liblzma/tests/test_block_header.c
Lasse Collin bfc3a0a8ac Tests: Fix warnings from clang --Wassign-enum.
Explicitly casting the integer to lzma_check silences the warning.
Since such an invalid value is needed in multiple tests, a constant
INVALID_LZMA_CHECK_ID was added to tests.h.

The use of 0x1000 for lzma_block.check wasn't optimal as if
the underlying type is a char then 0x1000 will be truncated to 0.
However, in these test cases the value is ignored, thus even with
such truncation the test would have passed.
2023-01-12 04:14:18 +02:00

515 lines
15 KiB
C

///////////////////////////////////////////////////////////////////////////////
//
/// \file test_block_header.c
/// \brief Tests Block Header coders
//
// Authors: Lasse Collin
// Jia Tan
//
// This file has been put into the public domain.
// You can do whatever you want with this file.
//
///////////////////////////////////////////////////////////////////////////////
#include "tests.h"
static lzma_options_lzma opt_lzma;
#ifdef HAVE_ENCODERS
static lzma_filter filters_none[1] = {
{
.id = LZMA_VLI_UNKNOWN,
},
};
static lzma_filter filters_one[2] = {
{
.id = LZMA_FILTER_LZMA2,
.options = &opt_lzma,
}, {
.id = LZMA_VLI_UNKNOWN,
}
};
// These filters are only used in test_lzma_block_header_decode()
// which only runs if encoders and decoders are configured.
#ifdef HAVE_DECODERS
static lzma_filter filters_four[5] = {
{
.id = LZMA_FILTER_X86,
.options = NULL,
}, {
.id = LZMA_FILTER_X86,
.options = NULL,
}, {
.id = LZMA_FILTER_X86,
.options = NULL,
}, {
.id = LZMA_FILTER_LZMA2,
.options = &opt_lzma,
}, {
.id = LZMA_VLI_UNKNOWN,
}
};
#endif
static lzma_filter filters_five[6] = {
{
.id = LZMA_FILTER_X86,
.options = NULL,
}, {
.id = LZMA_FILTER_X86,
.options = NULL,
}, {
.id = LZMA_FILTER_X86,
.options = NULL,
}, {
.id = LZMA_FILTER_X86,
.options = NULL,
}, {
.id = LZMA_FILTER_LZMA2,
.options = &opt_lzma,
}, {
.id = LZMA_VLI_UNKNOWN,
}
};
#endif
static void
test_lzma_block_header_size(void)
{
#ifndef HAVE_ENCODERS
assert_skip("Encoder support disabled");
#else
if (!lzma_filter_encoder_is_supported(LZMA_FILTER_X86))
assert_skip("x86 BCJ encoder is disabled");
lzma_block block = {
.version = 0,
.filters = filters_one,
.compressed_size = LZMA_VLI_UNKNOWN,
.uncompressed_size = LZMA_VLI_UNKNOWN,
.check = LZMA_CHECK_CRC32
};
// Test that all initial options are valid
assert_lzma_ret(lzma_block_header_size(&block), LZMA_OK);
assert_uint(block.header_size, >=, LZMA_BLOCK_HEADER_SIZE_MIN);
assert_uint(block.header_size, <=, LZMA_BLOCK_HEADER_SIZE_MAX);
assert_uint_eq(block.header_size % 4, 0);
// Test invalid version number
for (uint32_t i = 2; i < 20; i++) {
block.version = i;
assert_lzma_ret(lzma_block_header_size(&block),
LZMA_OPTIONS_ERROR);
}
