add support for AES-NI instructions

Signed-off-by: Steffen Jaeckel <s@jaeckel.eu>
This commit is contained in:
Steffen Jaeckel 2020-12-21 16:19:40 +01:00 committed by Jamie Reece Wilson
parent 1bfb07a0c8
commit 13fd324a3b
8 changed files with 448 additions and 1 deletions

View File

@ -614,6 +614,7 @@ As of this release the current cipher\_descriptors elements are the following:
\hline SAFER+ & saferp\_desc &16 & 16, 24, 32 & 8, 12, 16 & 4 \\
\hline AES & aes\_desc & 16 & 16, 24, 32 & 10, 12, 14 & 6 \\
& aes\_enc\_desc & 16 & 16, 24, 32 & 10, 12, 14 & 6 \\
& aesni\_desc & 16 & 16, 24, 32 & 10, 12, 14 & 6 \\
\hline Twofish & twofish\_desc & 16 & 16, 24, 32 & 16 & 7 \\
\hline DES & des\_desc & 8 & 8 & 16 & 13 \\
\hline 3DES (EDE mode) & des3\_desc & 8 & 16, 24 & 16 & 14 \\

418
src/ciphers/aes/aesni.c Normal file
View File

@ -0,0 +1,418 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* AES-NI implementation by Steffen Jaeckel */
/**
@file aesni.c
Implementation of AES via the AES-NI instruction on x86_64
*/
#include "tomcrypt_private.h"
#if defined(LTC_AES_NI) && defined(LTC_AMD64_SSE4_1)
const struct ltc_cipher_descriptor aesni_desc =
{
"aes",
6,
16, 32, 16, 10,
aesni_setup, aesni_ecb_encrypt, aesni_ecb_decrypt, aesni_test, aesni_done, aesni_keysize,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};
#include <emmintrin.h>
#include <smmintrin.h>
#include <wmmintrin.h>
#define setup_mix(t, c) _mm_extract_epi32(_mm_aeskeygenassist_si128(t, 0), c)
#define temp_load(k) _mm_loadu_si128((__m128i*)(k))
#define temp_update(t, k) _mm_insert_epi32(t, k, 3)
#define temp_invert(k) _mm_aesimc_si128(*((__m128i*)(k)))
static const ulong32 rcon[] = {
0x01UL, 0x02UL, 0x04UL, 0x08UL, 0x10UL, 0x20UL, 0x40UL, 0x80UL, 0x1BUL, 0x36UL
};
/* Code partially borrowed from https://software.intel.com/content/www/us/en/develop/articles/intel-sha-extensions.html */
static int s_aesni_is_supported(void)
{
static int initialized = 0, is_supported = 0;
if (initialized == 0) {
int a, b, c, d;
/* Look for CPUID.1.0.ECX[25]
* EAX = 1, ECX = 0
*/
a = 1;
c = 0;
asm volatile ("cpuid"
:"=a"(a), "=b"(b), "=c"(c), "=d"(d)
:"a"(a), "c"(c)
);
is_supported = ((c >> 25) & 1);
initialized = 1;
}
return is_supported;
}
/**
Initialize the AES (Rijndael) block cipher
@param key The symmetric key you wish to pass
@param keylen The key length in bytes
@param num_rounds The number of rounds desired (0 for default)
@param skey The key in as scheduled by this function.
@return CRYPT_OK if successful
*/
int aesni_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
{
int i;
__m128i temp;
ulong32 *rk;
ulong32 *rrk;
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(skey != NULL);
if (s_aesni_is_supported() == 0) {
#ifdef LTC_RIJNDAEL
return rijndael_setup(key, keylen, num_rounds, skey);
#else
return CRYPT_INVALID_CIPHER;
#endif
}
if (keylen != 16 && keylen != 24 && keylen != 32) {
return CRYPT_INVALID_KEYSIZE;
}
if (num_rounds != 0 && num_rounds != (keylen / 4 + 6)) {
return CRYPT_INVALID_ROUNDS;
}
skey->rijndael.Nr = keylen / 4 + 6;
/* setup the forward key */
i = 0;
rk = skey->rijndael.eK;
LOAD32L(rk[0], key);
LOAD32L(rk[1], key + 4);
LOAD32L(rk[2], key + 8);
LOAD32L(rk[3], key + 12);
if (keylen == 16) {
temp = temp_load(key);
for (;;) {
