harfbuzz/src/hb-ot-shape-complex-indic.cc

547 lines
17 KiB
C++
Raw Normal View History

/*
2011-06-07 21:02:48 +00:00
* Copyright © 2011 Google, Inc.
*
* This is part of HarfBuzz, a text shaping library.
*
* Permission is hereby granted, without written agreement and without
* license or royalty fees, to use, copy, modify, and distribute this
* software and its documentation for any purpose, provided that the
* above copyright notice and the following two paragraphs appear in
* all copies of this software.
*
* IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
* ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN
* IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
* THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
* BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
* ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO
* PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
*
* Google Author(s): Behdad Esfahbod
*/
2012-04-20 02:34:06 +00:00
#include "hb-ot-shape-complex-indic-private.hh"
static int
compare_codepoint (const void *pa, const void *pb)
{
hb_codepoint_t a = * (hb_codepoint_t *) pa;
hb_codepoint_t b = * (hb_codepoint_t *) pb;
return a < b ? -1 : a == b ? 0 : +1;
}
static indic_position_t
consonant_position (hb_codepoint_t u)
{
consonant_position_t *record;
record = (consonant_position_t *) bsearch (&u, consonant_positions,
ARRAY_LENGTH (consonant_positions),
sizeof (consonant_positions[0]),
compare_codepoint);
return record ? record->position : POS_BASE;
}
static bool
is_ra (hb_codepoint_t u)
{
return !!bsearch (&u, ra_chars,
ARRAY_LENGTH (ra_chars),
sizeof (ra_chars[0]),
compare_codepoint);
}
static bool
is_joiner (const hb_glyph_info_t &info)
{
return !!(FLAG (info.indic_category()) & (FLAG (OT_ZWJ) | FLAG (OT_ZWNJ)));
}
static bool
is_consonant (const hb_glyph_info_t &info)
{
return !!(FLAG (info.indic_category()) & (FLAG (OT_C) | FLAG (OT_Ra)));
}
static const struct {
hb_tag_t tag;
hb_bool_t is_global;
} indic_basic_features[] =
{
{HB_TAG('n','u','k','t'), true},
{HB_TAG('a','k','h','n'), false},
{HB_TAG('r','p','h','f'), false},
{HB_TAG('r','k','r','f'), true},
{HB_TAG('p','r','e','f'), false},
{HB_TAG('b','l','w','f'), false},
{HB_TAG('h','a','l','f'), false},
{HB_TAG('v','a','t','u'), true},
{HB_TAG('p','s','t','f'), false},
{HB_TAG('c','j','c','t'), false},
};
/* Same order as the indic_basic_features array */
enum {
_NUKT,
AKHN,
RPHF,
2012-05-09 09:38:31 +00:00
_RKRF,
PREF,
BLWF,
HALF,
_VATU,
PSTF,
CJCT
};
static const hb_tag_t indic_other_features[] =
{
HB_TAG('p','r','e','s'),
HB_TAG('a','b','v','s'),
HB_TAG('b','l','w','s'),
HB_TAG('p','s','t','s'),
HB_TAG('h','a','l','n'),
HB_TAG('d','i','s','t'),
HB_TAG('a','b','v','m'),
HB_TAG('b','l','w','m'),
};
static void
initial_reordering (const hb_ot_map_t *map,
hb_face_t *face,
hb_buffer_t *buffer,
void *user_data HB_UNUSED);
static void
final_reordering (const hb_ot_map_t *map,
hb_face_t *face,
hb_buffer_t *buffer,
void *user_data HB_UNUSED);
void
_hb_ot_shape_complex_collect_features_indic (hb_ot_map_builder_t *map, const hb_segment_properties_t *props)
{
map->add_bool_feature (HB_TAG('l','o','c','l'));
2011-07-20 20:42:10 +00:00
/* The Indic specs do not require ccmp, but we apply it here since if
* there is a use of it, it's typically at the beginning. */
map->add_bool_feature (HB_TAG('c','c','m','p'));
map->add_gsub_pause (initial_reordering, NULL);
2012-05-09 09:07:18 +00:00
for (unsigned int i = 0; i < ARRAY_LENGTH (indic_basic_features); i++) {
map->add_bool_feature (indic_basic_features[i].tag, indic_basic_features[i].is_global);
2012-05-09 09:07:18 +00:00
map->add_gsub_pause (NULL, NULL);
}
map->add_gsub_pause (final_reordering, NULL);
2012-05-09 09:07:18 +00:00
for (unsigned int i = 0; i < ARRAY_LENGTH (indic_other_features); i++) {
map->add_bool_feature (indic_other_features[i], true);
2012-05-09 09:07:18 +00:00
map->add_gsub_pause (NULL, NULL);
}
}
hb_ot_shape_normalization_mode_t
_hb_ot_shape_complex_normalization_preference_indic (void)
{
