
GtkTreeIter *iter)
|
|
{
|
|
gboolean retval;
|
|
GtkTreeModelIface *iface;
|
|
|
|
g_return_val_if_fail (GTK_IS_TREE_MODEL (tree_model), FALSE);
|
|
g_return_val_if_fail (iter != NULL, FALSE);
|
|
|
|
iface = GTK_TREE_MODEL_GET_IFACE (tree_model);
|
|
|
|
if (iface->iter_previous)
|
|
retval = (* iface->iter_previous) (tree_model, iter);
|
|
else
|
|
retval = gtk_tree_model_iter_previous_default (tree_model, iter);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_model_iter_children:
|
|
* @tree_model: a #GtkTreeModel
|
|
* @iter: (out): the new #GtkTreeIter to be set to the child
|
|
* @parent: (allow-none): the #GtkTreeIter, or %NULL
|
|
*
|
|
* Sets @iter to point to the first child of @parent.
|
|
*
|
|
* If @parent has no children, %FALSE is returned and @iter is
|
|
* set to be invalid. @parent will remain a valid node after this
|
|
* function has been called.
|
|
*
|
|
* If @parent is %NULL returns the first node, equivalent to
|
|
* <literal>gtk_tree_model_get_iter_first (tree_model, iter);</literal>
|
|
*
|
|
* Return value: %TRUE, if @child has been set to the first child
|
|
*/
|
|
gboolean
|
|
gtk_tree_model_iter_children (GtkTreeModel *tree_model,
|
|
GtkTreeIter *iter,
|
|
GtkTreeIter *parent)
|
|
{
|
|
GtkTreeModelIface *iface;
|
|
|
|
g_return_val_if_fail (GTK_IS_TREE_MODEL (tree_model), FALSE);
|
|
g_return_val_if_fail (iter != NULL, FALSE);
|
|
|
|
iface = GTK_TREE_MODEL_GET_IFACE (tree_model);
|
|
g_return_val_if_fail (iface->iter_children != NULL, FALSE);
|
|
|
|
INITIALIZE_TREE_ITER (iter);
|
|
|
|
return (* iface->iter_children) (tree_model, iter, parent);
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_model_iter_has_child:
|
|
* @tree_model: a #GtkTreeModel
|
|
* @iter: the #GtkTreeIter to test for children
|
|
*
|
|
* Returns %TRUE if @iter has children, %FALSE otherwise.
|
|
*
|
|
* Return value: %TRUE if @iter has children
|
|
*/
|
|
gboolean
|
|
gtk_tree_model_iter_has_child (GtkTreeModel *tree_model,
|
|
GtkTreeIter *iter)
|
|
{
|
|
GtkTreeModelIface *iface;
|
|
|
|
g_return_val_if_fail (GTK_IS_TREE_MODEL (tree_model), FALSE);
|
|
g_return_val_if_fail (iter != NULL, FALSE);
|
|
|
|
iface = GTK_TREE_MODEL_GET_IFACE (tree_model);
|
|
g_return_val_if_fail (iface->iter_has_child != NULL, FALSE);
|
|
|
|
return (* iface->iter_has_child) (tree_model, iter);
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_model_iter_n_children:
|
|
* @tree_model: a #GtkTreeModel
|
|
* @iter: (allow-none): the #GtkTreeIter, or %NULL
|
|
*
|
|
* Returns the number of children that @iter has.
|
|
*
|
|
* As a special case, if @iter is %NULL, then the number
|
|
* of toplevel nodes is returned.
|
|
*
|
|
* Return value: the number of children of @iter
|
|
*/
|
|
gint
|
|
gtk_tree_model_iter_n_children (GtkTreeModel *tree_model,
|
|
GtkTreeIter *iter)
|
|
{
|
|
GtkTreeModelIface *iface;
|
|
|
|
g_return_val_if_fail (GTK_IS_TREE_MODEL (tree_model), 0);
|
|
|
|
iface = GTK_TREE_MODEL_GET_IFACE (tree_model);
|
|
g_return_val_if_fail (iface->iter_n_children != NULL, 0);
|
|
|
|
return (* iface->iter_n_children) (tree_model, iter);
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_model_iter_nth_child:
|
|
* @tree_model: a #GtkTreeModel
|
|
* @iter: (out): the #GtkTreeIter to set to the nth child
|
|
* @parent: (allow-none): the #GtkTreeIter to get the child from, or %NULL.
|
|
* @n: the index of the desired child
|
|
*
|
|
* Sets @iter to be the child of @parent, using the given index.
|
|
*
|
|
* The first index is 0. If @n is too big, or @parent has no children,
|
|
* @iter is set to an invalid iterator and %FALSE is returned. @parent
|
|
* will remain a valid node after this function has been called. As a
|
|
* special case, if @parent is %NULL, then the @n<!-- -->th root node
|
|
* is set.
