gtk2/gtk/gtktransform.c
Matthias Clasen 06df7e6f2c transform: Fix a wrong annotation
It is (out caller-allocates), not (out) (caller-allocates).
2019-02-23 23:21:32 -05:00

1114 lines
30 KiB
C

/*
* Copyright © 2019 Benjamin Otte
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
*
* Authors: Benjamin Otte <otte@gnome.org>
*/
/**
* SECTION:GtkTransform
* @Title: GtkTransform
* @Short_description: A description for transform operations
*
* #GtkTransform is an object to describe transform matrices. Unlike
* #graphene_matrix_t, #GtkTransform retains the steps in how a transform was
* constructed, and allows inspecting them. It is modeled after the way
* CSS describes transforms.
*
* #GtkTransform objects are immutable and cannot be changed after creation.
* This means code can safely expose them as properties of objects without
* having to worry about others changing them.
*/
#include "config.h"
#include "gtktransformprivate.h"
typedef struct _GtkTransformClass GtkTransformClass;
#define GTK_IS_TRANSFORM_TYPE(self,type) ((self) == NULL ? (type) == GTK_TRANSFORM_TYPE_IDENTITY : (self)->transform_class->transform_type == (type))
struct _GtkTransform
{
const GtkTransformClass *transform_class;
volatile int ref_count;
GtkTransform *next;
};
struct _GtkTransformClass
{
GtkTransformType transform_type;
gsize struct_size;
const char *type_name;
void (* finalize) (GtkTransform *transform);
GskMatrixCategory (* categorize) (GtkTransform *transform);
void (* to_matrix) (GtkTransform *transform,
graphene_matrix_t *out_matrix);
gboolean (* apply_affine) (GtkTransform *transform,
float *out_scale_x,
float *out_scale_y,
float *out_dx,
float *out_dy);
void (* print) (GtkTransform *transform,
GString *string);
GtkTransform * (* apply) (GtkTransform *transform,
GtkTransform *apply_to);
/* both matrices have the same type */
gboolean (* equal) (GtkTransform *first_transform,
GtkTransform *second_transform);
};
/**
* GtkTransform: (ref-func gtk_transform_ref) (unref-func gtk_transform_unref)
*
* The `GtkTransform` structure contains only private data.
*/
G_DEFINE_BOXED_TYPE (GtkTransform, gtk_transform,
gtk_transform_ref,
gtk_transform_unref)
/*<private>
* gtk_transform_is_identity:
* @transform: (allow-none): A transform or %NULL
*
* Checks if the transform is a representation of the identity
* transform.
*
* This is different from a transform like `scale(2) scale(0.5)`
* which just results in an identity transform when simplified.
*
* Returns: %TRUE if this transform is a representation of
* the identity transform
**/
static gboolean
gtk_transform_is_identity (GtkTransform *self)
{
return self == NULL ||
(GTK_IS_TRANSFORM_TYPE (self, GTK_TRANSFORM_TYPE_IDENTITY) && gtk_transform_is_identity (self->next));
}
/*< private >
* gtk_transform_alloc:
* @transform_class: class structure for this self
* @next: (transfer full) Next matrix to multiply with or %NULL if none
*
* Returns: (transfer full): the newly created #GtkTransform
*/
static gpointer
gtk_transform_alloc (const GtkTransformClass *transform_class,
GtkTransform *next)
{
GtkTransform *self;
g_return_val_if_fail (transform_class != NULL, NULL);
self = g_malloc0 (transform_class->struct_size);
self->transform_class = transform_class;
self->ref_count = 1;
self->next = gtk_transform_is_identity (next) ? NULL : next;
return self;
}
/*** IDENTITY ***/
static void
gtk_identity_transform_finalize (GtkTransform *transform)
{
}
static GskMatrixCategory
gtk_identity_transform_categorize (GtkTransform *transform)
{
return GSK_MATRIX_CATEGORY_IDENTITY;
}
static void
gtk_identity_transform_to_matrix (GtkTransform *transform,
graphene_matrix_t *out_matrix)
{
graphene_matrix_init_identity (out_matrix);
}
static gboolean
gtk_identity_transform_apply_affine (GtkTransform *transform,
float *out_scale_x,
float *out_scale_y,
float *out_dx,
float *out_dy)
{
return TRUE;
}
static void
gtk_identity_transform_print (GtkTransform *transform,
GString *string)
{
g_string_append (string, "identity");
}
static GtkTransform *
gtk_identity_transform_apply (GtkTransform *transform,
GtkTransform *apply_to)
{
return gtk_transform_identity (apply_to);
}
static gboolean
gtk_identity_transform_equal (GtkTransform *first_transform,
GtkTransform *second_transform)
{
return TRUE;
}
static const GtkTransformClass GTK_IDENTITY_TRANSFORM_CLASS =
{
GTK_TRANSFORM_TYPE_IDENTITY,
sizeof (GtkTransform),
"GtkIdentityMatrix",
gtk_identity_transform_finalize,
gtk_identity_transform_categorize,
gtk_identity_transform_to_matrix,
gtk_identity_transform_apply_affine,
gtk_identity_transform_print,
gtk_identity_transform_apply,
gtk_identity_transform_equal,
};
/**
* gtk_transform_identity:
* @next: (allow-none): the next transform operation or %NULL
*
* Adds an identity multiplication into the list of matrix operations.