/* We want split matras decomposed by the common shaping logic. */
return HB_OT_SHAPE_NORMALIZATION_MODE_DECOMPOSED;
}
void
_hb_ot_shape_complex_setup_masks_indic (hb_ot_map_t *map, hb_buffer_t *buffer, hb_font_t *font)
{
2011-07-28 21:06:46 +00:00
HB_BUFFER_ALLOCATE_VAR (buffer, indic_category);
HB_BUFFER_ALLOCATE_VAR (buffer, indic_position);
/* We cannot setup masks here. We save information about characters
* and setup masks later on in a pause-callback. */
unsigned int count = buffer->len;
for (unsigned int i = 0; i < count; i++)
{
unsigned int type = get_indic_categories (buffer->info[i].codepoint);
buffer->info[i].indic_category() = type & 0x0F;
buffer->info[i].indic_position() = (type >> 4) & 7;
if (buffer->info[i].indic_category() == OT_C) {
buffer->info[i].indic_position() = consonant_position (buffer->info[i].codepoint);
if (is_ra (buffer->info[i].codepoint))
buffer->info[i].indic_category() = OT_Ra;
} else if (buffer->info[i].codepoint == 0x200C)
buffer->info[i].indic_category() = OT_ZWNJ;
else if (buffer->info[i].codepoint == 0x200D)
buffer->info[i].indic_category() = OT_ZWJ;
}
}
static int
compare_indic_order (const hb_glyph_info_t *pa, const hb_glyph_info_t *pb)
{
int a = pa->indic_position();
int b = pb->indic_position();
return a < b ? -1 : a == b ? 0 : +1;
}
static void
found_consonant_syllable (const hb_ot_map_t *map, hb_buffer_t *buffer, hb_mask_t *mask_array,
unsigned int start, unsigned int end)
{
unsigned int i;
2011-07-30 23:15:53 +00:00
hb_glyph_info_t *info = buffer->info;
/* Comments from:
* https://www.microsoft.com/typography/otfntdev/devanot/shaping.aspx */
/* 1. Find base consonant:
*
* The shaping engine finds the base consonant of the syllable, using the
* following algorithm: starting from the end of the syllable, move backwards
* until a consonant is found that does not have a below-base or post-base
* form (post-base forms have to follow below-base forms), or that is not a
* pre-base reordering Ra, or arrive at the first consonant. The consonant
* stopped at will be the base.
*
* o If the syllable starts with Ra + Halant (in a script that has Reph)
* and has more than one consonant, Ra is excluded from candidates for
* base consonants.
*/
unsigned int base = end;
/* -> starting from the end of the syllable, move backwards */
i = end;
unsigned int limit = start;
if (info[start].indic_category() == OT_Ra && start + 2 <= end) {
limit += 2;
base = start;
};
do {
i--;
/* -> until a consonant is found */
2011-07-31 19:01:28 +00:00
if (is_consonant (info[i]))
{
/* -> that does not have a below-base or post-base form
* (post-base forms have to follow below-base forms), */
2011-07-30 23:15:53 +00:00
if (info[i].indic_position() != POS_BELOW &&
info[i].indic_position() != POS_POST)
{
base = i;
break;
}
/* -> or that is not a pre-base reordering Ra,
*
* TODO
*/
/* -> o If the syllable starts with Ra + Halant (in a script that has Reph)
* and has more than one consonant, Ra is excluded from candidates for
* base consonants.
*
* IMPLEMENTATION NOTES:
*
* We do this by adjusting limit accordingly before entering the loop.
*/
/* -> or arrive at the first consonant. The consonant stopped at will
* be the base. */
base = i;
}
else
if (is_joiner (info[i]))
break;
} while (i > limit);
if (base < start)
base = start; /* Just in case... */
/* 2. Decompose and reorder Matras:
*
* Each matra and any syllable modifier sign in the cluster are moved to the
* appropriate position relative to the consonant(s) in the cluster. The
* shaping engine decomposes two- or three-part matras into their constituent
* parts before any repositioning. Matra characters are classified by which
* consonant in a conjunct they have affinity for and are reordered to the
* following positions:
*
* o Before first half form in the syllable
* o After subjoined consonants
* o After post-form consonant
* o After main consonant (for above marks)
*
* IMPLEMENTATION NOTES:
*
* The normalize() routine has already decomposed matras for us, so we don't
* need to worry about that.