|
|
*
|
|
* Return value: %TRUE, if @parent has an @n<!-- -->th child
|
|
*/
|
|
gboolean
|
|
gtk_tree_model_iter_nth_child (GtkTreeModel *tree_model,
|
|
GtkTreeIter *iter,
|
|
GtkTreeIter *parent,
|
|
gint n)
|
|
{
|
|
GtkTreeModelIface *iface;
|
|
|
|
g_return_val_if_fail (GTK_IS_TREE_MODEL (tree_model), FALSE);
|
|
g_return_val_if_fail (iter != NULL, FALSE);
|
|
g_return_val_if_fail (n >= 0, FALSE);
|
|
|
|
iface = GTK_TREE_MODEL_GET_IFACE (tree_model);
|
|
g_return_val_if_fail (iface->iter_nth_child != NULL, FALSE);
|
|
|
|
INITIALIZE_TREE_ITER (iter);
|
|
|
|
return (* iface->iter_nth_child) (tree_model, iter, parent, n);
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_model_iter_parent:
|
|
* @tree_model: a #GtkTreeModel
|
|
* @iter: (out): the new #GtkTreeIter to set to the parent
|
|
* @child: the #GtkTreeIter
|
|
*
|
|
* Sets @iter to be the parent of @child.
|
|
*
|
|
* If @child is at the toplevel, and doesn't have a parent, then
|
|
* @iter is set to an invalid iterator and %FALSE is returned.
|
|
* @child will remain a valid node after this function has been
|
|
* called.
|
|
*
|
|
* Return value: %TRUE, if @iter is set to the parent of @child
|
|
*/
|
|
gboolean
|
|
gtk_tree_model_iter_parent (GtkTreeModel *tree_model,
|
|
GtkTreeIter *iter,
|
|
GtkTreeIter *child)
|
|
{
|
|
GtkTreeModelIface *iface;
|
|
|
|
g_return_val_if_fail (GTK_IS_TREE_MODEL (tree_model), FALSE);
|
|
g_return_val_if_fail (iter != NULL, FALSE);
|
|
g_return_val_if_fail (child != NULL, FALSE);
|
|
|
|
iface = GTK_TREE_MODEL_GET_IFACE (tree_model);
|
|
g_return_val_if_fail (iface->iter_parent != NULL, FALSE);
|
|
|
|
INITIALIZE_TREE_ITER (iter);
|
|
|
|
return (* iface->iter_parent) (tree_model, iter, child);
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_model_ref_node:
|
|
* @tree_model: a #GtkTreeModel
|
|
* @iter: the #GtkTreeIter
|
|
*
|
|
* Lets the tree ref the node.
|
|
*
|
|
* This is an optional method for models to implement.
|
|
* To be more specific, models may ignore this call as it exists
|
|
* primarily for performance reasons.
|
|
*
|
|
* This function is primarily meant as a way for views to let
|
|
* caching models know when nodes are being displayed (and hence,
|
|
* whether or not to cache that node). Being displayed means a node
|
|
* is in an expanded branch, regardless of whether the node is currently
|
|
* visible in the viewport. For example, a file-system based model
|
|
* would not want to keep the entire file-hierarchy in memory,
|
|
* just the sections that are currently being displayed by
|
|
* every current view.
|
|
*
|
|
* A model should be expected to be able to get an iter independent
|
|
* of its reffed state.
|
|
*/
|
|
void
|
|
gtk_tree_model_ref_node (GtkTreeModel *tree_model,
|
|
GtkTreeIter *iter)
|
|
{
|
|
GtkTreeModelIface *iface;
|
|
|
|
g_return_if_fail (GTK_IS_TREE_MODEL (tree_model));
|
|
|
|
iface = GTK_TREE_MODEL_GET_IFACE (tree_model);
|
|
if (iface->ref_node)
|
|
(* iface->ref_node) (tree_model, iter);
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_model_unref_node:
|
|
* @tree_model: a #GtkTreeModel
|
|
* @iter: the #GtkTreeIter
|
|
*
|
|
* Lets the tree unref the node.
|
|
*
|
|
* This is an optional method for models to implement.
|
|
* To be more specific, models may ignore this call as it exists
|
|
* primarily for performance reasons. For more information on what
|
|
* this means, see gtk_tree_model_ref_node().
|
|
*
|
|
* Please note that nodes that are deleted are not unreffed.
|
|
*/
|
|
void
|
|
gtk_tree_model_unref_node (GtkTreeModel *tree_model,
|
|
GtkTreeIter *iter)
|
|
{
|
|
GtkTreeModelIface *iface;
|
|
|
|
g_return_if_fail (GTK_IS_TREE_MODEL (tree_model));
|
|
g_return_if_fail (iter != NULL);
|
|
|
|
iface = GTK_TREE_MODEL_GET_IFACE (tree_model);
|
|
if (iface->unref_node)
|
|
(* iface->unref_node) (tree_model, iter);
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_model_get:
|
|
* @tree_model: a #GtkTreeModel
|
|
* @iter: a row in @tree_model
|
|
* @Varargs: pairs of column number and value return locations,
|
|
* terminated by -1
|
|
*
|
|
* Gets the value of one or more cells in the row referenced by @iter.
