libtomcrypt/tests/ecc_test.c
2018-05-22 23:02:44 +02:00

539 lines
16 KiB
C

/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*/
#include <tomcrypt_test.h>
#if defined(LTC_MECC)
static unsigned int sizes[] = {
#ifdef LTC_ECC_SECP112R1
14,
#endif
#ifdef LTC_ECC_SECP128R1
16,
#endif
#ifdef LTC_ECC_SECP160R1
20,
#endif
#ifdef LTC_ECC_SECP192R1
24,
#endif
#ifdef LTC_ECC_SECP224R1
28,
#endif
#ifdef LTC_ECC_SECP256R1
32,
#endif
#ifdef LTC_ECC_SECP384R1
48,
#endif
#ifdef LTC_ECC_SECP512R1
66
#endif
};
#ifdef LTC_ECC_SHAMIR
static int _ecc_test_shamir(void)
{
void *a, *modulus, *mp, *kA, *kB, *rA, *rB;
void *mu, *ma;
ecc_point *G, *A, *B, *C1, *C2;
int x, y, z;
unsigned char buf[ECC_BUF_SIZE];
DO(mp_init_multi(&kA, &kB, &rA, &rB, &modulus, &a, &mu, &ma, NULL));
LTC_ARGCHK((G = ltc_ecc_new_point()) != NULL);
LTC_ARGCHK((A = ltc_ecc_new_point()) != NULL);
LTC_ARGCHK((B = ltc_ecc_new_point()) != NULL);
LTC_ARGCHK((C1 = ltc_ecc_new_point()) != NULL);
LTC_ARGCHK((C2 = ltc_ecc_new_point()) != NULL);
for (x = 0; x < (int)(sizeof(sizes)/sizeof(sizes[0])); x++) {
/* get the base point */
for (z = 0; ltc_ecc_curves[z].prime != NULL; z++) {
DO(mp_read_radix(modulus, ltc_ecc_curves[z].prime, 16));
if (sizes[x] <= mp_unsigned_bin_size(modulus)) break;
}
LTC_ARGCHK(ltc_ecc_curves[z].prime != NULL);
/* load it */
DO(mp_read_radix(G->x, ltc_ecc_curves[z].Gx, 16));
DO(mp_read_radix(G->y, ltc_ecc_curves[z].Gy, 16));
DO(mp_set(G->z, 1));
DO(mp_read_radix(a, ltc_ecc_curves[z].A, 16));
DO(mp_montgomery_setup(modulus, &mp));
DO(mp_montgomery_normalization(mu, modulus));
DO(mp_mulmod(a, mu, modulus, ma));
/* do 100 random tests */
for (y = 0; y < 100; y++) {
/* pick a random r1, r2 */
LTC_ARGCHK(yarrow_read(buf, sizes[x], &yarrow_prng) == sizes[x]);
DO(mp_read_unsigned_bin(rA, buf, sizes[x]));
LTC_ARGCHK(yarrow_read(buf, sizes[x], &yarrow_prng) == sizes[x]);
DO(mp_read_unsigned_bin(rB, buf, sizes[x]));
/* compute rA * G = A */
DO(ltc_mp.ecc_ptmul(rA, G, A, a, modulus, 1));
/* compute rB * G = B */
DO(ltc_mp.ecc_ptmul(rB, G, B, a, modulus, 1));
/* pick a random kA, kB */
LTC_ARGCHK(yarrow_read(buf, sizes[x], &yarrow_prng) == sizes[x]);
DO(mp_read_unsigned_bin(kA, buf, sizes[x]));
LTC_ARGCHK(yarrow_read(buf, sizes[x], &yarrow_prng) == sizes[x]);
DO(mp_read_unsigned_bin(kB, buf, sizes[x]));
/* now, compute kA*A + kB*B = C1 using the older method */
DO(ltc_mp.ecc_ptmul(kA, A, C1, a, modulus, 0));
DO(ltc_mp.ecc_ptmul(kB, B, C2, a, modulus, 0));
DO(ltc_mp.ecc_ptadd(C1, C2, C1, a, modulus, mp));
DO(ltc_mp.ecc_map(C1, modulus, mp));
/* now compute using mul2add */
DO(ltc_mp.ecc_mul2add(A, kA, B, kB, C2, ma, modulus));
/* is they the sames? */
if ((mp_cmp(C1->x, C2->x) != LTC_MP_EQ) || (mp_cmp(C1->y, C2->y) != LTC_MP_EQ) || (mp_cmp(C1->z, C2->z) != LTC_MP_EQ)) {
fprintf(stderr, "ECC failed shamir test: size=%d, testno=%d\n", sizes[x], y);
