gtk2/gdk/win32/gdkkeys-win32.c
Руслан Ижбулатов 5e6c1928b4 W32: Prefer the deadkey combinations that the OS uses
Pick the W32 API for possible deadkey+<something> combinations
and prefer these to other sources of deadkey combos.
Specifically, if W32 API supports at least one combo for a particular
deadkey, only use that data and do not attempt to do other, unsupported
combinations, even if they make sense otherwise.
This is needed to, for example, correctly support US-International
keyboard layout, which produces a combined character for <' + a>
combo, but not for <' + s>, for example.

This is achieved by stashing all the deadkeys that we find in
an array, then doing extra loop through all virtual key codes and
trying to combine them with each of these deadkeys. Any combinations
that produce a single character are cached for later use.

In GTK Simple IM context, call a new GDK W32 function to do a lookup
on that cached combination table early on, among the "special cases"
(which are now partially obsolete).

A limitation of this code is that combinations with more than
one deadkey are not supported, except for combinations that consist
entirely of 2 known deadkeys. The upshot is that lookups should
be relatively fast, as deadkey array stays small and the combination
tree stays shallow.

Note that the use of ToUnicodeEx() seems suboptimal, as it should
be possible to just load a keyboard library (KBD*.DLL) manually
and obtain and use its key table directly. However, that is much more
complicated and would result in a significant rewrite of gdkkeys-win32.
The code from this commit, though hacky, is a direct addition to
existing code and should cover vast majority of the use-cases.

https://bugzilla.gnome.org/show_bug.cgi?id=569581
2016-08-04 16:37:19 +00:00

1671 lines
50 KiB
C

/* GDK - The GIMP Drawing Kit
* Copyright (C) 2000 Red Hat, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* Modified by the GTK+ Team and others 1997-2000. See the AUTHORS
* file for a list of people on the GTK+ Team. See the ChangeLog
* files for a list of changes. These files are distributed with
* GTK+ at ftp://ftp.gtk.org/pub/gtk/.
*/
#include "config.h"
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <errno.h>
#include "gdk.h"
#include "gdkprivate-win32.h"
#include "gdkinternals.h"
#include "gdkkeysyms.h"
#include "gdkkeysprivate.h"
#include "gdkwin32keys.h"
enum _GdkWin32KeyLevelState
{
GDK_WIN32_LEVEL_NONE = 0,
GDK_WIN32_LEVEL_SHIFT,
GDK_WIN32_LEVEL_ALTGR,
GDK_WIN32_LEVEL_SHIFT_ALTGR,
GDK_WIN32_LEVEL_COUNT
};
typedef enum _GdkWin32KeyLevelState GdkWin32KeyLevelState;
struct _GdkWin32KeyNode
{
/* Non-spacing version of the dead key */
guint undead_gdk_keycode;
/* Virtual key code */
guint8 vk;
/* Level for which this virtual key code produces this gdk_keycode */
GdkWin32KeyLevelState level;
/* GDK (X11) code for this key */
guint gdk_keycode;
/* Array of GdkWin32KeyNode should be sorted by gdk_keycode, then by level */
GArray *combinations;
};
typedef struct _GdkWin32KeyNode GdkWin32KeyNode;
/*
Example:
GdkWin32KeyNode
{
undead_gdk_keycode = 0x0b4 GDK_KEY_acute (')
vk = 0xde VK_OEM_7
level = GDK_WIN32_LEVEL_NONE
gdk_keycode = 0xfe51 GDK_KEY_dead_acute
combinations =
{
GdkWin32KeyNode
{
undead_gdk_keycode = 0x061 GDK_KEY_a (a)
level = GDK_WIN32_LEVEL_NONE
vk = 0x41 VK_A
gdk_keycode = 0xe1 GDK_KEY_aacute á
combinations = NULL
},
GdkWin32KeyNode
{
unicode_char = 0x041 GDK_KEY_A (A)
level = GDK_WIN32_LEVEL_SHIFT
vk = 0x41 VK_A
gdk_keycode = 0x0c1 GDK_KEY_Aacute Á
combinations = NULL
},
{ ... }
}
}
Thus:
GDK_KEY_dead_acute + GDK_KEY_a
= GDK_KEY_aacute
GDK_KEY_dead_acute + GDK_KEY_A
= GDK_KEY_Aacute
GDK_KEY_dead_acute + GDK_KEY_s
matches partially
(GDK_KEY_dead_acute is a known dead key, but does not combine with GDK_KEY_s)
and resolves into:
GDK_KEY_acute + GDK_KEY_s
GDK_KEY_dead_somethingelse + GDK_KEY_anything
does not match at all
(W32 API did not provide any deadkey info for GDK_KEY_dead_somethingelse)
and the caller will try other matching mechanisms for compose_buffer
*/
struct _GdkWin32KeyGroupOptions
{
/* character that should be used as the decimal separator */
wchar_t decimal_mark;
/* the bits that indicate level shift when set (usually Shift, sometimes also CapsLock) */
GdkModifierType shift_modifiers;
/* Scancode for the VK_RSHIFT */
guint scancode_rshift;
/* TRUE if Ctrl+Alt emulates AltGr */
gboolean has_altgr;
gboolean capslock_tested;
GArray *dead_keys;
};
typedef struct _GdkWin32KeyGroupOptions GdkWin32KeyGroupOptions;
struct _GdkWin32KeymapClass
{
GdkKeymapClass parent_class;
};
struct _GdkWin32Keymap
{
GdkKeymap parent_instance;
/* length = what GetKeyboardLayoutList() returns, type = HKL.
* When it changes, recreate the keymap and repopulate the options.
*/
GArray *layout_handles;
/* VirtualKeyCode -> gdk_keyval table
* length = 256 * length(layout_handles) * 2 * 2
* 256 is the number of virtual key codes,
* 2x2 is the number of Shift/AltGr combinations (level),
* length(layout_handles) is the number of layout handles (group).
*/
guint *keysym_tab;
/* length = length(layout_handles), type = GdkWin32KeyGroupOptions
* Kept separate from layout_handles because layout_handles is
* populated by W32 API.
*/
GArray *options;
/* Index of a handle in layout_handles,
* at any point it should be the same handle as GetKeyboardLayout(0) returns,
* but GDK caches it to avoid calling GetKeyboardLayout (0) every time.