|
|
* The variable argument list should contain integer column numbers,
|
|
* each column number followed by a place to store the value being
|
|
* retrieved. The list is terminated by a -1. For example, to get a
|
|
* value from column 0 with type %G_TYPE_STRING, you would
|
|
* write: <literal>gtk_tree_model_get (model, iter, 0, &place_string_here, -1)</literal>,
|
|
* where <literal>place_string_here</literal> is a <type>gchar*</type>
|
|
* to be filled with the string.
|
|
*
|
|
* Returned values with type %G_TYPE_OBJECT have to be unreferenced,
|
|
* values with type %G_TYPE_STRING or %G_TYPE_BOXED have to be freed.
|
|
* Other values are passed by value.
|
|
*/
|
|
void
|
|
gtk_tree_model_get (GtkTreeModel *tree_model,
|
|
GtkTreeIter *iter,
|
|
...)
|
|
{
|
|
va_list var_args;
|
|
|
|
g_return_if_fail (GTK_IS_TREE_MODEL (tree_model));
|
|
g_return_if_fail (iter != NULL);
|
|
|
|
va_start (var_args, iter);
|
|
gtk_tree_model_get_valist (tree_model, iter, var_args);
|
|
va_end (var_args);
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_model_get_valist:
|
|
* @tree_model: a #GtkTreeModel
|
|
* @iter: a row in @tree_model
|
|
* @var_args: <type>va_list</type> of column/return location pairs
|
|
*
|
|
* See gtk_tree_model_get(), this version takes a <type>va_list</type>
|
|
* for language bindings to use.
|
|
*/
|
|
void
|
|
gtk_tree_model_get_valist (GtkTreeModel *tree_model,
|
|
GtkTreeIter *iter,
|
|
va_list var_args)
|
|
{
|
|
gint column;
|
|
|
|
g_return_if_fail (GTK_IS_TREE_MODEL (tree_model));
|
|
g_return_if_fail (iter != NULL);
|
|
|
|
column = va_arg (var_args, gint);
|
|
|
|
while (column != -1)
|
|
{
|
|
GValue value = { 0, };
|
|
gchar *error = NULL;
|
|
|
|
if (column >= gtk_tree_model_get_n_columns (tree_model))
|
|
{
|
|
g_warning ("%s: Invalid column number %d accessed (remember to end your list of columns with a -1)", G_STRLOC, column);
|
|
break;
|
|
}
|
|
|
|
gtk_tree_model_get_value (GTK_TREE_MODEL (tree_model), iter, column, &value);
|
|
|
|
G_VALUE_LCOPY (&value, var_args, 0, &error);
|
|
if (error)
|
|
{
|
|
g_warning ("%s: %s", G_STRLOC, error);
|
|
g_free (error);
|
|
|
|
/* we purposely leak the value here, it might not be
|
|
* in a sane state if an error condition occurred
|
|
*/
|
|
break;
|
|
}
|
|
|
|
g_value_unset (&value);
|
|
|
|
column = va_arg (var_args, gint);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_model_row_changed:
|
|
* @tree_model: a #GtkTreeModel
|
|
* @path: a #GtkTreePath pointing to the changed row
|
|
* @iter: a valid #GtkTreeIter pointing to the changed row
|
|
*
|
|
* Emits the #GtkTreeModel::row-changed signal on @tree_model.
|
|
*/
|
|
void
|
|
gtk_tree_model_row_changed (GtkTreeModel *tree_model,
|
|
GtkTreePath *path,
|
|
GtkTreeIter *iter)
|
|
{
|
|
g_return_if_fail (GTK_IS_TREE_MODEL (tree_model));
|
|
g_return_if_fail (path != NULL);
|
|
g_return_if_fail (iter != NULL);
|
|
|
|
g_signal_emit (tree_model, tree_model_signals[ROW_CHANGED], 0, path, iter);
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_model_row_inserted:
|
|
* @tree_model: a #GtkTreeModel
|
|
* @path: a #GtkTreePath pointing to the inserted row
|
|
* @iter: a valid #GtkTreeIter pointing to the inserted row
|
|
*
|
|
* Emits the #GtkTreeModel::row-inserted signal on @tree_model.
|
|
*/
|
|
void
|
|
gtk_tree_model_row_inserted (GtkTreeModel *tree_model,
|
|
GtkTreePath *path,
|
|
GtkTreeIter *iter)
|
|
{
|
|
g_return_if_fail (GTK_IS_TREE_MODEL (tree_model));
|
|
g_return_if_fail (path != NULL);
|
|
g_return_if_fail (iter != NULL);
|
|
|
|
g_signal_emit (tree_model, tree_model_signals[ROW_INSERTED], 0, path, iter);
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_model_row_has_child_toggled:
|
|
* @tree_model: a #GtkTreeModel
|
|
* @path: a #GtkTreePath pointing to the changed row
|
|
* @iter: a valid #GtkTreeIter pointing to the changed row
|
|
*
|
|
* Emits the #GtkTreeModel::row-has-child-toggled signal on
|
|
* @tree_model. This should be called by models after the child
|
|
* state of a node changes.
