harfbuzz/docs/usermanual-clusters.xml

543 lines
19 KiB
XML
Raw Normal View History

<?xml version="1.0"?>
<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.3//EN"
"http://www.oasis-open.org/docbook/xml/4.3/docbookx.dtd" [
<!ENTITY % local.common.attrib "xmlns:xi CDATA #FIXED 'http://www.w3.org/2003/XInclude'">
<!ENTITY version SYSTEM "version.xml">
]>
<chapter id="clusters">
<title>Clusters</title>
2018-11-12 18:17:06 +00:00
<section id="clusters">
<title>Clusters</title>
<para>
In text shaping, a <emphasis>cluster</emphasis> is a sequence of
characters that needs to be treated as a single, indivisible
unit.
</para>
<para>
A cluster is distinct from a <emphasis>grapheme</emphasis>,
which is the smallest unit of a writing system or script,
because clusters are only relevant for script shaping and the
layout of glyphs.
</para>
<para>
For example, a grapheme may be a letter, a number, a logogram,
or a symbol. When two letters form a ligature, however, they
combine into a single glyph. They are therefore part of the same
cluster and are treated as a unit &mdash; even though the two
original, underlying letters are separate graphemes.
</para>
<para>
During the shaping process, there are several shaping operations
that may merge adjacent characters (for example, when two code
points form a ligature or a conjunct form and are replaced by a
single glyph) or split one character into several (for example,
when decomposing a code point through the
<literal>ccmp</literal> feature).
</para>
<para>
2018-11-12 18:17:06 +00:00
HarfBuzz tracks clusters independently from how these
shaping operations affect the individual glyphs that comprise the
2018-11-12 18:17:06 +00:00
output HarfBuzz returns in a buffer. Consequently,
a client program using HarfBuzz can utilize the cluster
information to implement features such as:
</para>
<itemizedlist>
<listitem>
<para>
Correctly positioning the cursor within a shaped text run,
even when characters have formed ligatures, composed or
decomposed, reordered, or undergone other shaping operations.
2018-11-12 18:17:06 +00:00
</para>
</listitem>
<listitem>
<para>
Correctly highlighting a text selection that includes some,
but not all, of the characters in a word.
2018-11-12 18:17:06 +00:00
</para>
</listitem>
<listitem>
<para>
Applying text attributes (such as color or underlining) to
part, but not all, of a word.
2018-11-12 18:17:06 +00:00
</para>
</listitem>
<listitem>
<para>
Generating output document formats (such as PDF) with
embedded text that can be fully extracted.
</para>
</listitem>
<listitem>
<para>
Determining the mapping between input characters and output
glyphs, such as which glyphs are ligatures.
</para>
</listitem>
2018-11-12 18:17:06 +00:00
<listitem>
<para>
Performing line-breaking, justification, and other
line-level or paragraph-level operations that must be done
after shaping is complete, but which require character-level
properties.
</para>
</listitem>
</itemizedlist>
<para>
When you add text to a HarfBuzz buffer, each code point must be
assigned a <emphasis>cluster value</emphasis>.
2018-11-12 18:17:06 +00:00
</para>
<para>
This cluster value is an arbitrary number; HarfBuzz uses it only
to distinguish between clusters. Many client programs will use
the index of each code point in the input text stream as the
cluster value. This is for the sake of convenience; the actual
value does not matter.
2018-11-12 18:17:06 +00:00
</para>
<para>
Client programs can choose how HarfBuzz handles clusters during
shaping by setting the
<literal>cluster_level</literal> of the
buffer. HarfBuzz offers three <emphasis>levels</emphasis> of
clustering support for this property:
</para>
<itemizedlist>
<listitem>
<para><emphasis>Level 0</emphasis> is the default and
reproduces the behavior of the old HarfBuzz library.
</para>
<para>
The distinguishing feature of level 0 behavior is that, at
the beginning of processing the buffer, all code points that
are categorized as <emphasis>marks</emphasis>,
<emphasis>modifier symbols</emphasis>, or
<emphasis>Emoji extended pictographic</emphasis> modifiers,
as well as the <emphasis>Zero Width Joiner</emphasis> and
<emphasis>Zero Width Non-Joiner</emphasis> code points, are
assigned the cluster value of the closest preceding code
point from <emphasis>different</emphasis> category.
2018-11-12 18:17:06 +00:00
</para>
<para>
In essence, whenever a base character is followed by a mark
character or a sequence of mark characters, those marks are
reassigned to the same initial cluster value as the base
character. This reassignment is referred to as
"merging" the affected clusters. This behavior is based on
the Grapheme Cluster Boundary specification in <ulink
url="https://www.unicode.org/reports/tr29/#Regex_Definitions">Unicode
Technical Report 29</ulink>.