*/
/* 3. Reorder marks to canonical order:
*
* Adjacent nukta and halant or nukta and vedic sign are always repositioned
* if necessary, so that the nukta is first.
*
* IMPLEMENTATION NOTES:
*
* We don't need to do this: the normalize() routine already did this for us.
*/
/* Reorder characters */
for (i = start; i < base; i++)
2011-07-30 23:15:53 +00:00
info[i].indic_position() = POS_PRE;
info[base].indic_position() = POS_BASE;
/* Handle beginning Ra */
2011-07-31 18:57:59 +00:00
if (start + 3 <= end &&
info[start].indic_category() == OT_Ra &&
info[start + 1].indic_category() == OT_H &&
2011-07-31 18:57:59 +00:00
!is_joiner (info[start + 2]))
{
info[start].indic_position() = POS_POST;
info[start].mask = mask_array[RPHF];
}
/* For old-style Indic script tags, move the first post-base Halant after
* last consonant. */
if ((map->get_chosen_script (0) & 0x000000FF) != '2') {
/* We should only do this for Indic scripts which have a version two I guess. */
for (i = base + 1; i < end; i++)
if (info[i].indic_category() == OT_H) {
unsigned int j;
for (j = end - 1; j > i; j--)
if ((FLAG (info[j].indic_category()) & (FLAG (OT_C) | FLAG (OT_Ra))))
break;
if (j > i) {
/* Move Halant to after last consonant. */
hb_glyph_info_t t = info[i];
memmove (&info[i], &info[i + 1], (j - i) * sizeof (info[0]));
info[j] = t;
}
break;
}
}
/* Attach ZWJ, ZWNJ, nukta, and halant to previous char to move with them. */
for (i = start + 1; i < end; i++)
2011-07-30 23:15:53 +00:00
if ((FLAG (info[i].indic_category()) &
(FLAG (OT_ZWNJ) | FLAG (OT_ZWJ) | FLAG (OT_N) | FLAG (OT_H))))
2011-07-30 23:15:53 +00:00
info[i].indic_position() = info[i - 1].indic_position();
/* We do bubble-sort, skip malicious clusters attempts */
if (end - start > 20)
return;
/* Sit tight, rock 'n roll! */
2011-07-30 23:15:53 +00:00
hb_bubble_sort (info + start, end - start, compare_indic_order);
/* Setup masks now */
2011-07-31 20:00:35 +00:00
{
hb_mask_t mask;
/* Pre-base */
mask = mask_array[HALF] | mask_array[AKHN] | mask_array[CJCT];
for (i = start; i < base; i++)
info[i].mask |= mask;
/* Base */
mask = mask_array[AKHN] | mask_array[CJCT];
info[base].mask |= mask;
/* Post-base */
mask = mask_array[BLWF] | mask_array[PSTF] | mask_array[CJCT];
for (i = base + 1; i < end; i++)
info[i].mask |= mask;
}
/* Apply ZWJ/ZWNJ effects */
for (i = start + 1; i < end; i++)
if (is_joiner (info[i])) {
bool non_joiner = info[i].indic_category() == OT_ZWNJ;
unsigned int j = i;
do {
j--;
/* Reading the Unicode and OpenType specs, I think the following line
* is correct, but this is not what the test suite expects currently.
* The test suite has been drinking, not me... But disable while
* investigating.
*/
//info[j].mask &= !mask_array[CJCT];
if (non_joiner)
info[j].mask &= !mask_array[HALF];
} while (j > start && !is_consonant (info[j]));
}
}
static void
found_vowel_syllable (const hb_ot_map_t *map, hb_buffer_t *buffer, hb_mask_t *mask_array,
unsigned int start, unsigned int end)
{
/* TODO
* Not clear to me how this should work. Do the matras move to before the
* independent vowel? No idea.
*/
}
static void
found_standalone_cluster (const hb_ot_map_t *map, hb_buffer_t *buffer, hb_mask_t *mask_array,
unsigned int start, unsigned int end)
{
/* TODO
* Easiest thing to do here is to convert the NBSP to consonant and
* call found_consonant_syllable.