|
|
*/
|
|
void
|
|
gtk_tree_model_row_has_child_toggled (GtkTreeModel *tree_model,
|
|
GtkTreePath *path,
|
|
GtkTreeIter *iter)
|
|
{
|
|
g_return_if_fail (GTK_IS_TREE_MODEL (tree_model));
|
|
g_return_if_fail (path != NULL);
|
|
g_return_if_fail (iter != NULL);
|
|
|
|
g_signal_emit (tree_model, tree_model_signals[ROW_HAS_CHILD_TOGGLED], 0, path, iter);
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_model_row_deleted:
|
|
* @tree_model: a #GtkTreeModel
|
|
* @path: a #GtkTreePath pointing to the previous location of
|
|
* the deleted row
|
|
*
|
|
* Emits the #GtkTreeModel::row-deleted signal on @tree_model.
|
|
*
|
|
* This should be called by models after a row has been removed.
|
|
* The location pointed to by @path should be the location that
|
|
* the row previously was at. It may not be a valid location anymore.
|
|
*
|
|
* Nodes that are deleted are not unreffed, this means that any
|
|
* outstanding references on the deleted node should not be released.
|
|
*/
|
|
void
|
|
gtk_tree_model_row_deleted (GtkTreeModel *tree_model,
|
|
GtkTreePath *path)
|
|
{
|
|
g_return_if_fail (GTK_IS_TREE_MODEL (tree_model));
|
|
g_return_if_fail (path != NULL);
|
|
|
|
g_signal_emit (tree_model, tree_model_signals[ROW_DELETED], 0, path);
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_model_rows_reordered: (skip)
|
|
* @tree_model: a #GtkTreeModel
|
|
* @path: a #GtkTreePath pointing to the tree node whose children
|
|
* have been reordered
|
|
* @iter: a valid #GtkTreeIter pointing to the node whose children
|
|
* have been reordered, or %NULL if the depth of @path is 0
|
|
* @new_order: an array of integers mapping the current position of
|
|
* each child to its old position before the re-ordering,
|
|
* i.e. @new_order<literal>[newpos] = oldpos</literal>
|
|
*
|
|
* Emits the #GtkTreeModel::rows-reordered signal on @tree_model.
|
|
*
|
|
* This should be called by models when their rows have been
|
|
* reordered.
|
|
*/
|
|
void
|
|
gtk_tree_model_rows_reordered (GtkTreeModel *tree_model,
|
|
GtkTreePath *path,
|
|
GtkTreeIter *iter,
|
|
gint *new_order)
|
|
{
|
|
g_return_if_fail (GTK_IS_TREE_MODEL (tree_model));
|
|
g_return_if_fail (new_order != NULL);
|
|
|
|
g_signal_emit (tree_model, tree_model_signals[ROWS_REORDERED], 0, path, iter, new_order);
|
|
}
|
|
|
|
|
|
static gboolean
|
|
gtk_tree_model_foreach_helper (GtkTreeModel *model,
|
|
GtkTreeIter *iter,
|
|
GtkTreePath *path,
|
|
GtkTreeModelForeachFunc func,
|
|
gpointer user_data)
|
|
{
|
|
do
|
|
{
|
|
GtkTreeIter child;
|
|
|
|
if ((* func) (model, path, iter, user_data))
|
|
return TRUE;
|
|
|
|
if (gtk_tree_model_iter_children (model, &child, iter))
|
|
{
|
|
gtk_tree_path_down (path);
|
|
if (gtk_tree_model_foreach_helper (model, &child, path, func, user_data))
|
|
return TRUE;
|
|
gtk_tree_path_up (path);
|
|
}
|
|
|
|
gtk_tree_path_next (path);
|
|
}
|
|
while (gtk_tree_model_iter_next (model, iter));
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_model_foreach:
|
|
* @model: a #GtkTreeModel
|
|
* @func: (scope call): a function to be called on each row
|
|
* @user_data: user data to passed to @func
|
|
*
|
|
* Calls func on each node in model in a depth-first fashion.
|
|
*
|
|
* If @func returns %TRUE, then the tree ceases to be walked,
|
|
* and gtk_tree_model_foreach() returns.