*
* This operation is generally useless, but may be useful when interpolating
* matrices, because the identity matrix can be interpolated to and from
* everything, so an identity matrix can be used as a keyframe between two
* different types of matrices.
*
* Returns: The new matrix
**/
GtkTransform *
gtk_transform_identity (GtkTransform *next)
{
if (gtk_transform_is_identity (next))
return next;
return gtk_transform_alloc (&GTK_IDENTITY_TRANSFORM_CLASS, next);
}
/*** MATRIX ***/
typedef struct _GtkMatrixTransform GtkMatrixTransform;
struct _GtkMatrixTransform
{
GtkTransform parent;
graphene_matrix_t matrix;
GskMatrixCategory category;
};
static void
gtk_matrix_transform_finalize (GtkTransform *self)
{
}
static GskMatrixCategory
gtk_matrix_transform_categorize (GtkTransform *transform)
{
GtkMatrixTransform *self = (GtkMatrixTransform *) transform;
return self->category;
}
static void
gtk_matrix_transform_to_matrix (GtkTransform *transform,
graphene_matrix_t *out_matrix)
{
GtkMatrixTransform *self = (GtkMatrixTransform *) transform;
graphene_matrix_init_from_matrix (out_matrix, &self->matrix);
}
static gboolean
gtk_matrix_transform_apply_affine (GtkTransform *transform,
float *out_scale_x,
float *out_scale_y,
float *out_dx,
float *out_dy)
{
GtkMatrixTransform *self = (GtkMatrixTransform *) transform;
switch (self->category)
{
case GSK_MATRIX_CATEGORY_UNKNOWN:
case GSK_MATRIX_CATEGORY_ANY:
case GSK_MATRIX_CATEGORY_INVERTIBLE:
default:
return FALSE;
case GSK_MATRIX_CATEGORY_2D_AFFINE:
*out_dx += *out_scale_x * graphene_matrix_get_value (&self->matrix, 3, 0);
*out_dy += *out_scale_y * graphene_matrix_get_value (&self->matrix, 3, 1);
*out_scale_x *= graphene_matrix_get_value (&self->matrix, 0, 0);
*out_scale_y *= graphene_matrix_get_value (&self->matrix, 1, 1);
return TRUE;
case GSK_MATRIX_CATEGORY_2D_TRANSLATE:
*out_dx += *out_scale_x * graphene_matrix_get_value (&self->matrix, 3, 0);
*out_dy += *out_scale_y * graphene_matrix_get_value (&self->matrix, 3, 1);
return TRUE;
case GSK_MATRIX_CATEGORY_IDENTITY:
return TRUE;
}
}
static void
string_append_double (GString *string,
double d)
{
char buf[G_ASCII_DTOSTR_BUF_SIZE];
g_ascii_formatd (buf, G_ASCII_DTOSTR_BUF_SIZE, "%g", d);
g_string_append (string, buf);
}
static void
gtk_matrix_transform_print (GtkTransform *transform,
GString *string)
{
GtkMatrixTransform *self = (GtkMatrixTransform *) transform;
guint i;
float f[16];
g_string_append (string, "matrix3d(");
graphene_matrix_to_float (&self->matrix, f);
for (i = 0; i < 16; i++)
{
if (i > 0)
g_string_append (string, ", ");
string_append_double (string, f[i]);
}
g_string_append (string, ")");
}
static GtkTransform *
gtk_matrix_transform_apply (GtkTransform *transform,
GtkTransform *apply_to)
{
GtkMatrixTransform *self = (GtkMatrixTransform *) transform;
return gtk_transform_matrix_with_category (apply_to,
&self->matrix,
self->category);
}
static gboolean
gtk_matrix_transform_equal (GtkTransform *first_transform,
GtkTransform *second_transform)
{
GtkMatrixTransform *first = (GtkMatrixTransform *) first_transform;
GtkMatrixTransform *second = (GtkMatrixTransform *) second_transform;
/* Crude, but better than just returning FALSE */
return memcmp (&first->matrix, &second->matrix, sizeof (graphene_matrix_t)) == 0;
}
static const GtkTransformClass GTK_TRANSFORM_TRANSFORM_CLASS =
{
GTK_TRANSFORM_TYPE_TRANSFORM,
sizeof (GtkMatrixTransform),
"GtkMatrixTransform",
gtk_matrix_transform_finalize,
gtk_matrix_transform_categorize,