*/
guint8 active_layout;
};
G_DEFINE_TYPE (GdkWin32Keymap, gdk_win32_keymap, GDK_TYPE_KEYMAP)
guint _gdk_keymap_serial = 0;
static GdkKeymap *default_keymap = NULL;
#define KEY_STATE_SIZE 256
static void update_keymap (GdkKeymap *gdk_keymap);
static void
gdk_win32_key_group_options_clear (GdkWin32KeyGroupOptions *options)
{
g_clear_pointer (&options->dead_keys, g_array_unref);
}
static void
gdk_win32_key_node_clear (GdkWin32KeyNode *node)
{
g_clear_pointer (&node->combinations, g_array_unref);
}
static void
gdk_win32_keymap_init (GdkWin32Keymap *keymap)
{
keymap->layout_handles = g_array_new (FALSE, FALSE, sizeof (HKL));
keymap->options = g_array_new (FALSE, FALSE, sizeof (GdkWin32KeyGroupOptions));
g_array_set_clear_func (keymap->options, (GDestroyNotify) gdk_win32_key_group_options_clear);
keymap->keysym_tab = NULL;
keymap->active_layout = 0;
update_keymap (GDK_KEYMAP (keymap));
}
static void
gdk_win32_keymap_finalize (GObject *object)
{
GdkWin32Keymap *keymap = GDK_WIN32_KEYMAP (object);
g_clear_pointer (&keymap->keysym_tab, g_free);
g_clear_pointer (&keymap->layout_handles, g_array_unref);
g_clear_pointer (&keymap->options, g_array_unref);
G_OBJECT_CLASS (gdk_win32_keymap_parent_class)->finalize (object);
}
#ifdef G_ENABLE_DEBUG
static void
print_keysym_tab (GdkWin32Keymap *keymap)
{
gint li;
GdkWin32KeyGroupOptions *options;
gint vk;
GdkWin32KeyLevelState level;
gint group_size = keymap->layout_handles->len;
for (li = 0; li < group_size; li++)
{
options = &g_array_index (keymap->options, GdkWin32KeyGroupOptions, li);
g_print ("keymap %d (0x%p):%s%s\n",
li, g_array_index (keymap->layout_handles, HKL, li),
options->has_altgr ? " (uses AltGr)" : "",
(options->shift_modifiers & GDK_LOCK_MASK) ? " (has ShiftLock)" : "");
for (vk = 0; vk < KEY_STATE_SIZE; vk++)
{
g_print ("%#.02x: ", vk);
for (level = 0; level < GDK_WIN32_LEVEL_COUNT; level++)
{
gchar *name = gdk_keyval_name (keymap->keysym_tab[vk * group_size * GDK_WIN32_LEVEL_COUNT + level]);
g_print ("%s ", name ? name : "(none)");
}
g_print ("\n");
}
}
}
#endif
static void
handle_special (guint vk,
guint *ksymp,
gint shift)
{
switch (vk)
{
case VK_CANCEL:
*ksymp = GDK_KEY_Cancel; break;
case VK_BACK:
*ksymp = GDK_KEY_BackSpace; break;
case VK_TAB:
if (shift & 0x1)
*ksymp = GDK_KEY_ISO_Left_Tab;
else
*ksymp = GDK_KEY_Tab;
break;
case VK_CLEAR:
*ksymp = GDK_KEY_Clear; break;
case VK_RETURN:
*ksymp = GDK_KEY_Return; break;
case VK_SHIFT:
case VK_LSHIFT:
*ksymp = GDK_KEY_Shift_L; break;
case VK_CONTROL:
case VK_LCONTROL:
*ksymp = GDK_KEY_Control_L; break;
case VK_MENU:
case VK_LMENU:
*ksymp = GDK_KEY_Alt_L; break;
case VK_PAUSE:
*ksymp = GDK_KEY_Pause; break;
case VK_ESCAPE:
*ksymp = GDK_KEY_Escape; break;
case VK_PRIOR:
*ksymp = GDK_KEY_Prior; break;
case VK_NEXT:
*ksymp = GDK_KEY_Next; break;
case VK_END:
*ksymp = GDK_KEY_End; break;
case VK_HOME:
*ksymp = GDK_KEY_Home; break;
case VK_LEFT:
*ksymp = GDK_KEY_Left; break;
case VK_UP:
*ksymp = GDK_KEY_Up; break;
case VK_RIGHT:
*ksymp = GDK_KEY_Right; break;
case VK_DOWN:
*ksymp = GDK_KEY_Down; break;
case VK_SELECT:
*ksymp = GDK_KEY_Select; break;
case VK_PRINT:
*ksymp = GDK_KEY_Print; break;
case VK_SNAPSHOT:
*ksymp = GDK_KEY_Print; break;
case VK_EXECUTE:
*ksymp = GDK_KEY_Execute; break;
case VK_INSERT:
*ksymp = GDK_KEY_Insert; break;
case VK_DELETE:
*ksymp = GDK_KEY_Delete; break;
case VK_HELP:
*ksymp = GDK_KEY_Help; break;
case VK_LWIN:
*ksymp = GDK_KEY_Meta_L; break;
case VK_RWIN:
*ksymp = GDK_KEY_Meta_R; break;
case VK_APPS:
*ksymp = GDK_KEY_Menu; break;
case VK_DECIMAL:
*ksymp = GDK_KEY_KP_Decimal; break;
case VK_MULTIPLY:
*ksymp = GDK_KEY_KP_Multiply; break;
case VK_ADD:
*ksymp = GDK_KEY_KP_Add; break;
case VK_SEPARATOR:
*ksymp = GDK_KEY_KP_Separator; break;
case VK_SUBTRACT:
*ksymp = GDK_KEY_KP_Subtract; break;
case VK_DIVIDE:
*ksymp = GDK_KEY_KP_Divide; break;
case VK_NUMPAD0:
*ksymp = GDK_KEY_KP_0; break;
case VK_NUMPAD1:
*ksymp = GDK_KEY_KP_1; break;
case VK_NUMPAD2:
*ksymp = GDK_KEY_KP_2; break;
case VK_NUMPAD3:
*ksymp = GDK_KEY_KP_3; break;
case VK_NUMPAD4:
*ksymp = GDK_KEY_KP_4; break;
case VK_NUMPAD5:
*ksymp = GDK_KEY_KP_5; break;
case VK_NUMPAD6:
*ksymp = GDK_KEY_KP_6; break;
case VK_NUMPAD7:
*ksymp = GDK_KEY_KP_7; break;
case VK_NUMPAD8:
*ksymp = GDK_KEY_KP_8; break;
case VK_NUMPAD9:
*ksymp = GDK_KEY_KP_9; break;
case VK_F1:
*ksymp = GDK_KEY_F1; break;
case VK_F2:
*ksymp = GDK_KEY_F2; break;
case VK_F3:
*ksymp = GDK_KEY_F3; break;
case VK_F4:
*ksymp = GDK_KEY_F4; break;
case VK_F5:
*ksymp = GDK_KEY_F5; break;
case VK_F6:
*ksymp = GDK_KEY_F6; break;
case VK_F7:
*ksymp = GDK_KEY_F7; break;
case VK_F8:
*ksymp = GDK_KEY_F8; break;
case VK_F9:
*ksymp = GDK_KEY_F9; break;
case VK_F10:
*ksymp = GDK_KEY_F10; break;
case VK_F11:
*ksymp = GDK_KEY_F11; break;
case VK_F12:
*ksymp = GDK_KEY_F12; break;
case VK_F13:
*ksymp = GDK_KEY_F13; break;
case VK_F14:
*ksymp = GDK_KEY_F14; break;
case VK_F15:
*ksymp = GDK_KEY_F15; break;
case VK_F16:
*ksymp = GDK_KEY_F16; break;
case VK_F17:
*ksymp = GDK_KEY_F17; break;
case VK_F18:
*ksymp = GDK_KEY_F18; break;
case VK_F19:
*ksymp = GDK_KEY_F19; break;