|
|
*/
|
|
void
|
|
gtk_tree_model_foreach (GtkTreeModel *model,
|
|
GtkTreeModelForeachFunc func,
|
|
gpointer user_data)
|
|
{
|
|
GtkTreePath *path;
|
|
GtkTreeIter iter;
|
|
|
|
g_return_if_fail (GTK_IS_TREE_MODEL (model));
|
|
g_return_if_fail (func != NULL);
|
|
|
|
path = gtk_tree_path_new_first ();
|
|
if (gtk_tree_model_get_iter (model, &iter, path) == FALSE)
|
|
{
|
|
gtk_tree_path_free (path);
|
|
return;
|
|
}
|
|
|
|
gtk_tree_model_foreach_helper (model, &iter, path, func, user_data);
|
|
gtk_tree_path_free (path);
|
|
}
|
|
|
|
|
|
/*
|
|
* GtkTreeRowReference
|
|
*/
|
|
|
|
static void gtk_tree_row_reference_unref_path (GtkTreePath *path,
|
|
GtkTreeModel *model,
|
|
gint depth);
|
|
|
|
|
|
G_DEFINE_BOXED_TYPE (GtkTreeRowReference, gtk_tree_row_reference,
|
|
gtk_tree_row_reference_copy,
|
|
gtk_tree_row_reference_free)
|
|
|
|
struct _GtkTreeRowReference
|
|
{
|
|
GObject *proxy;
|
|
GtkTreeModel *model;
|
|
GtkTreePath *path;
|
|
};
|
|
|
|
|
|
static void
|
|
release_row_references (gpointer data)
|
|
{
|
|
RowRefList *refs = data;
|
|
GSList *tmp_list = NULL;
|
|
|
|
tmp_list = refs->list;
|
|
while (tmp_list != NULL)
|
|
{
|
|
GtkTreeRowReference *reference = tmp_list->data;
|
|
|
|
if (reference->proxy == (GObject *)reference->model)
|
|
reference->model = NULL;
|
|
reference->proxy = NULL;
|
|
|
|
/* we don't free the reference, users are responsible for that. */
|
|
|
|
tmp_list = g_slist_next (tmp_list);
|
|
}
|
|
|
|
g_slist_free (refs->list);
|
|
g_free (refs);
|
|
}
|
|
|
|
static void
|
|
gtk_tree_row_ref_inserted (RowRefList *refs,
|
|
GtkTreePath *path,
|
|
GtkTreeIter *iter)
|
|
{
|
|
GSList *tmp_list;
|
|
|
|
if (refs == NULL)
|
|
return;
|
|
|
|
/* This function corrects the path stored in the reference to
|
|
* account for an insertion. Note that it's called _after_ the
|
|
* insertion with the path to the newly-inserted row. Which means
|
|
* that the inserted path is in a different "coordinate system" than
|
|
* the old path (e.g. if the inserted path was just before the old
|
|
* path, then inserted path and old path will be the same, and old
|
|
* path must be moved down one).
|
|
*/
|
|
|
|
tmp_list = refs->list;
|
|
|
|
while (tmp_list != NULL)
|
|
{
|
|
GtkTreeRowReference *reference = tmp_list->data;
|
|
|
|
if (reference->path == NULL)
|
|
goto done;
|
|
|
|
if (reference->path->depth >= path->depth)
|
|
{
|
|
gint i;
|
|
gboolean ancestor = TRUE;
|
|
|
|
for (i = 0; i < path->depth - 1; i ++)
|
|
{
|
|
if (path->indices[i] != reference->path->indices[i])
|
|
{
|
|
ancestor = FALSE;
|
|
break;
|
|
}
|
|
}
|
|
if (ancestor == FALSE)
|
|
goto done;
|
|
|
|
if (path->indices[path->depth-1] <= reference->path->indices[path->depth-1])
|
|
reference->path->indices[path->depth-1] += 1;
|
|
}
|
|
done:
|
|
tmp_list = g_slist_next (tmp_list);
|
|
}
|
|
}
|
|
|
|
static void
|
|
gtk_tree_row_ref_deleted (RowRefList *refs,
|
|
GtkTreePath *path)
|
|
{
|
|
GSList *tmp_list;
|
|
|
|
if (refs == NULL)
|
|
return;
|
|
|
|
/* This function corrects the path stored in the reference to
|
|
* account for an deletion. Note that it's called _after_ the
|
|
* deletion with the old path of the just-deleted row. Which means
|
|
* that the deleted path is the same now-defunct "coordinate system"
|
|
* as the path saved in the reference, which is what we want to fix.
|
|
*/
|
|
|
|
tmp_list = refs->list;
|
|
|
|
while (tmp_list != NULL)
|
|
{
|
|
GtkTreeRowReference *reference = tmp_list->data;
|
|
|
|
if (reference->path)
|
|
{
|
|
gint i;
|
|
|
|
if (path->depth > reference->path->depth)
|
|
goto next;
|
|
for (i = 0; i < path->depth - 1; i++)
|
|
{
|
|
if (path->indices[i] != reference->path->indices[i])
|
|
goto next;
|
|
}
|
|
|
|
/* We know it affects us. */
|
|
if (path->indices[i] == reference->path->indices[i])
|
|
{
|
|
if (reference->path->depth > path->depth)
|
|
/* some parent was deleted, trying to unref any node
|
|
* between the deleted parent and the node the reference
|
|
* is pointing to is bad, as those nodes are already gone.