gtk_matrix_transform_to_matrix,
gtk_matrix_transform_apply_affine,
gtk_matrix_transform_print,
gtk_matrix_transform_apply,
gtk_matrix_transform_equal,
};
GtkTransform *
gtk_transform_matrix_with_category (GtkTransform *next,
const graphene_matrix_t *matrix,
GskMatrixCategory category)
{
GtkMatrixTransform *result = gtk_transform_alloc (&GTK_TRANSFORM_TRANSFORM_CLASS, next);
graphene_matrix_init_from_matrix (&result->matrix, matrix);
result->category = category;
return &result->parent;
}
/**
* gtk_transform_matrix:
* @next: (allow-none): the next transform
* @matrix: the matrix to multiply @next with
*
* Multiplies @next with the given @matrix.
*
* Returns: The new matrix
**/
GtkTransform *
gtk_transform_matrix (GtkTransform *next,
const graphene_matrix_t *matrix)
{
return gtk_transform_matrix_with_category (next, matrix, GSK_MATRIX_CATEGORY_UNKNOWN);
}
/*** TRANSLATE ***/
typedef struct _GtkTranslateTransform GtkTranslateTransform;
struct _GtkTranslateTransform
{
GtkTransform parent;
graphene_point3d_t point;
};
static void
gtk_translate_transform_finalize (GtkTransform *self)
{
}
static GskMatrixCategory
gtk_translate_transform_categorize (GtkTransform *transform)
{
GtkTranslateTransform *self = (GtkTranslateTransform *) transform;
if (self->point.z != 0.0)
return GSK_MATRIX_CATEGORY_INVERTIBLE;
return GSK_MATRIX_CATEGORY_2D_TRANSLATE;
}
static void
gtk_translate_transform_to_matrix (GtkTransform *transform,
graphene_matrix_t *out_matrix)
{
GtkTranslateTransform *self = (GtkTranslateTransform *) transform;
graphene_matrix_init_translate (out_matrix, &self->point);
}
static gboolean
gtk_translate_transform_apply_affine (GtkTransform *transform,
float *out_scale_x,
float *out_scale_y,
float *out_dx,
float *out_dy)
{
GtkTranslateTransform *self = (GtkTranslateTransform *) transform;
if (self->point.z != 0.0)
return FALSE;
*out_dx += *out_scale_x * self->point.x;
*out_dy += *out_scale_y * self->point.y;
return TRUE;
}
static GtkTransform *
gtk_translate_transform_apply (GtkTransform *transform,
GtkTransform *apply_to)
{
GtkTranslateTransform *self = (GtkTranslateTransform *) transform;
return gtk_transform_translate_3d (apply_to, &self->point);
}
static gboolean
gtk_translate_transform_equal (GtkTransform *first_transform,
GtkTransform *second_transform)
{
GtkTranslateTransform *first = (GtkTranslateTransform *) first_transform;
GtkTranslateTransform *second = (GtkTranslateTransform *) second_transform;
return graphene_point3d_equal (&first->point, &second->point);
}
static void
gtk_translate_transform_print (GtkTransform *transform,
GString *string)
{
GtkTranslateTransform *self = (GtkTranslateTransform *) transform;
if (self->point.z == 0)
g_string_append (string, "translate(");
else
g_string_append (string, "translate3d(");
string_append_double (string, self->point.x);
g_string_append (string, ", ");
string_append_double (string, self->point.y);
if (self->point.z != 0)
{
g_string_append (string, ", ");
string_append_double (string, self->point.y);
}
g_string_append (string, ")");
}
static const GtkTransformClass GTK_TRANSLATE_TRANSFORM_CLASS =
{
GTK_TRANSFORM_TYPE_TRANSLATE,
sizeof (GtkTranslateTransform),
"GtkTranslateTransform",
gtk_translate_transform_finalize,
gtk_translate_transform_categorize,
gtk_translate_transform_to_matrix,
gtk_translate_transform_apply_affine,
gtk_translate_transform_print,
gtk_translate_transform_apply,
gtk_translate_transform_equal,
};
/**
* gtk_transform_translate:
* @next: (allow-none): the next transform
* @point: the point to translate the matrix by
*
* Translates @next in 2dimensional space by @point.
*
* Returns: The new matrix
**/
GtkTransform *
gtk_transform_translate (GtkTransform *next,
const graphene_point_t *point)
{
graphene_point3d_t point3d;
graphene_point3d_init (&point3d, point->x, point->y, 0);
return gtk_transform_translate_3d (next, &point3d);
}
/**
* gtk_transform_translate_3d:
* @next: (allow-none): the next transform
* @point: the point to translate the matrix by
*
* Translates @next by @point.
*
* Returns: The new matrix
**/
GtkTransform *
gtk_transform_translate_3d (GtkTransform *next,
const graphene_point3d_t *point)
{
GtkTranslateTransform *result = gtk_transform_alloc (&GTK_TRANSLATE_TRANSFORM_CLASS, next);
graphene_point3d_init_from_point (&result->point, point);
return &result->parent;
}
/*** ROTATE ***/
typedef struct _GtkRotateTransform GtkRotateTransform;
struct _GtkRotateTransform
{
GtkTransform parent;
float angle;
graphene_vec3_t axis;
};
static void
gtk_rotate_transform_finalize (GtkTransform *self)
{
}
static GskMatrixCategory
gtk_rotate_transform_categorize (GtkTransform *transform)
{
return GSK_MATRIX_CATEGORY_INVERTIBLE;
}
static void
gtk_rotate_transform_to_matrix (GtkTransform *transform,
graphene_matrix_t *out_matrix)
{
GtkRotateTransform *self = (GtkRotateTransform *) transform;
graphene_matrix_init_rotate (out_matrix, self->angle, &self->axis);
}
static gboolean
gtk_rotate_transform_apply_affine (GtkTransform *transform,
float *out_scale_x,
float *out_scale_y,
float *out_dx,
float *out_dy)
{
return FALSE;
}
static GtkTransform *
gtk_rotate_transform_apply (GtkTransform *transform,
GtkTransform *apply_to)
{
GtkRotateTransform *self = (GtkRotateTransform *) transform;
return gtk_transform_rotate_3d (apply_to, self->angle, &self->axis);
}
static gboolean
gtk_rotate_transform_equal (GtkTransform *first_transform,
GtkTransform *second_transform)
{
GtkRotateTransform *first = (GtkRotateTransform *) first_transform;
GtkRotateTransform *second = (GtkRotateTransform *) second_transform;
return first->angle == second->angle
&& graphene_vec3_equal (&first->axis, &second->axis);
}
static void
gtk_rotate_transform_print (GtkTransform *transform,
GString *string)
{
GtkRotateTransform *self = (GtkRotateTransform *) transform;
graphene_vec3_t default_axis;
graphene_vec3_init_from_vec3 (&default_axis, graphene_vec3_z_axis ());
if (graphene_vec3_equal (&default_axis, &self->axis))
{
g_string_append (string, "rotate(");
string_append_double (string, self->angle);
g_string_append (string, ")");
}
else
{
float f[3];
guint i;
g_string_append (string, "rotate3d(");
graphene_vec3_to_float (&self->axis, f);
for (i = 0; i < 3; i++)
{
string_append_double (string, f[i]);
g_string_append (string, ", ");
}
string_append_double (string, self->angle);
g_string_append (string, ")");
}
}
static const GtkTransformClass GTK_ROTATE_TRANSFORM_CLASS =
{
GTK_TRANSFORM_TYPE_ROTATE,
sizeof (GtkRotateTransform),
"GtkRotateTransform",
gtk_rotate_transform_finalize,
gtk_rotate_transform_categorize,
gtk_rotate_transform_to_matrix,
gtk_rotate_transform_apply_affine,
gtk_rotate_transform_print,
gtk_rotate_transform_apply,
gtk_rotate_transform_equal,
};
/**
* gtk_transform_rotate:
* @next: (allow-none): the next transform
* @angle: the rotation angle, in degrees (clockwise)
*
* Rotates @next @angle degrees in 2D - or in 3Dspeak, around the z axis.