block.version = 1;
// Test invalid compressed size
block.compressed_size = 0;
assert_lzma_ret(lzma_block_header_size(&block), LZMA_PROG_ERROR);
block.compressed_size = LZMA_VLI_MAX + 1;
assert_lzma_ret(lzma_block_header_size(&block), LZMA_PROG_ERROR);
block.compressed_size = LZMA_VLI_UNKNOWN;
// Test invalid uncompressed size
block.uncompressed_size = LZMA_VLI_MAX + 1;
assert_lzma_ret(lzma_block_header_size(&block), LZMA_PROG_ERROR);
block.uncompressed_size = LZMA_VLI_MAX;
// Test invalid filters
block.filters = NULL;
assert_lzma_ret(lzma_block_header_size(&block), LZMA_PROG_ERROR);
block.filters = filters_none;
assert_lzma_ret(lzma_block_header_size(&block), LZMA_PROG_ERROR);
block.filters = filters_five;
assert_lzma_ret(lzma_block_header_size(&block), LZMA_PROG_ERROR);
block.filters = filters_one;
// Test setting compressed_size to something valid
block.compressed_size = 4096;
assert_lzma_ret(lzma_block_header_size(&block), LZMA_OK);
assert_uint(block.header_size, >=, LZMA_BLOCK_HEADER_SIZE_MIN);
assert_uint(block.header_size, <=, LZMA_BLOCK_HEADER_SIZE_MAX);
assert_uint_eq(block.header_size % 4, 0);
// Test setting uncompressed_size to something valid
block.uncompressed_size = 4096;
assert_lzma_ret(lzma_block_header_size(&block), LZMA_OK);
assert_uint(block.header_size, >=, LZMA_BLOCK_HEADER_SIZE_MIN);
assert_uint(block.header_size, <=, LZMA_BLOCK_HEADER_SIZE_MAX);
assert_uint_eq(block.header_size % 4, 0);
// This should pass, but header_size will be an invalid value
// because the total block size will not be able to fit in a valid
// lzma_vli. This way a temporary value can be used to reserve
// space for the header and later the actual value can be set.
block.compressed_size = LZMA_VLI_MAX;
assert_lzma_ret(lzma_block_header_size(&block), LZMA_OK);
assert_uint(block.header_size, >=, LZMA_BLOCK_HEADER_SIZE_MIN);
assert_uint(block.header_size, <=, LZMA_BLOCK_HEADER_SIZE_MAX);
assert_uint_eq(block.header_size % 4, 0);
// Use an invalid value for a filter option. This should still pass
// because the size of the LZMA2 properties is known by liblzma
// without reading any of the options so it doesn't validate them.
lzma_options_lzma bad_ops;
assert_false(lzma_lzma_preset(&bad_ops, 1));
bad_ops.pb = 0x1000;
lzma_filter bad_filters[2] = {
{
.id = LZMA_FILTER_LZMA2,
.options = &bad_ops
},
{
.id = LZMA_VLI_UNKNOWN,
.options = NULL
}
};
block.filters = bad_filters;
assert_lzma_ret(lzma_block_header_size(&block), LZMA_OK);
assert_uint(block.header_size, >=, LZMA_BLOCK_HEADER_SIZE_MIN);
assert_uint(block.header_size, <=, LZMA_BLOCK_HEADER_SIZE_MAX);
assert_uint_eq(block.header_size % 4, 0);
// Use an invalid block option. The check type isn't stored in
// the Block Header and so _header_size ignores it.