|
|
*/
|
|
gtk_tree_row_reference_unref_path (reference->path, reference->model, path->depth - 1);
|
|
else
|
|
gtk_tree_row_reference_unref_path (reference->path, reference->model, reference->path->depth - 1);
|
|
gtk_tree_path_free (reference->path);
|
|
reference->path = NULL;
|
|
}
|
|
else if (path->indices[i] < reference->path->indices[i])
|
|
{
|
|
reference->path->indices[path->depth-1]-=1;
|
|
}
|
|
}
|
|
|
|
next:
|
|
tmp_list = g_slist_next (tmp_list);
|
|
}
|
|
}
|
|
|
|
static void
|
|
gtk_tree_row_ref_reordered (RowRefList *refs,
|
|
GtkTreePath *path,
|
|
GtkTreeIter *iter,
|
|
gint *new_order)
|
|
{
|
|
GSList *tmp_list;
|
|
gint length;
|
|
|
|
if (refs == NULL)
|
|
return;
|
|
|
|
tmp_list = refs->list;
|
|
|
|
while (tmp_list != NULL)
|
|
{
|
|
GtkTreeRowReference *reference = tmp_list->data;
|
|
|
|
length = gtk_tree_model_iter_n_children (GTK_TREE_MODEL (reference->model), iter);
|
|
|
|
if (length < 2)
|
|
return;
|
|
|
|
if ((reference->path) &&
|
|
(gtk_tree_path_is_ancestor (path, reference->path)))
|
|
{
|
|
gint ref_depth = gtk_tree_path_get_depth (reference->path);
|
|
gint depth = gtk_tree_path_get_depth (path);
|
|
|
|
if (ref_depth > depth)
|
|
{
|
|
gint i;
|
|
gint *indices = gtk_tree_path_get_indices (reference->path);
|
|
|
|
for (i = 0; i < length; i++)
|
|
{
|
|
if (new_order[i] == indices[depth])
|
|
{
|
|
indices[depth] = i;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
tmp_list = g_slist_next (tmp_list);
|
|
}
|
|
}
|
|
|
|
/* We do this recursively so that we can unref children nodes
|
|
* before their parent
|
|
*/
|
|
static void
|
|
gtk_tree_row_reference_unref_path_helper (GtkTreePath *path,
|
|
GtkTreeModel *model,
|
|
GtkTreeIter *parent_iter,
|
|
gint depth,
|
|
gint current_depth)
|
|
{
|
|
GtkTreeIter iter;
|
|
|
|
if (depth == current_depth)
|
|
return;
|
|
|
|
gtk_tree_model_iter_nth_child (model, &iter, parent_iter, path->indices[current_depth]);
|
|
gtk_tree_row_reference_unref_path_helper (path, model, &iter, depth, current_depth + 1);
|
|
gtk_tree_model_unref_node (model, &iter);
|
|
}
|
|
|
|
static void
|
|
gtk_tree_row_reference_unref_path (GtkTreePath *path,
|
|
GtkTreeModel *model,
|
|
gint depth)
|
|
{
|
|
GtkTreeIter iter;
|
|
|
|
if (depth <= 0)
|
|
return;
|
|
|
|
gtk_tree_model_iter_nth_child (model, &iter, NULL, path->indices[0]);
|
|
gtk_tree_row_reference_unref_path_helper (path, model, &iter, depth, 1);
|
|
gtk_tree_model_unref_node (model, &iter);
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_row_reference_new:
|
|
* @model: a #GtkTreeModel
|
|
* @path: a valid #GtkTreePath to monitor
|
|
*
|
|
* Creates a row reference based on @path.
|
|
*
|
|
* This reference will keep pointing to the node pointed to
|
|
* by @path, so long as it exists. It listens to all signals
|
|
* emitted by @model, and updates its path appropriately. If
|
|
* @path isn't a valid path in @model, then %NULL is returned.
|
|
*
|
|
* Return value: a newly allocated #GtkTreeRowReference, or %NULL
|
|
*/
|
|
GtkTreeRowReference *
|
|
gtk_tree_row_reference_new (GtkTreeModel *model,
|
|
GtkTreePath *path)
|
|
{
|
|
g_return_val_if_fail (GTK_IS_TREE_MODEL (model), NULL);
|
|
g_return_val_if_fail (path != NULL, NULL);
|
|
|
|
/* We use the model itself as the proxy object; and call
|
|
* gtk_tree_row_reference_inserted(), etc, in the
|
|
* class closure (default handler) marshalers for the signal.
|
|
*/
|
|
return gtk_tree_row_reference_new_proxy (G_OBJECT (model), model, path);
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_row_reference_new_proxy:
|
|
* @proxy: a proxy #GObject
|
|
* @model: a #GtkTreeModel
|
|
* @path: a valid #GtkTreePath to monitor
|
|
*
|
|
* You do not need to use this function.