*
* Returns: The new matrix
**/
GtkTransform *
gtk_transform_rotate (GtkTransform *next,
float angle)
{
return gtk_transform_rotate_3d (next, angle, graphene_vec3_z_axis ());
}
/**
* gtk_transform_rotate_3d:
* @next: (allow-none): the next transform
* @angle: the rotation angle, in degrees (clockwise)
* @axis: The rotation axis
*
* Rotates @next @angle degrees around @axis.
*
* For a rotation in 2D space, use gtk_transform_rotate().
*
* Returns: The new matrix
**/
GtkTransform *
gtk_transform_rotate_3d (GtkTransform *next,
float angle,
const graphene_vec3_t *axis)
{
GtkRotateTransform *result = gtk_transform_alloc (&GTK_ROTATE_TRANSFORM_CLASS, next);
result->angle = angle;
graphene_vec3_init_from_vec3 (&result->axis, axis);
return &result->parent;
}
/*** SCALE ***/
typedef struct _GtkScaleTransform GtkScaleTransform;
struct _GtkScaleTransform
{
GtkTransform parent;
float factor_x;
float factor_y;
float factor_z;
};
static void
gtk_scale_transform_finalize (GtkTransform *self)
{
}
static GskMatrixCategory
gtk_scale_transform_categorize (GtkTransform *transform)
{
GtkScaleTransform *self = (GtkScaleTransform *) transform;
if (self->factor_z != 1.0)
return GSK_MATRIX_CATEGORY_INVERTIBLE;
return GSK_MATRIX_CATEGORY_2D_AFFINE;
}
static void
gtk_scale_transform_to_matrix (GtkTransform *transform,
graphene_matrix_t *out_matrix)
{
GtkScaleTransform *self = (GtkScaleTransform *) transform;
graphene_matrix_init_scale (out_matrix, self->factor_x, self->factor_y, self->factor_z);
}
static gboolean
gtk_scale_transform_apply_affine (GtkTransform *transform,
float *out_scale_x,
float *out_scale_y,
float *out_dx,
float *out_dy)
{
GtkScaleTransform *self = (GtkScaleTransform *) transform;
if (self->factor_z != 1.0)
return FALSE;
*out_scale_x *= self->factor_x;
*out_scale_y *= self->factor_y;
return TRUE;
}
static GtkTransform *
gtk_scale_transform_apply (GtkTransform *transform,
GtkTransform *apply_to)
{
GtkScaleTransform *self = (GtkScaleTransform *) transform;
return gtk_transform_scale_3d (apply_to, self->factor_x, self->factor_y, self->factor_z);
}
static gboolean
gtk_scale_transform_equal (GtkTransform *first_transform,
GtkTransform *second_transform)
{
GtkScaleTransform *first = (GtkScaleTransform *) first_transform;
GtkScaleTransform *second = (GtkScaleTransform *) second_transform;
return first->factor_x == second->factor_x
&& first->factor_y == second->factor_y
&& first->factor_z == second->factor_z;
}
static void
gtk_scale_transform_print (GtkTransform *transform,
GString *string)
{
GtkScaleTransform *self = (GtkScaleTransform *) transform;
if (self->factor_z == 1.0)
{
g_string_append (string, "scale(");
string_append_double (string, self->factor_x);
if (self->factor_x != self->factor_y)
{
g_string_append (string, ", ");
string_append_double (string, self->factor_y);
}
g_string_append (string, ")");
}
else
{
g_string_append (string, "scale3d(");
string_append_double (string, self->factor_x);
g_string_append (string, ", ");
string_append_double (string, self->factor_y);
g_string_append (string, ", ");
string_append_double (string, self->factor_z);