case VK_F20:
*ksymp = GDK_KEY_F20; break;
case VK_F21:
*ksymp = GDK_KEY_F21; break;
case VK_F22:
*ksymp = GDK_KEY_F22; break;
case VK_F23:
*ksymp = GDK_KEY_F23; break;
case VK_F24:
*ksymp = GDK_KEY_F24; break;
case VK_NUMLOCK:
*ksymp = GDK_KEY_Num_Lock; break;
case VK_SCROLL:
*ksymp = GDK_KEY_Scroll_Lock; break;
case VK_RSHIFT:
*ksymp = GDK_KEY_Shift_R; break;
case VK_RCONTROL:
*ksymp = GDK_KEY_Control_R; break;
case VK_RMENU:
*ksymp = GDK_KEY_Alt_R; break;
}
}
static void
set_level_vks (guchar *key_state,
GdkWin32KeyLevelState level)
{
switch (level)
{
case GDK_WIN32_LEVEL_NONE:
key_state[VK_SHIFT] = 0;
key_state[VK_CONTROL] = key_state[VK_MENU] = 0;
break;
case GDK_WIN32_LEVEL_SHIFT:
key_state[VK_SHIFT] = 0x80;
key_state[VK_CONTROL] = key_state[VK_MENU] = 0;
break;
case GDK_WIN32_LEVEL_ALTGR:
key_state[VK_SHIFT] = 0;
key_state[VK_CONTROL] = key_state[VK_MENU] = 0x80;
break;
case GDK_WIN32_LEVEL_SHIFT_ALTGR:
key_state[VK_SHIFT] = 0x80;
key_state[VK_CONTROL] = key_state[VK_MENU] = 0x80;
break;
case GDK_WIN32_LEVEL_COUNT:
g_assert_not_reached ();
break;
}
}
static void
reset_after_dead (guchar key_state[KEY_STATE_SIZE],
HKL handle)
{
guchar temp_key_state[KEY_STATE_SIZE];
wchar_t wcs[2];
memmove (temp_key_state, key_state, KEY_STATE_SIZE);
temp_key_state[VK_SHIFT] =
temp_key_state[VK_CONTROL] =
temp_key_state[VK_MENU] = 0;
ToUnicodeEx (VK_SPACE, MapVirtualKey (VK_SPACE, 0),
temp_key_state, wcs, G_N_ELEMENTS (wcs),
0, handle);
}
static void
handle_dead (guint keysym,
guint *ksymp)
{
switch (keysym)
{
case '"': /* 0x022 */
*ksymp = GDK_KEY_dead_diaeresis; break;
case '\'': /* 0x027 */
*ksymp = GDK_KEY_dead_acute; break;
case GDK_KEY_asciicircum: /* 0x05e */
*ksymp = GDK_KEY_dead_circumflex; break;
case GDK_KEY_grave: /* 0x060 */
*ksymp = GDK_KEY_dead_grave; break;
case GDK_KEY_asciitilde: /* 0x07e */
*ksymp = GDK_KEY_dead_tilde; break;
case GDK_KEY_diaeresis: /* 0x0a8 */
*ksymp = GDK_KEY_dead_diaeresis; break;
case GDK_KEY_degree: /* 0x0b0 */
*ksymp = GDK_KEY_dead_abovering; break;
case GDK_KEY_acute: /* 0x0b4 */
*ksymp = GDK_KEY_dead_acute; break;
case GDK_KEY_periodcentered: /* 0x0b7 */
*ksymp = GDK_KEY_dead_abovedot; break;
case GDK_KEY_cedilla: /* 0x0b8 */
*ksymp = GDK_KEY_dead_cedilla; break;
case GDK_KEY_breve: /* 0x1a2 */
*ksymp = GDK_KEY_dead_breve; break;
case GDK_KEY_ogonek: /* 0x1b2 */
*ksymp = GDK_KEY_dead_ogonek; break;
case GDK_KEY_caron: /* 0x1b7 */
*ksymp = GDK_KEY_dead_caron; break;
case GDK_KEY_doubleacute: /* 0x1bd */
*ksymp = GDK_KEY_dead_doubleacute; break;
case GDK_KEY_abovedot: /* 0x1ff */
*ksymp = GDK_KEY_dead_abovedot; break;
case 0x1000384: /* Greek tonos */
*ksymp = GDK_KEY_dead_acute; break;
case GDK_KEY_Greek_accentdieresis: /* 0x7ae */
*ksymp = GDK_KEY_Greek_accentdieresis; break;
default:
/* By default use the keysym as such. This takes care of for
* instance the dead U+09CD (BENGALI VIRAMA) on the ekushey
* Bengali layout.
*/
*ksymp = keysym; break;
}
}
/* keypad decimal mark depends on active keyboard layout
* return current decimal mark as unicode character
*/
guint32
_gdk_win32_keymap_get_decimal_mark (GdkWin32Keymap *keymap)
{
if (keymap != NULL &&
keymap->layout_handles->len > 0 &&
g_array_index (keymap->options, GdkWin32KeyGroupOptions, keymap->active_layout).decimal_mark)
return g_array_index (keymap->options, GdkWin32KeyGroupOptions, keymap->active_layout).decimal_mark;
return (guint32) '.';
}
static gboolean
layouts_are_the_same (GArray *array, HKL *hkls, gint hkls_len)
{
gint i;
if (hkls_len != array->len)
return FALSE;
for (i = 0; i < hkls_len; i++)
if (hkls[i] != g_array_index (array, HKL, i))
return FALSE;
return TRUE;
}
static void
check_that_active_layout_is_in_sync (GdkWin32Keymap *keymap)
{
HKL hkl;
HKL cached_hkl;
wchar_t hkl_name[KL_NAMELENGTH];
if (keymap->layout_handles->len <= 0)
return;
hkl = GetKeyboardLayout (0);
cached_hkl = g_array_index (keymap->layout_handles, HKL, keymap->active_layout);
if (hkl != cached_hkl)
{
if (!GetKeyboardLayoutNameW (hkl_name))
wcscpy_s (hkl_name, KL_NAMELENGTH, L"(NULL)");
g_warning ("Cached active layout #%d (0x%p) does not match actual layout %S, 0x%p",
keymap->active_layout, cached_hkl, hkl_name, hkl);
}
}
static gint
sort_key_nodes_by_gdk_keyval (gconstpointer a,
gconstpointer b)
{
const GdkWin32KeyNode *one = a;
const GdkWin32KeyNode *two = b;
if (one->gdk_keycode < two->gdk_keycode)
return -1;
else if (one->gdk_keycode > two->gdk_keycode)
return 1;
if (one->level < two->level)
return -1;
else if (one->level > two->level)
return 1;
return 0;
}
static void
update_keymap (GdkKeymap *gdk_keymap)
{
int hkls_len;
static int hkls_size = 0;
static HKL *hkls = NULL;
gboolean no_list;
static guint current_serial = 0;
gint i, group;
GdkWin32KeyLevelState level;
GdkWin32KeyGroupOptions *options;
GdkWin32Keymap *keymap = GDK_WIN32_KEYMAP (gdk_keymap);
gint keysym_tab_size;
guchar key_state[KEY_STATE_SIZE];
guint scancode;
guint vk;
guint *keygroup;
if (keymap->keysym_tab != NULL &&
current_serial == _gdk_keymap_serial)
return;
no_list = FALSE;
hkls_len = GetKeyboardLayoutList (0, NULL);
if (hkls_len <= 0)
{
hkls_len = 1;