|
|
*
|
|
* Creates a row reference based on @path.
|
|
*
|
|
* This reference will keep pointing to the node pointed to
|
|
* by @path, so long as it exists. If @path isn't a valid
|
|
* path in @model, then %NULL is returned. However, unlike
|
|
* references created with gtk_tree_row_reference_new(), it
|
|
* does not listen to the model for changes. The creator of
|
|
* the row reference must do this explicitly using
|
|
* gtk_tree_row_reference_inserted(), gtk_tree_row_reference_deleted(),
|
|
* gtk_tree_row_reference_reordered().
|
|
*
|
|
* These functions must be called exactly once per proxy when the
|
|
* corresponding signal on the model is emitted. This single call
|
|
* updates all row references for that proxy. Since built-in GTK+
|
|
* objects like #GtkTreeView already use this mechanism internally,
|
|
* using them as the proxy object will produce unpredictable results.
|
|
* Further more, passing the same object as @model and @proxy
|
|
* doesn't work for reasons of internal implementation.
|
|
*
|
|
* This type of row reference is primarily meant by structures that
|
|
* need to carefully monitor exactly when a row reference updates
|
|
* itself, and is not generally needed by most applications.
|
|
*
|
|
* Return value: a newly allocated #GtkTreeRowReference, or %NULL
|
|
*/
|
|
GtkTreeRowReference *
|
|
gtk_tree_row_reference_new_proxy (GObject *proxy,
|
|
GtkTreeModel *model,
|
|
GtkTreePath *path)
|
|
{
|
|
GtkTreeRowReference *reference;
|
|
RowRefList *refs;
|
|
GtkTreeIter parent_iter;
|
|
gint i;
|
|
|
|
g_return_val_if_fail (G_IS_OBJECT (proxy), NULL);
|
|
g_return_val_if_fail (GTK_IS_TREE_MODEL (model), NULL);
|
|
g_return_val_if_fail (path != NULL, NULL);
|
|
g_return_val_if_fail (path->depth > 0, NULL);
|
|
|
|
/* check that the path is valid */
|
|
if (gtk_tree_model_get_iter (model, &parent_iter, path) == FALSE)
|
|
return NULL;
|
|
|
|
/* Now we want to ref every node */
|
|
gtk_tree_model_iter_nth_child (model, &parent_iter, NULL, path->indices[0]);
|
|
gtk_tree_model_ref_node (model, &parent_iter);
|
|
|
|
for (i = 1; i < path->depth; i++)
|
|
{
|
|
GtkTreeIter iter;
|
|
gtk_tree_model_iter_nth_child (model, &iter, &parent_iter, path->indices[i]);
|
|
gtk_tree_model_ref_node (model, &iter);
|
|
parent_iter = iter;
|
|
}
|
|
|
|
/* Make the row reference */
|
|
reference = g_new (GtkTreeRowReference, 1);
|
|
|
|
g_object_ref (proxy);
|
|
g_object_ref (model);
|
|
reference->proxy = proxy;
|
|
reference->model = model;
|
|
reference->path = gtk_tree_path_copy (path);
|
|
|
|
refs = g_object_get_data (G_OBJECT (proxy), ROW_REF_DATA_STRING);
|
|
|
|
if (refs == NULL)
|
|
{
|
|
refs = g_new (RowRefList, 1);
|
|
refs->list = NULL;
|
|
|
|
g_object_set_data_full (G_OBJECT (proxy),
|
|
I_(ROW_REF_DATA_STRING),
|
|
refs, release_row_references);
|
|
}
|
|
|
|
refs->list = g_slist_prepend (refs->list, reference);
|
|
|
|
return reference;
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_row_reference_get_path:
|
|
* @reference: a #GtkTreeRowReference
|
|
*
|
|
* Returns a path that the row reference currently points to,
|
|
* or %NULL if the path pointed to is no longer valid.
|
|
*
|
|
* Return value: a current path, or %NULL
|
|
*/
|
|
GtkTreePath *
|
|
gtk_tree_row_reference_get_path (GtkTreeRowReference *reference)
|
|
{
|
|
g_return_val_if_fail (reference != NULL, NULL);
|
|
|
|
if (reference->proxy == NULL)
|
|
return NULL;
|
|
|
|
if (reference->path == NULL)
|
|
return NULL;
|
|
|
|
return gtk_tree_path_copy (reference->path);
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_row_reference_get_model:
|
|
* @reference: a #GtkTreeRowReference
|
|
*
|
|
* Returns the model that the row reference is monitoring.
|
|
*
|
|
* Return value: (transfer none): the model
|
|
*
|
|
* Since: 2.8
|
|
*/
|
|
GtkTreeModel *
|
|
gtk_tree_row_reference_get_model (GtkTreeRowReference *reference)
|
|
{
|
|
g_return_val_if_fail (reference != NULL, NULL);
|
|
|
|
return reference->model;
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_row_reference_valid:
|
|
* @reference: (allow-none): a #GtkTreeRowReference, or %NULL
|
|
*
|
|
* Returns %TRUE if the @reference is non-%NULL and refers to
|
|
* a current valid path.