return 1;
}
}
mp_montgomery_free(mp);
}
ltc_ecc_del_point(C2);
ltc_ecc_del_point(C1);
ltc_ecc_del_point(B);
ltc_ecc_del_point(A);
ltc_ecc_del_point(G);
mp_clear_multi(kA, kB, rA, rB, modulus, a, mu, ma, NULL);
return 0;
}
#endif
static int _ecc_issue108(void)
{
void *a, *modulus, *order;
ecc_point *Q, *Result;
int err;
const ltc_ecc_curve* dp;
/* init */
if ((err = mp_init_multi(&modulus, &order, &a, NULL)) != CRYPT_OK) { return err; }
Q = ltc_ecc_new_point();
Result = ltc_ecc_new_point();
/* ECC-224 AKA SECP224R1 */
if ((err = ecc_get_curve("SECP224R1", &dp)) != CRYPT_OK) { goto done; }
/* read A */
if ((err = mp_read_radix(a, (char *)dp->A, 16)) != CRYPT_OK) { goto done; }
/* read modulus */
if ((err = mp_read_radix(modulus, (char *)dp->prime, 16)) != CRYPT_OK) { goto done; }
/* read order */
if ((err = mp_read_radix(order, (char *)dp->order, 16)) != CRYPT_OK) { goto done; }
/* read Q */
if ((err = mp_read_radix(Q->x, (char *)"EA3745501BBC6A70BBFDD8AEEDB18CF5073C6DC9AA7CBB5915170D60", 16)) != CRYPT_OK) { goto done; }
if ((err = mp_read_radix(Q->y, (char *)"6C9CB8E68AABFEC989CAC5E2326E0448B7E69C3E56039BA21A44FDAC", 16)) != CRYPT_OK) { goto done; }
mp_set(Q->z, 1);
/* calculate nQ */
if ((err = ltc_mp.ecc_ptmul(order, Q, Result, a, modulus, 1)) != CRYPT_OK) { goto done; }
done:
ltc_ecc_del_point(Result);
ltc_ecc_del_point(Q);
mp_clear_multi(modulus, order, a, NULL);
return err;
}
static int _ecc_test_mp(void)
{
void *a, *modulus, *order;
ecc_point *G, *GG;
int i, err, primality;
if ((err = mp_init_multi(&modulus, &order, &a, NULL)) != CRYPT_OK) {
return err;
}
G = ltc_ecc_new_point();
GG = ltc_ecc_new_point();
if (G == NULL || GG == NULL) {
mp_clear_multi(modulus, order, NULL);
ltc_ecc_del_point(G);
ltc_ecc_del_point(GG);
return CRYPT_MEM;
}
for (i = 0; ltc_ecc_curves[i].prime != NULL; i++) {
if ((err = mp_read_radix(a, (char *)ltc_ecc_curves[i].A, 16)) != CRYPT_OK) { goto done; }
if ((err = mp_read_radix(modulus, (char *)ltc_ecc_curves[i].prime, 16)) != CRYPT_OK) { goto done; }
if ((err = mp_read_radix(order, (char *)ltc_ecc_curves[i].order, 16)) != CRYPT_OK) { goto done; }
/* is prime actually prime? */
if ((err = mp_prime_is_prime(modulus, 8, &primality)) != CRYPT_OK) { goto done; }
if (primality == 0) {
err = CRYPT_FAIL_TESTVECTOR;
goto done;
}
/* is order prime ? */
if ((err = mp_prime_is_prime(order, 8, &primality)) != CRYPT_OK) { goto done; }
if (primality == 0) {
err = CRYPT_FAIL_TESTVECTOR;
goto done;
}
if ((err = mp_read_radix(G->x, (char *)ltc_ecc_curves[i].Gx, 16)) != CRYPT_OK) { goto done; }
if ((err = mp_read_radix(G->y, (char *)ltc_ecc_curves[i].Gy, 16)) != CRYPT_OK) { goto done; }
mp_set(G->z, 1);
/* then we should have G == (order + 1)G */
if ((err = mp_add_d(order, 1, order)) != CRYPT_OK) { goto done; }