</para>
<para>
Client programs can specify level 0 behavior for a buffer by
setting its <literal>cluster_level</literal> to
<literal>HB_BUFFER_CLUSTER_LEVEL_MONOTONE_GRAPHEMES</literal>.
</para>
</listitem>
<listitem>
<para>
<emphasis>Level 1</emphasis> tweaks the old behavior
slightly to produce better results. Therefore, level 1
clustering is recommended for code that is not required to
implement backward compatibility with the old HarfBuzz.
</para>
<para>
Level 1 differs from level 0 by not merging the
clusters of marks and other modifier code points with the
preceding "base" code point's cluster. By preserving the
separate cluster values of these marks and modifier code
points, script shapers can perform additional operations
that might lead to improved results (for example, reordering
a sequence of marks).
2018-11-12 18:17:06 +00:00
</para>
<para>
Client programs can specify level 1 behavior for a buffer by
setting its <literal>cluster_level</literal> to
<literal>HB_BUFFER_CLUSTER_LEVEL_MONOTONE_CHARACTERS</literal>.
</para>
</listitem>
<listitem>
<para>
<emphasis>Level 2</emphasis> differs significantly in how it
treats cluster values. In level 2, HarfBuzz never merges
clusters.
</para>
<para>
This difference can be seen most clearly when HarfBuzz processes
ligature substitutions and glyph decompositions. In level 0
and level 1, ligatures and glyph decomposition both involve
merging clusters; in level 2, neither of these operations
triggers a merge.
</para>
<para>
Client programs can specify level 2 behavior for a buffer by
setting its <literal>cluster_level</literal> to
<literal>HB_BUFFER_CLUSTER_LEVEL_CHARACTERS</literal>.
</para>
</listitem>
</itemizedlist>
<para>
As mentioned earlier, client programs using HarfBuzz often
assign initial cluster values in a buffer by reusing the indices
of the code points in the input text. This gives a sequence of
cluster values that is monotonically increasing (for example,
0,1,2,3,4,5).
</para>
2018-11-12 18:17:06 +00:00
<para>
It is not <emphasis>required</emphasis> that the cluster values
in a buffer be monotonically increasing. However, if the initial
cluster values in a buffer are monotonic and the buffer is
configured to use cluster level 0 or 1, then HarfBuzz
2018-11-12 18:17:06 +00:00
guarantees that the final cluster values in the shaped buffer
will also be monotonic. No such guarantee is made for cluster
level 2.
</para>
<para>
In levels 0 and 1, HarfBuzz implements the following conceptual
model for cluster values:
2018-11-12 18:17:06 +00:00
</para>
<itemizedlist spacing="compact">
<listitem>
<para>
If the sequence of input cluster values is monotonic, the
sequence of cluster values will remain monotonic.
2018-11-12 18:17:06 +00:00
</para>
</listitem>
<listitem>
<para>
Each cluster value represents a single cluster.
</para>
</listitem>
<listitem>
<para>
Each cluster contains one or more glyphs and one or more
characters.
</para>
</listitem>
</itemizedlist>
<para>
In practice, this model offers several benefits. Assuming that
the initial cluster values were monotonically increasing
and distinct before shaping began, then, in the final output:
</para>
<itemizedlist spacing="compact">
<listitem>
<para>
All adjacent glyphs having the same final cluster
value belong to the same cluster.
</para>
</listitem>
<listitem>
<para>
Each character belongs to the cluster that has the highest
cluster value <emphasis>not larger than</emphasis> its
initial cluster value.
</para>
</listitem>
</itemizedlist>
</section>
<section id="a-clustering-example-for-levels-0-and-1">
<title>A clustering example for levels 0 and 1</title>
<para>
The guarantees and benefits of level 0 and level 1 can be seen
with some examples. First, let us examine what happens with cluster
values when shaping involves cluster merging with ligatures and
decomposition.
</para>
<para>
Let's say we start with the following character sequence (top row) and
initial cluster values (bottom row):
</para>
<programlisting>
2018-11-12 18:17:06 +00:00
A,B,C,D,E
0,1,2,3,4
</programlisting>
<para>
2018-11-12 18:17:06 +00:00
During shaping, HarfBuzz maps these characters to glyphs from
the font. For simplicity, let us assume that each character maps
2018-11-12 18:17:06 +00:00
to the corresponding, identical-looking glyph:
</para>
<programlisting>
2018-11-12 18:17:06 +00:00
A,B,C,D,E
0,1,2,3,4
</programlisting>
<para>
2018-11-12 18:17:06 +00:00
Now if, for example, <literal>B</literal> and <literal>C</literal>
form a ligature, then the clusters to which they belong
&quot;merge&quot;. This merged cluster takes for its cluster
value the minimum of all the cluster values of the clusters that
went in to the ligature. In this case, we get:
</para>
<programlisting>
2018-11-12 18:17:06 +00:00
A,BC,D,E
0,1 ,3,4
</programlisting>
<para>
because 1 is the minimum of the set {1,2}, which were the
cluster values of <literal>B</literal> and
<literal>C</literal>.