block.check = INVALID_LZMA_CHECK_ID;
block.ignore_check = false;
assert_lzma_ret(lzma_block_header_size(&block), LZMA_OK);
assert_uint(block.header_size, >=, LZMA_BLOCK_HEADER_SIZE_MIN);
assert_uint(block.header_size, <=, LZMA_BLOCK_HEADER_SIZE_MAX);
assert_uint_eq(block.header_size % 4, 0);
#endif
}
static void
test_lzma_block_header_encode(void)
{
#if !defined(HAVE_ENCODERS) || !defined(HAVE_DECODERS)
assert_skip("Encoder or decoder support disabled");
#else
if (!lzma_filter_encoder_is_supported(LZMA_FILTER_X86)
|| !lzma_filter_decoder_is_supported(LZMA_FILTER_X86))
assert_skip("x86 BCJ encoder and/or decoder "
"is disabled");
lzma_block block = {
.version = 1,
.filters = filters_one,
.compressed_size = LZMA_VLI_UNKNOWN,
.uncompressed_size = LZMA_VLI_UNKNOWN,
.check = LZMA_CHECK_CRC32,
};
// Ensure all block options are valid before changes are tested
assert_lzma_ret(lzma_block_header_size(&block), LZMA_OK);
uint8_t out[LZMA_BLOCK_HEADER_SIZE_MAX];
// Test invalid block version
for (uint32_t i = 2; i < 20; i++) {
block.version = i;
assert_lzma_ret(lzma_block_header_encode(&block, out),
LZMA_PROG_ERROR);
}
block.version = 1;
// Test invalid header size (< min, > max, % 4 != 0)
block.header_size = LZMA_BLOCK_HEADER_SIZE_MIN - 4;
assert_lzma_ret(lzma_block_header_encode(&block, out),
LZMA_PROG_ERROR);
block.header_size = LZMA_BLOCK_HEADER_SIZE_MIN + 2;
assert_lzma_ret(lzma_block_header_encode(&block, out),
LZMA_PROG_ERROR);
block.header_size = LZMA_BLOCK_HEADER_SIZE_MAX + 4;
assert_lzma_ret(lzma_block_header_encode(&block, out),
LZMA_PROG_ERROR);
assert_lzma_ret(lzma_block_header_size(&block), LZMA_OK);
// Test invalid compressed_size
block.compressed_size = 0;
assert_lzma_ret(lzma_block_header_encode(&block, out),
LZMA_PROG_ERROR);
block.compressed_size = LZMA_VLI_MAX + 1;
assert_lzma_ret(lzma_block_header_encode(&block, out),
LZMA_PROG_ERROR);
// This test passes test_lzma_block_header_size, but should
// fail here because there is not enough space to encode the
// proper block size because the total size is too big to fit
// in an lzma_vli
block.compressed_size = LZMA_VLI_MAX;
assert_lzma_ret(lzma_block_header_encode(&block, out),
LZMA_PROG_ERROR);
block.compressed_size = LZMA_VLI_UNKNOWN;
// Test invalid uncompressed size
block.uncompressed_size = LZMA_VLI_MAX + 1;
assert_lzma_ret(lzma_block_header_encode(&block, out),
LZMA_PROG_ERROR);
block.uncompressed_size = LZMA_VLI_UNKNOWN;
// Test invalid block check
block.check = INVALID_LZMA_CHECK_ID;
block.ignore_check = false;
assert_lzma_ret(lzma_block_header_encode(&block, out),
LZMA_PROG_ERROR);
block.check = LZMA_CHECK_CRC32;
// Test invalid filters
block.filters = NULL;
assert_lzma_ret(lzma_block_header_encode(&block, out),
LZMA_PROG_ERROR);
block.filters = filters_none;
assert_lzma_ret(lzma_block_header_encode(&block, out),
LZMA_PROG_ERROR);
block.filters = filters_five;
block.header_size = LZMA_BLOCK_HEADER_SIZE_MAX - 4;
assert_lzma_ret(lzma_block_header_encode(&block, out),
LZMA_PROG_ERROR);
// Test valid encoding and verify bytes of block header.
// More complicated tests for encoding headers are included
// in test_lzma_block_header_decode.