if ((err = ltc_mp.ecc_ptmul(order, G, GG, a, modulus, 1)) != CRYPT_OK) { goto done; }
if (mp_cmp(G->x, GG->x) != LTC_MP_EQ || mp_cmp(G->y, GG->y) != LTC_MP_EQ) {
err = CRYPT_FAIL_TESTVECTOR;
goto done;
}
}
err = CRYPT_OK;
done:
ltc_ecc_del_point(GG);
ltc_ecc_del_point(G);
mp_clear_multi(order, modulus, a, NULL);
return err;
}
int _ecc_old_api(void)
{
unsigned char buf[4][4096], ch;
unsigned long x, y, z, s;
int stat, stat2;
ecc_key usera, userb, pubKey, privKey;
int low, high;
ecc_sizes(&low, &high);
if (low < 14 || high < 14 || low > 100 || high > 100 || high < low) return CRYPT_FAIL_TESTVECTOR;
for (s = 0; s < (sizeof(sizes)/sizeof(sizes[0])); s++) {
/* make up two keys */
DO(ecc_make_key (&yarrow_prng, find_prng ("yarrow"), sizes[s], &usera));
DO(ecc_make_key (&yarrow_prng, find_prng ("yarrow"), sizes[s], &userb));
if (ecc_get_size(&usera) != (int)sizes[s]) return CRYPT_FAIL_TESTVECTOR;
if (ecc_get_size(&userb) != (int)sizes[s]) return CRYPT_FAIL_TESTVECTOR;
/* make the shared secret */
x = sizeof(buf[0]);
DO(ecc_shared_secret (&usera, &userb, buf[0], &x));
y = sizeof(buf[1]);
DO(ecc_shared_secret (&userb, &usera, buf[1], &y));
if (y != x) {
fprintf(stderr, "ecc Shared keys are not same size.");
return 1;
}
if (memcmp (buf[0], buf[1], x)) {
fprintf(stderr, "ecc Shared keys not same contents.");
return 1;
}
/* now export userb */
y = sizeof(buf[0]);
DO(ecc_export (buf[1], &y, PK_PUBLIC, &userb));
ecc_free (&userb);
/* import and make the shared secret again */
DO(ecc_import (buf[1], y, &userb));
z = sizeof(buf[0]);
DO(ecc_shared_secret (&usera, &userb, buf[2], &z));
if (z != x) {
fprintf(stderr, "failed. Size don't match?");
return 1;
}
if (memcmp (buf[0], buf[2], x)) {
fprintf(stderr, "Failed. Contents didn't match.");
return 1;
}
/* export with ANSI X9.63 */
y = sizeof(buf[1]);
DO(ecc_ansi_x963_export(&userb, buf[1], &y));
ecc_free (&userb);
/* now import the ANSI key */
DO(ecc_ansi_x963_import(buf[1], y, &userb));
/* shared secret */
z = sizeof(buf[0]);
DO(ecc_shared_secret (&usera, &userb, buf[2], &z));
if (z != x) {
fprintf(stderr, "failed. Size don't match?");
return 1;
}
if (memcmp (buf[0], buf[2], x)) {
fprintf(stderr, "Failed. Contents didn't match.");
return 1;
}
ecc_free (&usera);
ecc_free (&userb);
/* test encrypt_key */
DO(ecc_make_key (&yarrow_prng, find_prng ("yarrow"), sizes[s], &usera));
/* export key */
x = sizeof(buf[0]);
DO(ecc_export(buf[0], &x, PK_PUBLIC, &usera));
DO(ecc_import(buf[0], x, &pubKey));
x = sizeof(buf[0]);
DO(ecc_export(buf[0], &x, PK_PRIVATE, &usera));
DO(ecc_import(buf[0], x, &privKey));
for (ch = 0; ch < 32; ch++) {
buf[0][ch] = ch;
}
y = sizeof (buf[1]);
DO(ecc_encrypt_key (buf[0], 32, buf[1], &y, &yarrow_prng, find_prng ("yarrow"), find_hash ("sha256"), &pubKey));
zeromem (buf[0], sizeof (buf[0]));
x = sizeof (buf[0]);
DO(ecc_decrypt_key (buf[1], y, buf[0], &x, &privKey));