g_string_append (string, ")");
}
}
static const GtkTransformClass GTK_SCALE_TRANSFORM_CLASS =
{
GTK_TRANSFORM_TYPE_SCALE,
sizeof (GtkScaleTransform),
"GtkScaleTransform",
gtk_scale_transform_finalize,
gtk_scale_transform_categorize,
gtk_scale_transform_to_matrix,
gtk_scale_transform_apply_affine,
gtk_scale_transform_print,
gtk_scale_transform_apply,
gtk_scale_transform_equal,
};
/**
* gtk_transform_scale:
* @next: (allow-none): the next transform
* @factor_x: scaling factor on the X axis
* @factor_y: scaling factor on the Y axis
*
* Scales @next in 2-dimensional space by the given factors.
* Use gtk_transform_scale_3d() to scale in all 3 dimensions.
*
* Returns: The new matrix
**/
GtkTransform *
gtk_transform_scale (GtkTransform *next,
float factor_x,
float factor_y)
{
return gtk_transform_scale_3d (next, factor_x, factor_y, 1.0);
}
/**
* gtk_transform_scale_3d:
* @next: (allow-none): the next transform
* @factor_x: scaling factor on the X axis
* @factor_y: scaling factor on the Y axis
* @factor_z: scaling factor on the Z axis
*
* Scales @next by the given factors.
*
* Returns: The new matrix
**/
GtkTransform *
gtk_transform_scale_3d (GtkTransform *next,
float factor_x,
float factor_y,
float factor_z)
{
GtkScaleTransform *result = gtk_transform_alloc (&GTK_SCALE_TRANSFORM_CLASS, next);
result->factor_x = factor_x;
result->factor_y = factor_y;
result->factor_z = factor_z;
return &result->parent;
}
/*** PUBLIC API ***/
static void
gtk_transform_finalize (GtkTransform *self)
{
self->transform_class->finalize (self);
gtk_transform_unref (self->next);
g_free (self);
}
/**
* gtk_transform_ref:
* @self: (allow-none): a #GtkTransform
*
* Acquires a reference on the given #GtkTransform.
*
* Returns: (transfer none): the #GtkTransform with an additional reference
*/
GtkTransform *
gtk_transform_ref (GtkTransform *self)
{
if (self == NULL)
return NULL;
g_atomic_int_inc (&self->ref_count);
return self;
}
/**
* gtk_transform_unref:
* @self: (allow-none): a #GtkTransform
*
* Releases a reference on the given #GtkTransform.
*
* If the reference was the last, the resources associated to the @self are
* freed.
*/
void
gtk_transform_unref (GtkTransform *self)
{
if (self == NULL)
return;
if (g_atomic_int_dec_and_test (&self->ref_count))
gtk_transform_finalize (self);
}
/**
* gtk_transform_print:
* @self: (allow-none): a #GtkTransform
* @string: The string to print into
*
* Converts @self into a string representation suitable for printing that
* can later be parsed with gtk_transform_parse().
**/
void
gtk_transform_print (GtkTransform *self,
GString *string)
{
g_return_if_fail (string != NULL);
if (self == NULL)
{
g_string_append (string, "none");
return;
}
if (self->next != NULL)
{
gtk_transform_print (self->next, string);
g_string_append (string, " ");
}
self->transform_class->print (self, string);
}
/**
* gtk_transform_to_string:
* @self: (allow-none): a #GtkTransform
*
* Converts a matrix into a string that is suitable for
* printing and can later be parsed with gtk_transform_parse().
*
* This is a wrapper around gtk_transform_print(), see that function
* for details.