no_list = TRUE;
}
else if (hkls_len > 255)
{
hkls_len = 255;
}
if (hkls_size < hkls_len)
{
hkls = g_renew (HKL, hkls, hkls_len);
hkls_size = hkls_len;
}
if (hkls_len != GetKeyboardLayoutList (hkls_len, hkls))
{
if (!no_list)
return;
hkls[0] = GetKeyboardLayout (0);
hkls_len = 1;
}
if (layouts_are_the_same (keymap->layout_handles, hkls, hkls_len))
{
check_that_active_layout_is_in_sync (keymap);
current_serial = _gdk_keymap_serial;
return;
}
GDK_NOTE (EVENTS, g_print ("\nHave %d keyboard layouts:", hkls_len));
for (i = 0; i < hkls_len; i++)
{
GDK_NOTE (EVENTS, g_print (" 0x%p", hkls[i]));
if (GetKeyboardLayout (0) == hkls[i])
{
wchar_t hkl_name[KL_NAMELENGTH];
if (!GetKeyboardLayoutNameW (hkl_name))
wcscpy_s (hkl_name, KL_NAMELENGTH, L"(NULL)");
GDK_NOTE (EVENTS, g_print ("(active, %S)", hkl_name));
}
}
GDK_NOTE (EVENTS, g_print ("\n"));
keysym_tab_size = hkls_len * 256 * 2 * 2;
if (hkls_len != keymap->layout_handles->len)
keymap->keysym_tab = g_renew (guint, keymap->keysym_tab, keysym_tab_size);
memset (keymap->keysym_tab, 0, keysym_tab_size);
g_array_set_size (keymap->layout_handles, hkls_len);
g_array_set_size (keymap->options, hkls_len);
for (i = 0; i < hkls_len; i++)
{
options = &g_array_index (keymap->options, GdkWin32KeyGroupOptions, i);
options->decimal_mark = 0;
options->shift_modifiers = GDK_SHIFT_MASK;
options->scancode_rshift = 0;
options->has_altgr = FALSE;
options->capslock_tested = FALSE;
options->dead_keys = g_array_new (FALSE, FALSE, sizeof (GdkWin32KeyNode));
g_array_set_clear_func (options->dead_keys, (GDestroyNotify) gdk_win32_key_node_clear);
g_array_index (keymap->layout_handles, HKL, i) = hkls[i];
if (hkls[i] == _gdk_input_locale)
keymap->active_layout = i;
}
for (vk = 0; vk < KEY_STATE_SIZE; vk++)
{
for (group = 0; group < hkls_len; group++)
{
options = &g_array_index (keymap->options, GdkWin32KeyGroupOptions, group);
scancode = MapVirtualKeyEx (vk, 0, hkls[group]);
keygroup = &keymap->keysym_tab[(vk * hkls_len + group) * GDK_WIN32_LEVEL_COUNT];
if (scancode == 0 &&
vk != VK_DIVIDE)
{
for (level = GDK_WIN32_LEVEL_NONE; level < GDK_WIN32_LEVEL_COUNT; level++)
keygroup[level] = GDK_KEY_VoidSymbol;
continue;
}
if (vk == VK_RSHIFT)
options->scancode_rshift = scancode;
key_state[vk] = 0x80;
for (level = GDK_WIN32_LEVEL_NONE; level < GDK_WIN32_LEVEL_COUNT; level++)
{
guint *ksymp = &keygroup[level];
set_level_vks (key_state, level);
*ksymp = 0;
/* First, handle those virtual keys that we always want
* as special GDK_* keysyms, even if ToAsciiEx might
* turn some them into a ASCII character (like TAB and
* ESC).
*/
handle_special (vk, ksymp, level);
if ((*ksymp == 0) ||
((vk == VK_DECIMAL) && (level == GDK_WIN32_LEVEL_NONE)))
{
wchar_t wcs[10];
gint k;
guint keysym;
GdkWin32KeyNode dead_key;
wcs[0] = wcs[1] = 0;
k = ToUnicodeEx (vk, scancode, key_state,
wcs, G_N_ELEMENTS (wcs),
0, hkls[group]);
#if 0
g_print ("ToUnicodeEx(%#02x, %d: %d): %d, %04x %04x\n",
vk, scancode, level, k,
wcs[0], wcs[1]);
#endif
switch (k)
{
case 1:
if ((vk == VK_DECIMAL) && (level == GDK_WIN32_LEVEL_NONE))
options->decimal_mark = wcs[0];
else
*ksymp = gdk_unicode_to_keyval (wcs[0]);
break;
case -1:
keysym = gdk_unicode_to_keyval (wcs[0]);
/* It is a dead key, and it has been stored in
* the keyboard layout's state by
* ToAsciiEx()/ToUnicodeEx(). Yes, this is an
* incredibly silly API! Make the keyboard
* layout forget it by calling
* ToAsciiEx()/ToUnicodeEx() once more, with the
* virtual key code and scancode for the
* spacebar, without shift or AltGr. Otherwise
* the next call to ToAsciiEx() with a different
* key would try to combine with the dead key.
*/
reset_after_dead (key_state, hkls[group]);
/* Use dead keysyms instead of "undead" ones */
handle_dead (keysym, ksymp);
dead_key.undead_gdk_keycode = keysym;
dead_key.vk = vk;
dead_key.level = level;
dead_key.gdk_keycode = *ksymp;
dead_key.combinations = NULL;
g_array_append_val (options->dead_keys, dead_key);
break;
case 0:
/* Seems to be necessary to "reset" the keyboard layout
* in this case, too. Otherwise problems on NT4.
*/
reset_after_dead (key_state, hkls[group]);
break;
default:
#if 0
GDK_NOTE (EVENTS,
g_print ("ToUnicodeEx returns %d "
"for vk:%02x, sc:%02x%s%s\n",
k, vk, scancode,
(shift&0x1 ? " shift" : ""),
(shift&0x2 ? " altgr" : "")));
#endif
break;
}
}
if (*ksymp == 0)
*ksymp = GDK_KEY_VoidSymbol;
}
key_state[vk] = 0;
/* Check if keyboard has an AltGr key by checking if
* the mapping with Control+Alt is different.
*/
if (!options->has_altgr)
if ((keygroup[GDK_WIN32_LEVEL_ALTGR] != GDK_KEY_VoidSymbol &&
keygroup[GDK_WIN32_LEVEL_NONE] != keygroup[GDK_WIN32_LEVEL_ALTGR]) ||
(keygroup[GDK_WIN32_LEVEL_SHIFT_ALTGR] != GDK_KEY_VoidSymbol &&
keygroup[GDK_WIN32_LEVEL_SHIFT] != keygroup[GDK_WIN32_LEVEL_SHIFT_ALTGR]))
options->has_altgr = TRUE;
if (!options->capslock_tested)
{
/* Can we use this virtual key to determine the CapsLock
* key behaviour: CapsLock or ShiftLock? If it generates
* keysyms for printable characters and has a shifted
* keysym that isn't just the upperacase of the
* unshifted keysym, check the behaviour of VK_CAPITAL.