block.filters = filters_one;
assert_lzma_ret(lzma_block_header_size(&block), LZMA_OK);
assert_lzma_ret(lzma_block_header_encode(&block, out), LZMA_OK);
// First read block header size from out and verify
// that it == (encoded size + 1) * 4
uint32_t header_size = (out[0] + 1U) * 4;
assert_uint_eq(header_size, block.header_size);
// Next read block flags
uint8_t flags = out[1];
// Should have number of filters = 1
assert_uint_eq((flags & 0x3) + 1, 1);
// Bits 2-7 must be empty not set
assert_uint_eq(flags & (0xFF - 0x3), 0);
// Verify filter flags
// Decode Filter ID
lzma_vli filter_id = 0;
size_t pos = 2;
assert_lzma_ret(lzma_vli_decode(&filter_id, NULL, out,
&pos, header_size), LZMA_OK);
assert_uint_eq(filter_id, filters_one[0].id);
// Decode Size of Properties
lzma_vli prop_size = 0;
assert_lzma_ret(lzma_vli_decode(&prop_size, NULL, out,
&pos, header_size), LZMA_OK);
// LZMA2 has 1 byte prop size
assert_uint_eq(prop_size, 1);
uint8_t expected_filter_props = 0;
assert_lzma_ret(lzma_properties_encode(filters_one,
&expected_filter_props), LZMA_OK);
assert_uint_eq(out[pos], expected_filter_props);
pos++;
// Check null-padding
for (size_t i = pos; i < header_size - 4; i++)
assert_uint_eq(out[i], 0);
// Check CRC32
assert_uint_eq(read32le(&out[header_size - 4]), lzma_crc32(out,
header_size - 4, 0));
#endif
}
#if defined(HAVE_ENCODERS) && defined(HAVE_DECODERS)
// Helper function to compare two lzma_block structures field by field
static void
compare_blocks(lzma_block *block_expected, lzma_block *block_actual)
{
assert_uint_eq(block_actual->version, block_expected->version);
assert_uint_eq(block_actual->compressed_size,
block_expected->compressed_size);
assert_uint_eq(block_actual->uncompressed_size,
block_expected->uncompressed_size);
assert_uint_eq(block_actual->check, block_expected->check);
assert_uint_eq(block_actual->header_size, block_expected->header_size);
// Compare filter IDs
assert_true(block_expected->filters && block_actual->filters);
lzma_filter expected_filter = block_expected->filters[0];
uint32_t filter_count = 0;
while (expected_filter.id != LZMA_VLI_UNKNOWN) {
assert_uint_eq(block_actual->filters[filter_count].id,
expected_filter.id);
expected_filter = block_expected->filters[++filter_count];
}
assert_uint_eq(block_actual->filters[filter_count].id,
LZMA_VLI_UNKNOWN);
}
#endif
static void
test_lzma_block_header_decode(void)
{
#if !defined(HAVE_ENCODERS) || !defined(HAVE_DECODERS)
assert_skip("Encoder or decoder support disabled");
#else
if (!lzma_filter_encoder_is_supported(LZMA_FILTER_X86)
|| !lzma_filter_decoder_is_supported(LZMA_FILTER_X86))
assert_skip("x86 BCJ encoder and/or decoder "
"is disabled");
lzma_block block = {
.filters = filters_one,
.compressed_size = LZMA_VLI_UNKNOWN,
.uncompressed_size = LZMA_VLI_UNKNOWN,
.check = LZMA_CHECK_CRC32,
.version = 0
};
assert_lzma_ret(lzma_block_header_size(&block), LZMA_OK);
// Encode block header with simple options
uint8_t out[LZMA_BLOCK_HEADER_SIZE_MAX];
assert_lzma_ret(lzma_block_header_encode(&block, out), LZMA_OK);
// Decode block header and check that the options match
lzma_filter decoded_filters[LZMA_FILTERS_MAX + 1];
lzma_block decoded_block = {
.version = 0,
.filters = decoded_filters,
.check = LZMA_CHECK_CRC32
};
decoded_block.header_size = lzma_block_header_size_decode(out[0]);
assert_lzma_ret(lzma_block_header_decode(&decoded_block, NULL, out),