*
* Returns: A new string for @self
**/
char *
gtk_transform_to_string (GtkTransform *self)
{
GString *string;
string = g_string_new ("");
gtk_transform_print (self, string);
return g_string_free (string, FALSE);
}
/**
* gtk_transform_get_transform_type:
* @self: (allow-none): a #GtkTransform
*
* Returns the type of the @self.
*
* Returns: the type of the #GtkTransform
*/
GtkTransformType
gtk_transform_get_transform_type (GtkTransform *self)
{
if (self == NULL)
return GTK_TRANSFORM_TYPE_IDENTITY;
return self->transform_class->transform_type;
}
/**
* gtk_transform_get_next:
* @self: (allow-none): a #GtkTransform
*
* Gets the rest of the matrix in the chain of operations.
*
* Returns: (transfer none) (nullable): The next transform or
* %NULL if this was the last operation.
**/
GtkTransform *
gtk_transform_get_next (GtkTransform *self)
{
if (self == NULL)
return NULL;
return self->next;
}
/**
* gtk_transform_to_matrix:
* @self: (allow-none): a #GtkTransform
* @out_matrix: (out caller-allocates): The matrix to set
*
* Computes the actual value of @self and stores it in @out_matrix.
* The previous value of @out_matrix will be ignored.
**/
void
gtk_transform_to_matrix (GtkTransform *self,
graphene_matrix_t *out_matrix)
{
graphene_matrix_t m;
if (self == NULL)
{
graphene_matrix_init_identity (out_matrix);
return;
}
gtk_transform_to_matrix (self->next, out_matrix);
self->transform_class->to_matrix (self, &m);
graphene_matrix_multiply (&m, out_matrix, out_matrix);
}
gboolean
gtk_transform_to_affine (GtkTransform *self,
float *out_scale_x,
float *out_scale_y,
float *out_dx,
float *out_dy)
{
if (self == NULL)
{
*out_scale_x = 1.0f;
*out_scale_y = 1.0f;
*out_dx = 0.0f;
*out_dy = 0.0f;
return TRUE;
}
if (!gtk_transform_to_affine (self->next,
out_scale_x, out_scale_y,
out_dx, out_dy))
return FALSE;
return self->transform_class->apply_affine (self,
out_scale_x, out_scale_y,
out_dx, out_dy);
}
/**
* gtk_transform_transform:
* @next: (allow-none) (transfer full): Transform to apply @other to
* @other: (allow-none): Transform to apply
*
* Applies all the operations from @other to @next.
*
* Returns: The new matrix
**/
GtkTransform *
gtk_transform_transform (GtkTransform *next,
GtkTransform *other)
{
if (other == NULL)
return next;
next = gtk_transform_transform (next, other->next);
return other->transform_class->apply (other, next);
}
/**
* gtk_transform_equal:
* @first: the first matrix
* @second: the second matrix
*
* Checks two matrices for equality. Note that matrices need to be literally
* identical in their operations, it is not enough that they return the
* same result in gtk_transform_to_matrix().
*
* Returns: %TRUE if the two matrices can be proven to be equal
**/
gboolean
gtk_transform_equal (GtkTransform *first,
GtkTransform *second)
{
if (first == second)
return TRUE;
if (first == NULL || second == NULL)
return FALSE;
if (!gtk_transform_equal (first->next, second->next))
return FALSE;
if (first->transform_class != second->transform_class)
return FALSE;
return first->transform_class->equal (first, second);
}
/*<private>
* gtk_transform_categorize:
* @self: (allow-none): A matrix
*
*
*
* Returns: The category this matrix belongs to
**/
GskMatrixCategory
gtk_transform_categorize (GtkTransform *self)
{
if (self == NULL)
return GSK_MATRIX_CATEGORY_IDENTITY;
return MIN (gtk_transform_categorize (self->next),
self->transform_class->categorize (self));
}
/*
* gtk_transform_new: (constructor):
*
* Creates a new identity matrix. This function is meant to be used by language
* bindings. For C code, this equivalent to using %NULL.
*
* See also gtk_transform_identity() for inserting identity matrix operations
* when constructing matrices.
*
* Returns: A new identity matrix
**/
GtkTransform *
gtk_transform_new (void)
{
return gtk_transform_alloc (&GTK_IDENTITY_TRANSFORM_CLASS, NULL);
}