*/
if (g_unichar_isgraph (gdk_keyval_to_unicode (keygroup[GDK_WIN32_LEVEL_NONE])) &&
keygroup[GDK_WIN32_LEVEL_SHIFT] != keygroup[GDK_WIN32_LEVEL_NONE] &&
g_unichar_isgraph (gdk_keyval_to_unicode (keygroup[GDK_WIN32_LEVEL_SHIFT])) &&
keygroup[GDK_WIN32_LEVEL_SHIFT] != gdk_keyval_to_upper (keygroup[GDK_WIN32_LEVEL_NONE]))
{
guchar chars[2];
options->capslock_tested = TRUE;
key_state[VK_SHIFT] = 0;
key_state[VK_CONTROL] = key_state[VK_MENU] = 0;
key_state[VK_CAPITAL] = 1;
if (ToAsciiEx (vk, scancode, key_state,
(LPWORD) chars, 0, hkls[group]) == 1)
{
if (chars[0] >= GDK_KEY_space &&
chars[0] <= GDK_KEY_asciitilde &&
chars[0] == keygroup[GDK_WIN32_LEVEL_SHIFT])
{
/* CapsLock acts as ShiftLock */
options->shift_modifiers |= GDK_LOCK_MASK;
}
}
key_state[VK_CAPITAL] = 0;
}
}
}
}
scancode = 0x0;
for (group = 0; group < hkls_len; group++)
{
options = &g_array_index (keymap->options, GdkWin32KeyGroupOptions, group);
for (i = 0; i < options->dead_keys->len; i++)
{
wchar_t wcs[10];
gint k;
GdkWin32KeyNode *dead_key;
GdkWin32KeyNode combo;
dead_key = &g_array_index (options->dead_keys, GdkWin32KeyNode, i);
for (vk = 0; vk < KEY_STATE_SIZE; vk++)
{
for (level = GDK_WIN32_LEVEL_NONE; level < GDK_WIN32_LEVEL_COUNT; level++)
{
/* Prime the ToUnicodeEx() internal state */
wcs[0] = wcs[1] = 0;
set_level_vks (key_state, dead_key->level);
k = ToUnicodeEx (dead_key->vk, scancode, key_state,
wcs, G_N_ELEMENTS (wcs),
0, hkls[group]);
switch (k)
{
case -1:
/* Okay */
break;
default:
/* Expected a dead key, got something else */
reset_after_dead (key_state, hkls[group]);
continue;
}
/* Check how it combines with vk */
wcs[0] = wcs[1] = 0;
set_level_vks (key_state, level);
k = ToUnicodeEx (vk, scancode, key_state,
wcs, G_N_ELEMENTS (wcs),
0, hkls[group]);
if (k == 0)
{
reset_after_dead (key_state, hkls[group]);
}
else if (k == -1)
{
/* Dead key chaining? TODO: support this (deeper tree?) */
reset_after_dead (key_state, hkls[group]);
}
else if (k == 1)
{
combo.vk = vk;
combo.level = level;
combo.gdk_keycode = gdk_unicode_to_keyval (wcs[0]);
combo.undead_gdk_keycode = combo.gdk_keycode;
combo.combinations = NULL;
if (dead_key->combinations == NULL)
{
dead_key->combinations = g_array_new (FALSE, FALSE, sizeof (GdkWin32KeyNode));
g_array_set_clear_func (dead_key->combinations, (GDestroyNotify) gdk_win32_key_node_clear);
}
#if 0
{
char *dead_key_undead_u8, *wcs_u8;
wchar_t t = gdk_keyval_to_unicode (dead_key->undead_gdk_keycode);
dead_key_undead_u8 = g_utf16_to_utf8 (&t, 1, NULL, NULL, NULL);
wcs_u8 = g_utf16_to_utf8 (wcs, 1, NULL, NULL, NULL);
g_fprintf (stdout, "%d %s%s0x%02x (%s) + %s%s0x%02x = 0x%04x (%s)\n", group,
(dead_key->level == GDK_WIN32_LEVEL_SHIFT || dead_key->level == GDK_WIN32_LEVEL_SHIFT_ALTGR) ? "SHIFT-" : " ",
(dead_key->level == GDK_WIN32_LEVEL_ALTGR || dead_key->level == GDK_WIN32_LEVEL_SHIFT_ALTGR) ? "ALTGR-" : " ",
dead_key->vk,
dead_key_undead_u8,
(combo.level == GDK_WIN32_LEVEL_SHIFT || combo.level == GDK_WIN32_LEVEL_SHIFT_ALTGR) ? "SHIFT-" : " ",
(combo.level == GDK_WIN32_LEVEL_ALTGR || combo.level == GDK_WIN32_LEVEL_SHIFT_ALTGR) ? "ALTGR-" : " ",
vk,
wcs[0],
wcs_u8);
g_free (dead_key_undead_u8);
g_free (wcs_u8);
}
#endif
g_array_append_val (dead_key->combinations, combo);
}
}
}
}
g_array_sort (options->dead_keys, (GCompareFunc) sort_key_nodes_by_gdk_keyval);
}
GDK_NOTE (EVENTS, print_keysym_tab (keymap));
check_that_active_layout_is_in_sync (keymap);
current_serial = _gdk_keymap_serial;
}
static gboolean
find_deadkey_by_keyval (GArray *dead_keys, guint16 keyval, gsize *index)
{
gsize deadkey_i;
gsize deadkey_i_max;
if (dead_keys->len == 0)
return FALSE;
deadkey_i = 0;
deadkey_i_max = dead_keys->len - 1;
while (deadkey_i != deadkey_i_max)
{
GdkWin32KeyNode *dead_key;
gsize middle;
if (g_array_index (dead_keys, GdkWin32KeyNode, deadkey_i).gdk_keycode == keyval)
{
break;
}
else if (g_array_index (dead_keys, GdkWin32KeyNode, deadkey_i_max).gdk_keycode == keyval)
{
deadkey_i = deadkey_i_max;
break;
}
else if (deadkey_i + 1 == deadkey_i_max)
{
break;
}
middle = deadkey_i + (deadkey_i_max - deadkey_i) / 2;
dead_key = &g_array_index (dead_keys, GdkWin32KeyNode, middle);
if (dead_key->gdk_keycode < keyval)
deadkey_i = middle;
else if (dead_key->gdk_keycode > keyval)
deadkey_i_max = middle;
else
deadkey_i = deadkey_i_max = middle;
}
if (g_array_index (dead_keys, GdkWin32KeyNode, deadkey_i).gdk_keycode == keyval)
{
*index = deadkey_i;
return TRUE;
}
return FALSE;
}
GdkWin32KeymapMatch
gdk_win32_keymap_check_compose (GdkWin32Keymap *keymap,
guint16 *compose_buffer,
gsize compose_buffer_len,
guint16 *output,
gsize *output_len)
{
gint partial_match;
guint8 active_group;
gsize deadkey_i, node_i;
GdkWin32KeyNode *dead_key;
GdkWin32KeyGroupOptions *options;
GdkWin32KeymapMatch match;
gsize output_size;
g_return_val_if_fail (output != NULL && output_len != NULL, GDK_WIN32_KEYMAP_MATCH_NONE);
if (compose_buffer_len < 1)
return GDK_WIN32_KEYMAP_MATCH_NONE;
output_size = *output_len;
active_group = _gdk_win32_keymap_get_active_group (keymap);
options = &g_array_index (keymap->options, GdkWin32KeyGroupOptions, active_group);
partial_match = -1;
match = GDK_WIN32_KEYMAP_MATCH_NONE;
if (find_deadkey_by_keyval (options->dead_keys, compose_buffer[0], &deadkey_i))
{
while (deadkey_i > 0 &&
g_array_index (options->dead_keys, GdkWin32KeyNode, deadkey_i - 1).gdk_keycode == compose_buffer[0])
deadkey_i--;
/* Hardcoded 2-tier tree here (dead key + non dead key = character).