LZMA_OK);
compare_blocks(&block, &decoded_block);
// Reset output buffer and decoded_block
memzero(out, LZMA_BLOCK_HEADER_SIZE_MAX);
memzero(&decoded_block, sizeof(lzma_block));
decoded_block.filters = decoded_filters;
decoded_block.check = LZMA_CHECK_CRC32;
// Test with compressed size set
block.compressed_size = 4096;
assert_lzma_ret(lzma_block_header_size(&block), LZMA_OK);
assert_lzma_ret(lzma_block_header_encode(&block, out), LZMA_OK);
decoded_block.header_size = lzma_block_header_size_decode(out[0]);
assert_lzma_ret(lzma_block_header_decode(&decoded_block, NULL, out),
LZMA_OK);
compare_blocks(&block, &decoded_block);
memzero(out, LZMA_BLOCK_HEADER_SIZE_MAX);
memzero(&decoded_block, sizeof(lzma_block));
decoded_block.filters = decoded_filters;
decoded_block.check = LZMA_CHECK_CRC32;
// Test with uncompressed size set
block.uncompressed_size = 4096;
assert_lzma_ret(lzma_block_header_size(&block), LZMA_OK);
assert_lzma_ret(lzma_block_header_encode(&block, out), LZMA_OK);
decoded_block.header_size = lzma_block_header_size_decode(out[0]);
assert_lzma_ret(lzma_block_header_decode(&decoded_block, NULL, out),
LZMA_OK);
compare_blocks(&block, &decoded_block);
memzero(out, LZMA_BLOCK_HEADER_SIZE_MAX);
memzero(&decoded_block, sizeof(lzma_block));
decoded_block.filters = decoded_filters;
decoded_block.check = LZMA_CHECK_CRC32;
// Test with multiple filters
block.filters = filters_four;
assert_lzma_ret(lzma_block_header_size(&block), LZMA_OK);
assert_lzma_ret(lzma_block_header_encode(&block, out), LZMA_OK);
decoded_block.header_size = lzma_block_header_size_decode(out[0]);
assert_lzma_ret(lzma_block_header_decode(&decoded_block, NULL, out),
LZMA_OK);
compare_blocks(&block, &decoded_block);
memzero(&decoded_block, sizeof(lzma_block));
decoded_block.filters = decoded_filters;
decoded_block.check = LZMA_CHECK_CRC32;
decoded_block.header_size = lzma_block_header_size_decode(out[0]);
// Test with too high version. The decoder will set it to a version
// that it supports.
decoded_block.version = 2;
assert_lzma_ret(lzma_block_header_decode(&decoded_block, NULL, out),
LZMA_OK);
assert_uint_eq(decoded_block.version, 1);
// Test bad check type
decoded_block.check = INVALID_LZMA_CHECK_ID;
assert_lzma_ret(lzma_block_header_decode(&decoded_block, NULL, out),
LZMA_PROG_ERROR);
decoded_block.check = LZMA_CHECK_CRC32;
// Test bad check value
out[decoded_block.header_size - 1] -= 10;
assert_lzma_ret(lzma_block_header_decode(&decoded_block, NULL, out),
LZMA_DATA_ERROR);
out[decoded_block.header_size - 1] += 10;
// Test non-NULL padding
out[decoded_block.header_size - 5] = 1;
// Recompute CRC32
write32le(&out[decoded_block.header_size - 4], lzma_crc32(out,
decoded_block.header_size - 4, 0));
assert_lzma_ret(lzma_block_header_decode(&decoded_block, NULL, out),
LZMA_OPTIONS_ERROR);
// Test unsupported flags
out[1] = 0xFF;
// Recompute CRC32
write32le(&out[decoded_block.header_size - 4], lzma_crc32(out,
decoded_block.header_size - 4, 0));
assert_lzma_ret(lzma_block_header_decode(&decoded_block, NULL, out),
LZMA_OPTIONS_ERROR);
#endif
}
extern int
main(int argc, char **argv)
{
tuktest_start(argc, argv);
if (lzma_lzma_preset(&opt_lzma, 1))
tuktest_error("lzma_lzma_preset() failed");
tuktest_run(test_lzma_block_header_size);
tuktest_run(test_lzma_block_header_encode);
tuktest_run(test_lzma_block_header_decode);
return tuktest_end();
}