rk[4] = rk[0] ^ setup_mix(temp, 3) ^ rcon[i];
rk[5] = rk[1] ^ rk[4];
rk[6] = rk[2] ^ rk[5];
rk[7] = rk[3] ^ rk[6];
if (++i == 10) {
break;
}
temp = temp_update(temp, rk[7]);
rk += 4;
}
} else if (keylen == 24) {
LOAD32L(rk[4], key + 16);
LOAD32L(rk[5], key + 20);
temp = temp_load(key + 8);
for (;;) {
rk[6] = rk[0] ^ setup_mix(temp, 3) ^ rcon[i];
rk[7] = rk[1] ^ rk[6];
rk[8] = rk[2] ^ rk[7];
rk[9] = rk[3] ^ rk[8];
if (++i == 8) {
break;
}
rk[10] = rk[4] ^ rk[9];
rk[11] = rk[5] ^ rk[10];
temp = temp_update(temp, rk[11]);
rk += 6;
}
} else if (keylen == 32) {
LOAD32L(rk[4], key + 16);
LOAD32L(rk[5], key + 20);
LOAD32L(rk[6], key + 24);
LOAD32L(rk[7], key + 28);
temp = temp_load(key + 16);
for (;;) {
rk[8] = rk[0] ^ setup_mix(temp, 3) ^ rcon[i];
rk[9] = rk[1] ^ rk[8];
rk[10] = rk[2] ^ rk[9];
rk[11] = rk[3] ^ rk[10];
if (++i == 7) {
break;
}
temp = temp_update(temp, rk[11]);
rk[12] = rk[4] ^ setup_mix(temp, 2);
rk[13] = rk[5] ^ rk[12];
rk[14] = rk[6] ^ rk[13];
rk[15] = rk[7] ^ rk[14];
temp = temp_update(temp, rk[15]);
rk += 8;
}
} else {
/* this can't happen */
/* coverity[dead_error_line] */
return CRYPT_ERROR;
}
/* setup the inverse key now */
rk = skey->rijndael.dK;
rrk = skey->rijndael.eK + skey->rijndael.Nr * 4;
/* apply the inverse MixColumn transform to all round keys but the first and the last: */
/* copy first */
*rk++ = *rrk++;
*rk++ = *rrk++;
*rk++ = *rrk++;
*rk = *rrk;
rk -= 3;
rrk -= 3;
for (i = 1; i < skey->rijndael.Nr; i++) {
rrk -= 4;
rk += 4;
temp = temp_invert(rk);
*((__m128i*) rk) = temp_invert(rrk);
}
/* copy last */
rrk -= 4;
rk += 4;
*rk++ = *rrk++;
*rk++ = *rrk++;
*rk++ = *rrk++;
*rk = *rrk;
return CRYPT_OK;
}
/**
Encrypts a block of text with AES
@param pt The input plaintext (16 bytes)
@param ct The output ciphertext (16 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
#ifdef LTC_CLEAN_STACK
static int s_aesni_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
#else
int aesni_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
#endif
{
int Nr, r;
const __m128i *skeys;
__m128i block;
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
if (s_aesni_is_supported() == 0) {
#ifdef LTC_RIJNDAEL
return rijndael_ecb_encrypt(pt, ct, skey);
#else
return CRYPT_INVALID_CIPHER;
#endif
}
Nr = skey->rijndael.Nr;
if (Nr < 2 || Nr > 16) return CRYPT_INVALID_ROUNDS;
skeys = (__m128i*) skey->rijndael.eK;
block = _mm_loadu_si128((const __m128i*) (pt));
block = _mm_xor_si128(block, skeys[0]);
for (r = 1; r < Nr - 1; r += 2) {
block = _mm_aesenc_si128(block, skeys[r]);
block = _mm_aesenc_si128(block, skeys[r + 1]);
}
block = _mm_aesenc_si128(block, skeys[Nr - 1]);
block = _mm_aesenclast_si128(block, skeys[Nr]);
_mm_storeu_si128((__m128i*) ct, block);
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
int aesni_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
{
int err = s_aesni_ecb_encrypt(pt, ct, skey);
burn_stack(sizeof(unsigned long)*8 + sizeof(unsigned long*) + sizeof(int)*2);
return err;
}
#endif
/**
Decrypts a block of text with AES
@param ct The input ciphertext (16 bytes)
@param pt The output plaintext (16 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
#ifdef LTC_CLEAN_STACK
static int s_aesni_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
#else
int aesni_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