* TODO: support trees with arbitrary depth for dead key chaining.
*/
dead_key = &g_array_index (options->dead_keys, GdkWin32KeyNode, deadkey_i);
/* "Partial match" means "matched the whole sequence except the last key"
* (right now the sequence only has 2 keys, so this turns into "matched
* at least the first key").
* "last key" should be identified by having NULL further combinations.
* As a heuristic, convert the buffer contents into keyvals and use
* them as-is (normally there should be a separate unichar buffer for
* each combination, but we do not store these).
*/
partial_match = deadkey_i;
if (compose_buffer_len < 2)
match = GDK_WIN32_KEYMAP_MATCH_INCOMPLETE;
for (node_i = 0;
match != GDK_WIN32_KEYMAP_MATCH_INCOMPLETE &&
node_i < dead_key->combinations->len;
node_i++)
{
GdkWin32KeyNode *node;
node = &g_array_index (dead_key->combinations, GdkWin32KeyNode, node_i);
if (keymap->keysym_tab[(node->vk * keymap->layout_handles->len + active_group) * GDK_WIN32_LEVEL_COUNT + node->level] == compose_buffer[1])
{
match = GDK_WIN32_KEYMAP_MATCH_EXACT;
*output_len = 0;
if (*output_len < output_size && node->gdk_keycode != 0)
output[(*output_len)++] = node->gdk_keycode;
break;
}
}
}
if (match == GDK_WIN32_KEYMAP_MATCH_EXACT ||
match == GDK_WIN32_KEYMAP_MATCH_INCOMPLETE)
{
return match;
}
if (partial_match >= 0)
{
if (compose_buffer_len == 2)
{
dead_key = &g_array_index (options->dead_keys, GdkWin32KeyNode, partial_match);
*output_len = 0;
if (output_size >= 1)
output[(*output_len)++] = dead_key->undead_gdk_keycode;
if (output_size >= 2)
{
gsize second_deadkey_i;
/* Special case for "deadkey + deadkey = space-version-of-deadkey, space-version-of-deadkey" combinations.
* Normally the result is a sequence of 2 unichars, but we do not store this.
* For "deadkey + nondeadkey = space-version-of-deadkey, nondeadkey", we can use compose_buffer
* contents as-is, but space version of a dead key need to be looked up separately.
*/
if (find_deadkey_by_keyval (options->dead_keys, compose_buffer[1], &second_deadkey_i))
output[(*output_len)++] = g_array_index (options->dead_keys, GdkWin32KeyNode, second_deadkey_i).undead_gdk_keycode;
else
output[(*output_len)++] = compose_buffer[1];
}
}
return GDK_WIN32_KEYMAP_MATCH_PARTIAL;
}
return GDK_WIN32_KEYMAP_MATCH_NONE;
}
guint8
_gdk_win32_keymap_get_rshift_scancode (GdkWin32Keymap *keymap)
{
if (keymap != NULL &&
keymap->layout_handles->len > 0)
return g_array_index (keymap->options, GdkWin32KeyGroupOptions, keymap->active_layout).scancode_rshift;
return 0;
}
void
_gdk_win32_keymap_set_active_layout (GdkWin32Keymap *keymap,
HKL hkl)
{
if (keymap != NULL &&
keymap->layout_handles->len > 0)
{
gint group;
for (group = 0; group < keymap->layout_handles->len; group++)
if (g_array_index (keymap->layout_handles, HKL, group) == hkl)
keymap->active_layout = group;
}
}
gboolean
_gdk_win32_keymap_has_altgr (GdkWin32Keymap *keymap)
{
if (keymap != NULL &&
keymap->layout_handles->len > 0)
return g_array_index (keymap->options, GdkWin32KeyGroupOptions, keymap->active_layout).has_altgr;
return FALSE;
}
guint8
_gdk_win32_keymap_get_active_group (GdkWin32Keymap *keymap)
{
if (keymap != NULL &&
keymap->layout_handles->len > 0)
return keymap->active_layout;
return 0;
}
GdkKeymap*
_gdk_win32_display_get_keymap (GdkDisplay *display)
{
g_return_val_if_fail (display == gdk_display_get_default (), NULL);
if (default_keymap == NULL)
default_keymap = g_object_new (gdk_win32_keymap_get_type (), NULL);
return default_keymap;
}
static PangoDirection
get_hkl_direction (HKL hkl)
{
switch (PRIMARYLANGID (LOWORD ((DWORD) (gintptr) hkl)))
{
case LANG_HEBREW:
case LANG_ARABIC:
#ifdef LANG_URDU
case LANG_URDU:
#endif
case LANG_FARSI:
/* Others? */
return PANGO_DIRECTION_RTL;
default:
return PANGO_DIRECTION_LTR;
}
}
static PangoDirection
gdk_win32_keymap_get_direction (GdkKeymap *gdk_keymap)
{
HKL active_hkl;
GdkWin32Keymap *keymap;
if (gdk_keymap == NULL || gdk_keymap != gdk_keymap_get_default ())
keymap = GDK_WIN32_KEYMAP (gdk_keymap_get_default ());
else
keymap = GDK_WIN32_KEYMAP (gdk_keymap);
update_keymap (GDK_KEYMAP (keymap));
if (keymap->layout_handles->len <= 0)
active_hkl = GetKeyboardLayout (0);
else
active_hkl = g_array_index (keymap->layout_handles, HKL, keymap->active_layout);
return get_hkl_direction (active_hkl);
}
static gboolean
gdk_win32_keymap_have_bidi_layouts (GdkKeymap *gdk_keymap)
{
GdkWin32Keymap *keymap;
gboolean have_rtl = FALSE;
gboolean have_ltr = FALSE;
gint group;
if (gdk_keymap == NULL || gdk_keymap != gdk_keymap_get_default ())
keymap = GDK_WIN32_KEYMAP (gdk_keymap_get_default ());
else
keymap = GDK_WIN32_KEYMAP (gdk_keymap);
update_keymap (GDK_KEYMAP (keymap));
for (group = 0; group < keymap->layout_handles->len; group++)
{
if (get_hkl_direction (g_array_index (keymap->layout_handles, HKL, group)) == PANGO_DIRECTION_RTL)
have_rtl = TRUE;
else
have_ltr = TRUE;
}
return have_ltr && have_rtl;
}
static gboolean
gdk_win32_keymap_get_caps_lock_state (GdkKeymap *keymap)
{
(void) keymap;
return ((GetKeyState (VK_CAPITAL) & 1) != 0);
}
static gboolean
gdk_win32_keymap_get_num_lock_state (GdkKeymap *keymap)
{
(void) keymap;
return ((GetKeyState (VK_NUMLOCK) & 1) != 0);
}
static gboolean
gdk_win32_keymap_get_scroll_lock_state (GdkKeymap *keymap)
{
(void) keymap;
return ((GetKeyState (VK_SCROLL) & 1) != 0);
}
static gboolean
gdk_win32_keymap_get_entries_for_keyval (GdkKeymap *gdk_keymap,
guint keyval,
GdkKeymapKey **keys,
gint *n_keys)
{
GArray *retval;
g_return_val_if_fail (gdk_keymap == NULL || GDK_IS_KEYMAP (gdk_keymap), FALSE);
g_return_val_if_fail (keys != NULL, FALSE);
g_return_val_if_fail (n_keys != NULL, FALSE);
g_return_val_if_fail (keyval != 0, FALSE);
retval = g_array_new (FALSE, FALSE, sizeof (GdkKeymapKey));
/* Accept only the default keymap */