</para>
<para>
2018-11-12 18:17:06 +00:00
Next, let us say that the <literal>BC</literal> ligature glyph
decomposes into three components, and <literal>D</literal> also
decomposes into two components. These components each inherit the
cluster value of their parent:
</para>
2018-11-12 18:17:06 +00:00
<programlisting>
A,BC0,BC1,BC2,D0,D1,E
0,1 ,1 ,1 ,3 ,3 ,4
</programlisting>
<para>
2018-11-12 18:17:06 +00:00
Next, if <literal>BC2</literal> and <literal>D0</literal> form a
ligature, then their clusters (cluster values 1 and 3) merge into
<literal>min(1,3) = 1</literal>:
</para>
<programlisting>
2018-11-12 18:17:06 +00:00
A,BC0,BC1,BC2D0,D1,E
0,1 ,1 ,1 ,1 ,4
</programlisting>
<para>
At this point, cluster 1 means: the character sequence
<literal>BCD</literal> is represented by glyphs
<literal>BC0,BC1,BC2D0,D1</literal> and cannot be broken down any
further.
</para>
</section>
<section id="reordering-in-levels-0-and-1">
<title>Reordering in levels 0 and 1</title>
<para>
Another common operation in the more complex shapers is glyph
reordering. In order to maintain a monotonic cluster sequence
when glyph reordering takes place, HarfBuzz merges the clusters
of everything in the reordering sequence.
</para>
<para>
2018-11-12 18:17:06 +00:00
For example, let us again start with the character sequence (top
row) and initial cluster values (bottom row):
</para>
<programlisting>
2018-11-12 18:17:06 +00:00
A,B,C,D,E
0,1,2,3,4
</programlisting>
<para>
If <literal>D</literal> is reordered to before <literal>B</literal>,
2018-11-12 18:17:06 +00:00
then HarfBuzz merges the <literal>B</literal>,
<literal>C</literal>, and <literal>D</literal> clusters, and we
get:
</para>
<programlisting>
2018-11-12 18:17:06 +00:00
A,D,B,C,E
0,1,1,1,4
</programlisting>
<para>
2018-11-12 18:17:06 +00:00
This is clearly not ideal, but it is the only sensible way to
maintain a monotonic sequence of cluster values and retain the
true relationship between glyphs and characters.
</para>
</section>
<section id="the-distinction-between-levels-0-and-1">
<title>The distinction between levels 0 and 1</title>
<para>
The preceding examples demonstrate the main effects of using
cluster levels 0 and 1. The only difference between the two
levels is this: in level 0, at the very beginning of the shaping
process, HarfBuzz also merges clusters between any base character
and all Unicode marks (combining or not) that follow it.
</para>
<para>
For example, let us start with the following character sequence
(top row) and accompanying initial cluster values (bottom row):
</para>
<programlisting>
A,acute,B
0,1 ,2
</programlisting>
<para>
The <literal>acute</literal> is a Unicode mark. If HarfBuzz is
using cluster level 0 on this sequence, then the
<literal>A</literal> and <literal>acute</literal> clusters will
merge, and the result will become:
</para>
<programlisting>
2018-11-12 18:17:06 +00:00
A,acute,B
0,0 ,2
</programlisting>
<para>
This initial cluster merging is the default behavior of the
Windows shaping engine, and the old HarfBuzz codebase copied
that behavior to maintain compatibility. Consequently, it has
remained the default behavior in the new HarfBuzz codebase.
</para>
<para>
But this initial cluster-merging behavior makes it impossible to
color diacritic marks differently from their base
characters. That is why, in level 1, HarfBuzz does not perform
the initial merging step.
</para>
<para>
For client programs that rely on HarfBuzz cluster values to
perform cursor positioning, level 0 is more convenient. But
relying on cluster boundaries for cursor positioning is wrong: cursor
positions should be determined based on Unicode grapheme
boundaries, not on shaping-cluster boundaries. As such, level 1
clusters are preferred.
</para>
<para>
One last note about levels 0 and 1. HarfBuzz currently does not allow a
<literal>MultipleSubst</literal> lookup to replace a glyph with zero
glyphs (in other words, to delete a glyph). But, in some other situations,
glyphs can be deleted. In those cases, if the glyph being deleted is
the last glyph of its cluster, HarfBuzz makes sure to merge the cluster
with a neighboring cluster.