#endif
{
int Nr, r;
const __m128i *skeys;
__m128i block;
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
if (s_aesni_is_supported() == 0) {
#ifdef LTC_RIJNDAEL
return rijndael_ecb_decrypt(ct, pt, skey);
#else
return CRYPT_INVALID_CIPHER;
#endif
}
Nr = skey->rijndael.Nr;
if (Nr < 2 || Nr > 16) return CRYPT_INVALID_ROUNDS;
skeys = (__m128i*) skey->rijndael.dK;
block = _mm_loadu_si128((const __m128i*) (ct));
block = _mm_xor_si128(block, skeys[0]);
for (r = 1; r < Nr - 1; r += 2) {
block = _mm_aesdec_si128(block, skeys[r]);
block = _mm_aesdec_si128(block, skeys[r + 1]);
}
block = _mm_aesdec_si128(block, skeys[Nr - 1]);
block = _mm_aesdeclast_si128(block, skeys[Nr]);
_mm_storeu_si128((__m128i*) pt, block);
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
int aesni_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
{
int err = s_aesni_ecb_decrypt(ct, pt, skey);
burn_stack(sizeof(unsigned long)*8 + sizeof(unsigned long*) + sizeof(int)*2);
return err;
}
#endif
/**
Performs a self-test of the AES block cipher
@return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
*/
int aesni_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
int err;
static const struct {
int keylen;
unsigned char key[32], pt[16], ct[16];
} tests[] = {
{ 16,
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
{ 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
{ 0x69, 0xc4, 0xe0, 0xd8, 0x6a, 0x7b, 0x04, 0x30,
0xd8, 0xcd, 0xb7, 0x80, 0x70, 0xb4, 0xc5, 0x5a }
}, {
24,
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17 },
{ 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
{ 0xdd, 0xa9, 0x7c, 0xa4, 0x86, 0x4c, 0xdf, 0xe0,
0x6e, 0xaf, 0x70, 0xa0, 0xec, 0x0d, 0x71, 0x91 }
}, {
32,
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f },
{ 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
{ 0x8e, 0xa2, 0xb7, 0xca, 0x51, 0x67, 0x45, 0xbf,
0xea, 0xfc, 0x49, 0x90, 0x4b, 0x49, 0x60, 0x89 }
}
};
symmetric_key key;
unsigned char tmp[2][16];
int i, y;
for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) {
zeromem(&key, sizeof(key));
if ((err = aesni_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) {
return err;
}
aesni_ecb_encrypt(tests[i].pt, tmp[0], &key);
aesni_ecb_decrypt(tmp[0], tmp[1], &key);
if (compare_testvector(tmp[0], 16, tests[i].ct, 16, "AES-NI Encrypt", i) ||
compare_testvector(tmp[1], 16, tests[i].pt, 16, "AES-NI Decrypt", i)) {
return CRYPT_FAIL_TESTVECTOR;
}
/* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
for (y = 0; y < 16; y++) tmp[0][y] = 0;
for (y = 0; y < 1000; y++) aesni_ecb_encrypt(tmp[0], tmp[0], &key);
for (y = 0; y < 1000; y++) aesni_ecb_decrypt(tmp[0], tmp[0], &key);
for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
}
return CRYPT_OK;
#endif
}
/** Terminate the context
@param skey The scheduled key
*/
void aesni_done(symmetric_key *skey)
{
LTC_UNUSED_PARAM(skey);
}
/**
Gets suitable key size
@param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable.
@return CRYPT_OK if the input key size is acceptable.
*/
int aesni_keysize(int *keysize)
{
LTC_ARGCHK(keysize != NULL);
if (*keysize < 16) {
return CRYPT_INVALID_KEYSIZE;
}
if (*keysize < 24) {
*keysize = 16;
return CRYPT_OK;
}
if (*keysize < 32) {
*keysize = 24;
return CRYPT_OK;
}
*keysize = 32;
return CRYPT_OK;
}
#endif