if (x != 32) {
fprintf(stderr, "Failed (length)");
return 1;
}
for (ch = 0; ch < 32; ch++) {
if (buf[0][ch] != ch) {
fprintf(stderr, "Failed (contents)");
return 1;
}
}
/* test sign_hash */
for (ch = 0; ch < 16; ch++) {
buf[0][ch] = ch;
}
x = sizeof (buf[1]);
DO(ecc_sign_hash (buf[0], 16, buf[1], &x, &yarrow_prng, find_prng ("yarrow"), &privKey));
DO(ecc_verify_hash (buf[1], x, buf[0], 16, &stat, &pubKey));
buf[0][0] ^= 1;
DO(ecc_verify_hash (buf[1], x, buf[0], 16, &stat2, &privKey));
if (!(stat == 1 && stat2 == 0)) {
fprintf(stderr, "ecc_verify_hash failed %d, %d, ", stat, stat2);
return 1;
}
/* test sign_hash_rfc7518 */
for (ch = 0; ch < 16; ch++) {
buf[0][ch] = ch;
}
x = sizeof (buf[1]);
DO(ecc_sign_hash_rfc7518(buf[0], 16, buf[1], &x, &yarrow_prng, find_prng ("yarrow"), &privKey));
DO(ecc_verify_hash_rfc7518(buf[1], x, buf[0], 16, &stat, &pubKey));
buf[0][0] ^= 1;
DO(ecc_verify_hash_rfc7518(buf[1], x, buf[0], 16, &stat2, &privKey));
if (!(stat == 1 && stat2 == 0)) {
fprintf(stderr, "ecc_verify_hash_rfc7518 failed %d, %d, ", stat, stat2);
return 1;
}
ecc_free (&usera);
ecc_free (&pubKey);
ecc_free (&privKey);
}
return CRYPT_OK;
}
int _ecc_new_api(void)
{
const char* names[] = {
#ifdef LTC_ECC_SECP112R1
"SECP112R1", "ECC-112",
"secp112r1", /* name is case-insensitive */
"S E C-P-1_1_2r1", /* should pass fuzzy matching */
#endif
#ifdef LTC_ECC_SECP112R2
"SECP112R2",
#endif
#ifdef LTC_ECC_SECP128R1
"SECP128R1", "ECC-128",
#endif
#ifdef LTC_ECC_SECP128R2
"SECP128R2",
#endif
#ifdef LTC_ECC_SECP160R1
"SECP160R1", "ECC-160",
#endif
#ifdef LTC_ECC_SECP160R2
"SECP160R2",
#endif
#ifdef LTC_ECC_SECP160K1
"SECP160K1",
#endif
#ifdef LTC_ECC_BRAINPOOLP160R1
"BRAINPOOLP160R1",
#endif
#ifdef LTC_ECC_SECP192R1
"SECP192R1", "NISTP192", "PRIME192V1", "ECC-192", "P-192",
#endif
#ifdef LTC_ECC_PRIME192V2
"PRIME192V2",
#endif
#ifdef LTC_ECC_PRIME192V3
"PRIME192V3",
#endif
#ifdef LTC_ECC_SECP192K1
"SECP192K1",
#endif
#ifdef LTC_ECC_BRAINPOOLP192R1
"BRAINPOOLP192R1",
#endif
#ifdef LTC_ECC_SECP224R1
"SECP224R1", "NISTP224", "ECC-224", "P-224",
#endif
#ifdef LTC_ECC_SECP224K1
"SECP224K1",
#endif
#ifdef LTC_ECC_BRAINPOOLP224R1
"BRAINPOOLP224R1",
#endif
#ifdef LTC_ECC_PRIME239V1
"PRIME239V1",
#endif
#ifdef LTC_ECC_PRIME239V2
"PRIME239V2",
#endif
#ifdef LTC_ECC_PRIME239V3
"PRIME239V3",
#endif
#ifdef LTC_ECC_SECP256R1
"SECP256R1", "NISTP256", "PRIME256V1", "ECC-256", "P-256",
#endif
#ifdef LTC_ECC_SECP256K1
"SECP256K1",
#endif
#ifdef LTC_ECC_BRAINPOOLP256R1
"BRAINPOOLP256R1",
#endif
#ifdef LTC_ECC_BRAINPOOLP320R1
"BRAINPOOLP320R1",
#endif
#ifdef LTC_ECC_SECP384R1
"SECP384R1", "NISTP384", "ECC-384", "P-384",
#endif
#ifdef LTC_ECC_BRAINPOOLP384R1
"BRAINPOOLP384R1",
#endif
#ifdef LTC_ECC_BRAINPOOLP512R1
"BRAINPOOLP512R1",
#endif
#ifdef LTC_ECC_SECP521R1
"SECP521R1", "NISTP521", "ECC-521", "P-521",