if (gdk_keymap == NULL || gdk_keymap == gdk_keymap_get_default ())
{
gint vk;
GdkWin32Keymap *keymap;
if (gdk_keymap == NULL)
keymap = GDK_WIN32_KEYMAP (gdk_keymap_get_default ());
else
keymap = GDK_WIN32_KEYMAP (gdk_keymap);
update_keymap (gdk_keymap);
for (vk = 0; vk < KEY_STATE_SIZE; vk++)
{
gint group;
for (group = 0; group < keymap->layout_handles->len; group++)
{
GdkWin32KeyLevelState level;
for (level = GDK_WIN32_LEVEL_NONE; level < GDK_WIN32_LEVEL_COUNT; level++)
{
guint *keygroup;
keygroup = &keymap->keysym_tab[(vk * keymap->layout_handles->len + group) * GDK_WIN32_LEVEL_COUNT];
if (keygroup[level] == keyval)
{
GdkKeymapKey key;
key.keycode = vk;
key.group = group;
key.level = level;
g_array_append_val (retval, key);
}
}
}
}
}
#ifdef G_ENABLE_DEBUG
if (_gdk_debug_flags & GDK_DEBUG_EVENTS)
{
guint i;
g_print ("gdk_keymap_get_entries_for_keyval: %#.04x (%s):",
keyval, gdk_keyval_name (keyval));
for (i = 0; i < retval->len; i++)
{
GdkKeymapKey *entry = (GdkKeymapKey *) retval->data + i;
g_print (" %#.02x %d %d", entry->keycode, entry->group, entry->level);
}
g_print ("\n");
}
#endif
if (retval->len > 0)
{
*keys = (GdkKeymapKey*) retval->data;
*n_keys = retval->len;
}
else
{
*keys = NULL;
*n_keys = 0;
}
g_array_free (retval, retval->len > 0 ? FALSE : TRUE);
return *n_keys > 0;
}
static gboolean
gdk_win32_keymap_get_entries_for_keycode (GdkKeymap *gdk_keymap,
guint hardware_keycode,
GdkKeymapKey **keys,
guint **keyvals,
gint *n_entries)
{
GArray *key_array;
GArray *keyval_array;
gint group;
GdkWin32Keymap *keymap;
g_return_val_if_fail (gdk_keymap == NULL || GDK_IS_KEYMAP (gdk_keymap), FALSE);
g_return_val_if_fail (n_entries != NULL, FALSE);
if (hardware_keycode <= 0 ||
hardware_keycode >= KEY_STATE_SIZE ||
(keys == NULL && keyvals == NULL) ||
(gdk_keymap != NULL && gdk_keymap != gdk_keymap_get_default ()))
{
/* Wrong keycode or NULL output arrays or wrong keymap */
if (keys)
*keys = NULL;
if (keyvals)
*keyvals = NULL;
*n_entries = 0;
return FALSE;
}
if (keys)
key_array = g_array_new (FALSE, FALSE, sizeof (GdkKeymapKey));
else
key_array = NULL;
if (keyvals)
keyval_array = g_array_new (FALSE, FALSE, sizeof (guint));
else
keyval_array = NULL;
keymap = GDK_WIN32_KEYMAP (gdk_keymap_get_default ());
update_keymap (GDK_KEYMAP (keymap));
for (group = 0; group < keymap->layout_handles->len; group++)
{
GdkWin32KeyLevelState level;
for (level = GDK_WIN32_LEVEL_NONE; level < GDK_WIN32_LEVEL_COUNT; level++)
{
if (key_array)
{
GdkKeymapKey key;
key.keycode = hardware_keycode;
key.group = group;
key.level = level;
g_array_append_val (key_array, key);
}
if (keyval_array)
{
guint keyval = keymap->keysym_tab[(hardware_keycode * keymap->layout_handles->len + group) * GDK_WIN32_LEVEL_COUNT + level];
g_array_append_val (keyval_array, keyval);
}
}
}
*n_entries = group * GDK_WIN32_LEVEL_COUNT;
if ((key_array && key_array->len > 0) ||
(keyval_array && keyval_array->len > 0))
{
if (keys)
*keys = (GdkKeymapKey*) key_array->data;
if (keyvals)
*keyvals = (guint*) keyval_array->data;
}
else
{
if (keys)
*keys = NULL;
if (keyvals)
*keyvals = NULL;
}
if (key_array)
g_array_free (key_array, key_array->len > 0 ? FALSE : TRUE);
if (keyval_array)
g_array_free (keyval_array, keyval_array->len > 0 ? FALSE : TRUE);
return *n_entries > 0;
}
static guint
gdk_win32_keymap_lookup_key (GdkKeymap *gdk_keymap,
const GdkKeymapKey *key)
{
guint sym;
GdkWin32Keymap *keymap;
g_return_val_if_fail (gdk_keymap == NULL || GDK_IS_KEYMAP (gdk_keymap), 0);
g_return_val_if_fail (key != NULL, 0);
g_return_val_if_fail (key->group < 4, 0);
/* Accept only the default keymap */
if (gdk_keymap != NULL && gdk_keymap != gdk_keymap_get_default ())
return 0;
keymap = GDK_WIN32_KEYMAP (gdk_keymap_get_default ());
update_keymap (GDK_KEYMAP (keymap));
if (key->keycode >= KEY_STATE_SIZE ||
key->group < 0 || key->group >= keymap->layout_handles->len ||
key->level < 0 || key->level >= GDK_WIN32_LEVEL_COUNT)
return 0;
sym = keymap->keysym_tab[(key->keycode * keymap->layout_handles->len + key->group) * GDK_WIN32_LEVEL_COUNT + key->level];
if (sym == GDK_KEY_VoidSymbol)
return 0;
else
return sym;
}
static gboolean
gdk_win32_keymap_translate_keyboard_state (GdkKeymap *gdk_keymap,
guint hardware_keycode,
GdkModifierType state,
gint group,
guint *keyval,
gint *effective_group,
gint *level,
GdkModifierType *consumed_modifiers)
{
GdkWin32Keymap *keymap;
guint tmp_keyval;
guint *keygroup;
GdkWin32KeyLevelState shift_level;
GdkWin32KeyGroupOptions *options;
GdkModifierType modifiers = GDK_SHIFT_MASK | GDK_LOCK_MASK | GDK_MOD2_MASK;
g_return_val_if_fail (gdk_keymap == NULL || GDK_IS_KEYMAP (gdk_keymap), FALSE);
g_return_val_if_fail (group < 4, FALSE);
#if 0
GDK_NOTE (EVENTS, g_print ("gdk_keymap_translate_keyboard_state: keycode=%#x state=%#x group=%d\n",
hardware_keycode, state, group));
#endif
if (keyval)
*keyval = 0;
if (effective_group)
*effective_group = 0;
if (level)
*level = 0;
if (consumed_modifiers)
*consumed_modifiers = 0;
/* Accept only the default keymap */
if (gdk_keymap != NULL && gdk_keymap != gdk_keymap_get_default ())
return FALSE;
if (hardware_keycode >= KEY_STATE_SIZE)
return FALSE;
keymap = GDK_WIN32_KEYMAP (gdk_keymap_get_default ());
update_keymap (GDK_KEYMAP (keymap));
if (group < 0 || group >= keymap->layout_handles->len)
return FALSE;
options = &g_array_index (keymap->options, GdkWin32KeyGroupOptions, group);
keygroup = &keymap->keysym_tab[(hardware_keycode * keymap->layout_handles->len + group) * GDK_WIN32_LEVEL_COUNT];
if ((state & GDK_LOCK_MASK) &&
(state & GDK_SHIFT_MASK) &&
((options->shift_modifiers & GDK_LOCK_MASK) ||
(keygroup[GDK_WIN32_LEVEL_SHIFT] == gdk_keyval_to_upper (keygroup[GDK_WIN32_LEVEL_NONE]))))
/* Shift always disables ShiftLock. Shift disables CapsLock for
* keys with lowercase/uppercase letter pairs.