View File

@ -91,6 +91,11 @@ LTC_EXPORT int LTC_CALL XSTRCMP(const char *s1, const char *s2);
#define ENDIAN_LITTLE
#define ENDIAN_64BITWORD
#define LTC_FAST
#if defined(__SSE4_1__)
#if __SSE4_1__ == 1
#define LTC_AMD64_SSE4_1
#endif
#endif
#endif
/* detect PPC32 */

View File

@ -35,7 +35,8 @@ struct saferp_key {
#ifdef LTC_RIJNDAEL
struct rijndael_key {
ulong32 eK[60], dK[60];
ulong32 eK[60] LTC_ALIGN(16);
ulong32 dK[60] LTC_ALIGN(16);
int Nr;
};
#endif
@ -715,6 +716,16 @@ extern const struct ltc_cipher_descriptor rijndael_desc, aes_desc;
extern const struct ltc_cipher_descriptor rijndael_enc_desc, aes_enc_desc;
#endif
#if defined(LTC_AES_NI) && defined(LTC_AMD64_SSE4_1)
int aesni_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int aesni_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey);
int aesni_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey);
int aesni_test(void);
void aesni_done(symmetric_key *skey);
int aesni_keysize(int *keysize);
extern const struct ltc_cipher_descriptor aesni_desc;
#endif
#ifdef LTC_XTEA
int xtea_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int xtea_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey);

View File

@ -179,6 +179,7 @@
#define LTC_RC6
#define LTC_SAFERP
#define LTC_RIJNDAEL
#define LTC_AES_NI
#define LTC_XTEA
/* _TABLES tells it to use tables during setup, _SMALL means to use the smaller scheduled key format
* (saves 4KB of ram), _ALL_TABLES enables all tables during setup */

View File

@ -416,6 +416,9 @@ const char *crypt_build_settings =
#if defined(LTC_ADLER32)
" ADLER32 "
#endif
#if defined(LTC_AES_NI) && defined(LTC_AMD64_SSE4_1)
" AES-NI "
#endif
#if defined(LTC_BASE64)
" BASE64 "
#endif

View File

@ -21,11 +21,15 @@ int register_all_ciphers(void)
* register_cipher(&rijndael_enc_desc);
*/
REGISTER_CIPHER(&aes_enc_desc);
#else
#if defined(LTC_AES_NI) && defined(LTC_AMD64_SSE4_1)
REGISTER_CIPHER(&aesni_desc);
#else
/* alternative would be
* register_cipher(&rijndael_desc);
*/
REGISTER_CIPHER(&aes_desc);
#endif /* AES-NI */
#endif
#endif
#ifdef LTC_BLOWFISH

View File

@ -111,11 +111,15 @@ static void s_unregister_all(void)
* unregister_cipher(&rijndael_enc_desc);
*/
unregister_cipher(&aes_enc_desc);
#else
#if defined(LTC_AES_NI) && defined(LTC_AMD64_SSE4_1)
unregister_cipher(&aesni_desc);
#else
/* alternative would be
* unregister_cipher(&rijndael_desc);
*/
unregister_cipher(&aes_desc);
#endif /* AES-NI */
#endif
#endif
#ifdef LTC_BLOWFISH