*/
}
static void
found_non_indic (const hb_ot_map_t *map, hb_buffer_t *buffer, hb_mask_t *mask_array,
unsigned int start, unsigned int end)
{
/* Nothing to do right now. If we ever switch to using the output
* buffer in the reordering process, we'd need to next_glyph() here. */
}
#include "hb-ot-shape-complex-indic-machine.hh"
static void
remove_joiners (hb_buffer_t *buffer)
{
2011-09-19 20:53:47 +00:00
/* For now we remove joiners. However, Uniscbire seems to keep them
* and output a zero-width space glyph for them. It is not clear to
* me how that is supposed to interact with GSUB. */
buffer->clear_output ();
unsigned int count = buffer->len;
for (buffer->idx = 0; buffer->idx < count;)
if (unlikely (is_joiner (buffer->info[buffer->idx])))
buffer->skip_glyph ();
else
buffer->next_glyph ();
buffer->swap_buffers ();
}
static void
initial_reordering (const hb_ot_map_t *map,
hb_face_t *face,
hb_buffer_t *buffer,
void *user_data HB_UNUSED)
{
hb_mask_t mask_array[ARRAY_LENGTH (indic_basic_features)] = {0};
unsigned int num_masks = ARRAY_LENGTH (indic_basic_features);
for (unsigned int i = 0; i < num_masks; i++)
mask_array[i] = map->get_1_mask (indic_basic_features[i].tag);
find_syllables (map, buffer, mask_array);
remove_joiners (buffer);
}
static void
final_reordering (const hb_ot_map_t *map,
hb_face_t *face,
hb_buffer_t *buffer,
void *user_data HB_UNUSED)
{
/* 4. Final reordering:
*
* After the localized forms and basic shaping forms GSUB features have been
* applied (see below), the shaping engine performs some final glyph
* reordering before applying all the remaining font features to the entire
* cluster.
*
* o Reorder matras:
*
* If a pre-base matra character had been reordered before applying basic
* features, the glyph can be moved closer to the main consonant based on
* whether half-forms had been formed. Actual position for the matra is
* defined as after last standalone halant glyph, after initial matra
* position and before the main consonant. If ZWJ or ZWNJ follow this
* halant, position is moved after it.
*
* o Reorder reph:
*
* Rephs original position is always at the beginning of the syllable,
* (i.e. it is not reordered at the character reordering stage). However,
* it will be reordered according to the basic-forms shaping results.
* Possible positions for reph, depending on the script, are; after main,
* before post-base consonant forms, and after post-base consonant forms.
*
* 1. If reph should be positioned after post-base consonant forms,
* proceed to step 5.
*
* 2. If the reph repositioning class is not after post-base: target
* position is after the first explicit halant glyph between the
* first post-reph consonant and last main consonant. If ZWJ or ZWNJ
* are following this halant, position is moved after it. If such
* position is found, this is the target position. Otherwise,
* proceed to the next step.
*
* Note: in old-implementation fonts, where classifications were
* fixed in shaping engine, there was no case where reph position
* will be found on this step.
*
* 3. If reph should be repositioned after the main consonant: from the
* first consonant not ligated with main, or find the first
* consonant that is not a potential pre-base reordering Ra.
*
*
* 4. If reph should be positioned before post-base consonant, find
* first post-base classified consonant not ligated with main. If no
* consonant is found, the target position should be before the
* first matra, syllable modifier sign or vedic sign.
*
* 5. If no consonant is found in steps 3 or 4, move reph to a position
* immediately before the first post-base matra, syllable modifier
* sign or vedic sign that has a reordering class after the intended
* reph position. For example, if the reordering position for reph
* is post-main, it will skip above-base matras that also have a
* post-main position.
*
* 6. Otherwise, reorder reph to the end of the syllable.
*
* o Reorder pre-base reordering consonants:
*
* If a pre-base reordering consonant is found, reorder it according to
* the following rules:
*
* 1. Only reorder a glyph produced by substitution during application
* of the feature. (Note that a font may shape a Ra consonant with
* the feature generally but block it in certain contexts.)
*
* 2. Try to find a target position the same way as for pre-base matra.
* If it is found, reorder pre-base consonant glyph.
*
* 3. If position is not found, reorder immediately before main
* consonant.
*/
/* TODO */
HB_BUFFER_DEALLOCATE_VAR (buffer, indic_category);
HB_BUFFER_DEALLOCATE_VAR (buffer, indic_position);
}