</para>
<para>
This is done primarily to make sure that the starting cluster of the
text always has the cluster index pointing to the start of the text
for the run; more than one client currently relies on this
guarantee.
</para>
<para>
Incidentally, Apple's CoreText does something else to maintain the
same promise: it inserts a glyph with id 65535 at the beginning of
the glyph string if the glyph corresponding to the first character
in the run was deleted. HarfBuzz might do something similar in the
future.
</para>
</section>
<section id="level-2">
<title>Level 2</title>
<para>
HarfBuzz's level 2 cluster behavior uses a significantly
different model than that of level 0 and level 1.
</para>
<para>
2018-11-12 18:17:06 +00:00
The level 2 behavior is easy to describe, but it may be
difficult to understand in practical terms. In brief, level 2
performs no merging of clusters whatsoever.
</para>
<para>
2018-11-12 18:17:06 +00:00
When glyphs form a ligature (or when some other feature
substitutes multiple glyphs with one glyph), the cluster value
of the first glyph is retained as the cluster value for the
ligature. However, no subsequent clusters &mdash; including
marks and modifiers &mdash; are affected.
</para>
2018-11-12 18:17:06 +00:00
<para>
Level 2 cluster behavior is less complex than level 0 or level
1, but there are a few cases in which processing cluster values
produced at level 2 may be tricky.
</para>
<section id="ligatures-with-combining-marks-in-level-2">
<title>Ligatures with combining marks in level 2</title>
<para>
The first example of how HarfBuzz's level 2 cluster behavior
can be tricky is when the text to be shaped includes combining
marks attached to ligatures.
</para>
<para>
Let us start with an input sequence with the following
characters (top row) and initial cluster values (bottom row):
</para>
<programlisting>
A,acute,B,breve,C,circumflex
0,1 ,2,3 ,4,5
</programlisting>
<para>
If the sequence <literal>A,B,C</literal> forms a ligature,
then these are the cluster values HarfBuzz will return under
the various cluster levels:
</para>
<para>
Level 0:
</para>
<programlisting>
ABC,acute,breve,circumflex
0 ,0 ,0 ,0
</programlisting>
<para>
Level 1:
</para>
<programlisting>
ABC,acute,breve,circumflex
0 ,0 ,0 ,5
</programlisting>
<para>
Level 2:
</para>
<programlisting>
ABC,acute,breve,circumflex
0 ,1 ,3 ,5
</programlisting>
<para>
Making sense of the level 2 result is the hardest for a client
program, because there is nothing in the cluster values that
indicates that <literal>B</literal> and <literal>C</literal>
formed a ligature with <literal>A</literal>.
</para>
<para>
In contrast, the "merged" cluster values of the mark glyphs
that are seen in the level 0 and level 1 output are evidence
that a ligature substitution took place.
</para>
</section>
<section id="reordering-in-level-2">
<title>Reordering in level 2</title>
<para>
Another example of how HarfBuzz's level 2 cluster behavior
can be tricky is when glyphs reorder. Consider an input sequence
with the following characters (top row) and initial cluster
values (bottom row):
</para>
<programlisting>
A,B,C,D,E
0,1,2,3,4
</programlisting>
<para>
Now imagine <literal>D</literal> moves before
<literal>B</literal> in a reordering operation. The cluster
values will then be:
</para>
<programlisting>
A,D,B,C,E
0,3,1,2,4
</programlisting>
<para>
Next, if <literal>D</literal> forms a ligature with
<literal>B</literal>, the output is:
</para>
<programlisting>
A,DB,C,E
0,3 ,2,4
</programlisting>
<para>
However, in a different scenario, in which the shaping rules
of the script instead caused <literal>A</literal> and
<literal>B</literal> to form a ligature
<emphasis>before</emphasis> the <literal>D</literal> reordered, the
result would be:
</para>
<programlisting>
AB,D,C,E
0 ,3,2,4
</programlisting>
<para>
There is no way for a client program to differentiate between
these two scenarios based on the cluster values
alone. Consequently, client programs that use level 2 might
need to undertake additional work in order to manage cursor
positioning, text attributes, or other desired features.
</para>
</section>
<section id="other-considerations-in-level-2">
<title>Other considerations in level 2</title>
<para>
There may be other problems encountered with ligatures under
level 2, such as if the direction of the text is forced to
opposite of its natural direction (for example, left-to-right
Arabic). But, generally speaking, these other scenarios are
minor corner cases that are too obscure for most client
programs to need to worry about.
</para>
</section>
</section>
</chapter>