*/
shift_level = GDK_WIN32_LEVEL_NONE;
else if (state & options->shift_modifiers)
shift_level = GDK_WIN32_LEVEL_SHIFT;
else
shift_level = GDK_WIN32_LEVEL_NONE;
if (shift_level == GDK_WIN32_LEVEL_NONE)
{
if (state & GDK_MOD2_MASK)
shift_level = GDK_WIN32_LEVEL_ALTGR;
}
else
{
if (state & GDK_MOD2_MASK)
shift_level = GDK_WIN32_LEVEL_SHIFT_ALTGR;
}
/* Drop altgr and shift if there are no keysymbols on
* the key for those.
*/
if (keygroup[shift_level] == GDK_KEY_VoidSymbol)
{
switch (shift_level)
{
case GDK_WIN32_LEVEL_NONE:
case GDK_WIN32_LEVEL_ALTGR:
if (keygroup[GDK_WIN32_LEVEL_NONE] != GDK_KEY_VoidSymbol)
shift_level = GDK_WIN32_LEVEL_NONE;
break;
case GDK_WIN32_LEVEL_SHIFT:
if (keygroup[GDK_WIN32_LEVEL_NONE] != GDK_KEY_VoidSymbol)
shift_level = GDK_WIN32_LEVEL_NONE;
break;
case GDK_WIN32_LEVEL_SHIFT_ALTGR:
if (keygroup[GDK_WIN32_LEVEL_ALTGR] != GDK_KEY_VoidSymbol)
shift_level = GDK_WIN32_LEVEL_ALTGR;
else if (keygroup[GDK_WIN32_LEVEL_SHIFT] != GDK_KEY_VoidSymbol)
shift_level = GDK_WIN32_LEVEL_SHIFT;
else if (keygroup[GDK_WIN32_LEVEL_NONE] != GDK_KEY_VoidSymbol)
shift_level = GDK_WIN32_LEVEL_NONE;
break;
case GDK_WIN32_LEVEL_COUNT:
g_assert_not_reached ();
}
}
/* See whether the group and shift level actually mattered
* to know what to put in consumed_modifiers
*/
if ((keygroup[GDK_WIN32_LEVEL_SHIFT] == GDK_KEY_VoidSymbol ||
keygroup[GDK_WIN32_LEVEL_NONE] == keygroup[GDK_WIN32_LEVEL_SHIFT]) &&
(keygroup[GDK_WIN32_LEVEL_SHIFT_ALTGR] == GDK_KEY_VoidSymbol ||
keygroup[GDK_WIN32_LEVEL_ALTGR] == keygroup[GDK_WIN32_LEVEL_SHIFT_ALTGR]))
modifiers &= ~(GDK_SHIFT_MASK | GDK_LOCK_MASK);
if ((keygroup[GDK_WIN32_LEVEL_ALTGR] == GDK_KEY_VoidSymbol ||
keygroup[GDK_WIN32_LEVEL_NONE] == keygroup[GDK_WIN32_LEVEL_ALTGR]) &&
(keygroup[GDK_WIN32_LEVEL_SHIFT_ALTGR] == GDK_KEY_VoidSymbol ||
keygroup[GDK_WIN32_LEVEL_SHIFT] == keygroup[GDK_WIN32_LEVEL_SHIFT_ALTGR]))
modifiers &= ~GDK_MOD2_MASK;
tmp_keyval = keygroup[shift_level];
/* If a true CapsLock is toggled, and Shift is not down,
* and the shifted keysym is the uppercase of the unshifted,
* use it.
*/
if (!(options->shift_modifiers & GDK_LOCK_MASK) &&
!(state & GDK_SHIFT_MASK) &&
(state & GDK_LOCK_MASK) &&
(shift_level < GDK_WIN32_LEVEL_SHIFT_ALTGR))
{
guint upper = gdk_keyval_to_upper (tmp_keyval);
if (upper == keygroup[shift_level + 1])
tmp_keyval = upper;
}
if (keyval)
*keyval = tmp_keyval;
if (effective_group)
*effective_group = group;
if (level)
*level = shift_level;
if (consumed_modifiers)
*consumed_modifiers = modifiers;
#if 0
GDK_NOTE (EVENTS, g_print ("... group=%d level=%d cmods=%#x keyval=%s\n",
group, shift_level, modifiers, gdk_keyval_name (tmp_keyval)));
#endif
return tmp_keyval != GDK_KEY_VoidSymbol;
}
static void
gdk_win32_keymap_add_virtual_modifiers (GdkKeymap *keymap,
GdkModifierType *state)
{
}
static gboolean
gdk_win32_keymap_map_virtual_modifiers (GdkKeymap *keymap,
GdkModifierType *state)
{
/* FIXME: Is this the right thing to do? */
return TRUE;
}
static void
gdk_win32_keymap_class_init (GdkWin32KeymapClass *klass)
{
GObjectClass *object_class = G_OBJECT_CLASS (klass);
GdkKeymapClass *keymap_class = GDK_KEYMAP_CLASS (klass);
object_class->finalize = gdk_win32_keymap_finalize;
keymap_class->get_direction = gdk_win32_keymap_get_direction;
keymap_class->have_bidi_layouts = gdk_win32_keymap_have_bidi_layouts;
keymap_class->get_caps_lock_state = gdk_win32_keymap_get_caps_lock_state;
keymap_class->get_num_lock_state = gdk_win32_keymap_get_num_lock_state;
keymap_class->get_scroll_lock_state = gdk_win32_keymap_get_scroll_lock_state;
keymap_class->get_entries_for_keyval = gdk_win32_keymap_get_entries_for_keyval;
keymap_class->get_entries_for_keycode = gdk_win32_keymap_get_entries_for_keycode;
keymap_class->lookup_key = gdk_win32_keymap_lookup_key;
keymap_class->translate_keyboard_state = gdk_win32_keymap_translate_keyboard_state;
keymap_class->add_virtual_modifiers = gdk_win32_keymap_add_virtual_modifiers;
keymap_class->map_virtual_modifiers = gdk_win32_keymap_map_virtual_modifiers;
}