|
|
*
|
|
* Return value: %TRUE if @reference points to a valid path
|
|
*/
|
|
gboolean
|
|
gtk_tree_row_reference_valid (GtkTreeRowReference *reference)
|
|
{
|
|
if (reference == NULL || reference->path == NULL)
|
|
return FALSE;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/**
|
|
* gtk_tree_row_reference_copy:
|
|
* @reference: a #GtkTreeRowReference
|
|
*
|
|
* Copies a #GtkTreeRowReference.
|
|
*
|
|
* Return value: a copy of @reference
|
|
*
|
|
* Since: 2.2
|
|
*/
|
|
GtkTreeRowReference *
|
|
gtk_tree_row_reference_copy (GtkTreeRowReference *reference)
|
|
{
|
|
return gtk_tree_row_reference_new_proxy (reference->proxy,
|
|
reference->model,
|
|
reference->path);
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_row_reference_free:
|
|
* @reference: (allow-none): a #GtkTreeRowReference, or %NULL
|
|
*
|
|
* Free's @reference. @reference may be %NULL
|
|
*/
|
|
void
|
|
gtk_tree_row_reference_free (GtkTreeRowReference *reference)
|
|
{
|
|
RowRefList *refs;
|
|
|
|
if (reference == NULL)
|
|
return;
|
|
|
|
refs = g_object_get_data (G_OBJECT (reference->proxy), ROW_REF_DATA_STRING);
|
|
|
|
if (refs == NULL)
|
|
{
|
|
g_warning (G_STRLOC": bad row reference, proxy has no outstanding row references");
|
|
return;
|
|
}
|
|
|
|
refs->list = g_slist_remove (refs->list, reference);
|
|
|
|
if (refs->list == NULL)
|
|
{
|
|
g_object_set_data (G_OBJECT (reference->proxy),
|
|
I_(ROW_REF_DATA_STRING),
|
|
NULL);
|
|
}
|
|
|
|
if (reference->path)
|
|
{
|
|
gtk_tree_row_reference_unref_path (reference->path, reference->model, reference->path->depth);
|
|
gtk_tree_path_free (reference->path);
|
|
}
|
|
|
|
g_object_unref (reference->proxy);
|
|
g_object_unref (reference->model);
|
|
g_free (reference);
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_row_reference_inserted:
|
|
* @proxy: a #GObject
|
|
* @path: the row position that was inserted
|
|
*
|
|
* Lets a set of row reference created by
|
|
* gtk_tree_row_reference_new_proxy() know that the
|
|
* model emitted the #GtkTreeModel::row-inserted signal.
|
|
*/
|
|
void
|
|
gtk_tree_row_reference_inserted (GObject *proxy,
|
|
GtkTreePath *path)
|
|
{
|
|
g_return_if_fail (G_IS_OBJECT (proxy));
|
|
|
|
gtk_tree_row_ref_inserted ((RowRefList *)g_object_get_data (proxy, ROW_REF_DATA_STRING), path, NULL);
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_row_reference_deleted:
|
|
* @proxy: a #GObject
|
|
* @path: the path position that was deleted
|
|
*
|
|
* Lets a set of row reference created by
|
|
* gtk_tree_row_reference_new_proxy() know that the
|
|
* model emitted the #GtkTreeModel::row-deleted signal.
|
|
*/
|
|
void
|
|
gtk_tree_row_reference_deleted (GObject *proxy,
|
|
GtkTreePath *path)
|
|
{
|
|
g_return_if_fail (G_IS_OBJECT (proxy));
|
|
|
|
gtk_tree_row_ref_deleted ((RowRefList *)g_object_get_data (proxy, ROW_REF_DATA_STRING), path);
|
|
}
|
|
|
|
/**
|
|
* gtk_tree_row_reference_reordered: (skip)
|
|
* @proxy: a #GObject
|
|
* @path: the parent path of the reordered signal
|
|
* @iter: the iter pointing to the parent of the reordered
|
|
* @new_order: the new order of rows
|
|
*
|
|
* Lets a set of row reference created by
|
|
* gtk_tree_row_reference_new_proxy() know that the
|
|
* model emitted the #GtkTreeModel::rows-reordered signal.
|
|
*/
|
|
void
|
|
gtk_tree_row_reference_reordered (GObject *proxy,
|
|
GtkTreePath *path,
|
|
GtkTreeIter *iter,
|
|
gint *new_order)
|
|
{
|
|
g_return_if_fail (G_IS_OBJECT (proxy));
|
|
|
|
gtk_tree_row_ref_reordered ((RowRefList *)g_object_get_data (proxy, ROW_REF_DATA_STRING), path, iter, new_order);
|
|
}
|