#endif
};
int i, j, stat;
const ltc_ecc_curve* dp;
ecc_key key, privkey, pubkey;
unsigned char buf[1000];
unsigned long len;
unsigned char data16[16] = { 0xd1, 0xd1, 0xd1, 0xd1, 0xd1, 0xd1, 0xd1, 0xd1, 0xd1, 0xd1, 0xd1, 0xd1, 0xd1, 0xd1, 0xd1, 0xd1 };
unsigned long len16;
if (ltc_mp.name == NULL) return CRYPT_NOP;
for (i = 0; i < (int)(sizeof(names)/sizeof(names[0])); i++) {
DO(ecc_get_curve(names[i], &dp));
/* make new key */
DO(ecc_make_key_ex(&yarrow_prng, find_prng ("yarrow"), &key, dp));
len = sizeof(buf);
DO(ecc_export(buf, &len, PK_PRIVATE, &key));
DO(ecc_import_ex(buf, len, &privkey, dp));
ecc_free(&privkey);
len = sizeof(buf);
DO(ecc_export(buf, &len, PK_PUBLIC, &key));
DO(ecc_import_ex(buf, len, &pubkey, dp));
ecc_free(&pubkey);
len = sizeof(buf);
DO(ecc_ansi_x963_export(&key, buf, &len));
ecc_free(&key);
DO(ecc_ansi_x963_import_ex(buf, len, &pubkey, dp));
ecc_free(&pubkey);
/* generate new key */
DO(ecc_set_dp(dp, &key));
DO(ecc_generate_key(&yarrow_prng, find_prng ("yarrow"), &key));
len = sizeof(buf);
DO(ecc_get_key(buf, &len, PK_PRIVATE, &key));
ecc_free(&key);
/* load exported private key */
DO(ecc_set_dp(dp, &privkey));
DO(ecc_set_key(buf, len, PK_PRIVATE, &privkey));
#ifndef USE_TFM
/* XXX-FIXME: TFM does not support sqrtmod_prime */
/* export compressed public key */
len = sizeof(buf);
DO(ecc_get_key(buf, &len, PK_PUBLIC|PK_COMPRESSED, &privkey));
if (len != 1 + (unsigned)ecc_get_size(&privkey)) return CRYPT_FAIL_TESTVECTOR;
/* load exported public+compressed key */
DO(ecc_set_dp(dp, &pubkey));
DO(ecc_set_key(buf, len, PK_PUBLIC, &pubkey));
ecc_free(&pubkey);
#endif
/* export long public key */
len = sizeof(buf);
DO(ecc_get_key(buf, &len, PK_PUBLIC, &privkey));
if (len != 1 + 2 * (unsigned)ecc_get_size(&privkey)) return CRYPT_FAIL_TESTVECTOR;
/* load exported public key */
DO(ecc_set_dp(dp, &pubkey));
DO(ecc_set_key(buf, len, PK_PUBLIC, &pubkey));
/* test signature */
len = sizeof(buf);
DO(ecc_sign_hash(data16, 16, buf, &len, &yarrow_prng, find_prng ("yarrow"), &privkey));
stat = 0;
DO(ecc_verify_hash(buf, len, data16, 16, &stat, &pubkey));
if (stat != 1) return CRYPT_FAIL_TESTVECTOR;
/* test encryption */
len = sizeof(buf);
DO(ecc_encrypt_key(data16, 16, buf, &len, &yarrow_prng, find_prng("yarrow"), find_hash("sha256"), &pubkey));
zeromem(data16, 16);
len16 = 16;
DO(ecc_decrypt_key(buf, len, data16, &len16, &privkey));
if (len16 != 16) return CRYPT_FAIL_TESTVECTOR;
for (j = 0; j < 16; j++) if (data16[j] != 0xd1) return CRYPT_FAIL_TESTVECTOR;
/* cleanup */
ecc_free(&privkey);
ecc_free(&pubkey);
}
return CRYPT_OK;
}
int ecc_tests(void)
{
DO(_ecc_old_api()); /* up to 1.18 */
DO(_ecc_new_api());
DO(_ecc_test_mp());
DO(_ecc_issue108());
#ifdef LTC_ECC_SHAMIR
DO(_ecc_test_shamir());
#endif
return CRYPT_OK;
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */