369 lines
11 KiB
C
369 lines
11 KiB
C
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
|
|
*
|
|
* LibTomCrypt is a library that provides various cryptographic
|
|
* algorithms in a highly modular and flexible manner.
|
|
*
|
|
* The library is free for all purposes without any express
|
|
* guarantee it works.
|
|
*/
|
|
|
|
/*
|
|
* Demo to do the rough equivalent of:
|
|
*
|
|
* openssl enc -aes-256-cbc -pass pass:foobar -in infile -out outfile -p
|
|
*
|
|
* Compilation:
|
|
*
|
|
* $(CC) -I /path/to/headers -L .../libs \
|
|
* -o openssl-enc \
|
|
* openssl-enc.c -ltomcrypt
|
|
*
|
|
* Usage:
|
|
*
|
|
* ./openssl-enc <enc|dec> infile outfile "passphrase" [salt]
|
|
*
|
|
* If provided, the salt must be EXACTLY a 16-char hex string.
|
|
*
|
|
* Demo is an example of:
|
|
*
|
|
* - (When decrypting) yanking salt out of the OpenSSL "Salted__..." header
|
|
* - OpenSSL-compatible key derivation (in OpenSSL's modified PKCS#5v1 approach)
|
|
* - Grabbing an Initialization Vector from the key generator
|
|
* - Performing simple block encryption using AES
|
|
* - PKCS#7-type padding (which hopefully can get ripped out of this demo and
|
|
* made a libtomcrypt thing someday).
|
|
*
|
|
* This program is free for all purposes without any express guarantee it
|
|
* works. If you really want to see a license here, assume the WTFPL :-)
|
|
*
|
|
* BJ Black, bblack@barracuda.com, https://wjblack.com
|
|
*
|
|
* BUGS:
|
|
* Passing a password on a command line is a HORRIBLE idea. Don't use
|
|
* this program for serious work!
|
|
*/
|
|
|
|
#include <tomcrypt.h>
|
|
|
|
#ifndef LTC_RIJNDAEL
|
|
#error Cannot compile this demo; Rijndael (AES) required
|
|
#endif
|
|
#ifndef LTC_CBC_MODE
|
|
#error Cannot compile this demo; CBC mode required
|
|
#endif
|
|
#ifndef LTC_PKCS_5
|
|
#error Cannot compile this demo; PKCS5 required
|
|
#endif
|
|
#ifndef LTC_RNG_GET_BYTES
|
|
#error Cannot compile this demo; random generator required
|
|
#endif
|
|
#ifndef LTC_MD5
|
|
#error Cannot compile this demo; MD5 required
|
|
#endif
|
|
|
|
/* OpenSSL by default only runs one hash round */
|
|
#define OPENSSL_ITERATIONS 1
|
|
/* Use aes-256-cbc, so 256 bits of key, 128 of IV */
|
|
#define KEY_LENGTH (256>>3)
|
|
#define IV_LENGTH (128>>3)
|
|
/* PKCS#5v1 requires exactly an 8-byte salt */
|
|
#define SALT_LENGTH 8
|
|
/* The header OpenSSL puts on an encrypted file */
|
|
static char salt_header[] = { 'S', 'a', 'l', 't', 'e', 'd', '_', '_' };
|
|
|
|
#include <errno.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
/* A simple way to handle the possibility that a block may increase in size
|
|
after padding. */
|
|
union paddable {
|
|
unsigned char unpad[1024];
|
|
unsigned char pad[1024+MAXBLOCKSIZE];
|
|
};
|
|
|
|
/*
|
|
* Print usage and exit with a bad status (and perror() if any errno).
|
|
*
|
|
* Input: argv[0] and the error string
|
|
* Output: <no return>
|
|
* Side Effects: print messages and barf (does exit(3))
|
|
*/
|
|
void barf(const char *pname, const char *err)
|
|
{
|
|
printf("Usage: %s <enc|dec> infile outfile passphrase [salt]\n", pname);
|
|
printf("\n");
|
|
printf(" # encrypts infile->outfile, random salt\n");
|
|
printf(" %s enc infile outfile \"passphrase\"\n", pname);
|
|
printf("\n");
|
|
printf(" # encrypts infile->outfile, salt from cmdline\n");
|
|
printf(" %s enc infile outfile pass 0123456789abcdef\n", pname);
|
|
printf("\n");
|
|
printf(" # decrypts infile->outfile, pulls salt from infile\n");
|
|
printf(" %s dec infile outfile pass\n", pname);
|
|
printf("\n");
|
|
printf(" # decrypts infile->outfile, salt specified\n");
|
|
printf(" # (don't try to read the salt from infile)\n");
|
|
printf(" %s dec infile outfile pass 0123456789abcdef"
|
|
"\n", pname);
|
|
printf("\n");
|
|
printf("Application Error: %s\n", err);
|
|
if(errno)
|
|
perror(" System Error");
|
|
exit(-1);
|
|
}
|
|
|
|
/*
|
|
* Parse a salt value passed in on the cmdline.
|
|
*
|
|
* Input: string passed in and a buf to put it in (exactly 8 bytes!)
|
|
* Output: CRYPT_OK if parsed OK, CRYPT_ERROR if not
|
|
* Side Effects: none
|
|
*/
|
|
int parse_hex_salt(unsigned char *in, unsigned char *out)
|
|
{
|
|
int idx;
|
|
for(idx=0; idx<SALT_LENGTH; idx++)
|
|
if(sscanf((char*)in+idx*2, "%02hhx", out+idx) != 1)
|
|
return CRYPT_ERROR;
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
/*
|
|
* Parse the Salted__[+8 bytes] from an OpenSSL-compatible file header.
|
|
*
|
|
* Input: file to read from and a to put the salt in (exactly 8 bytes!)
|
|
* Output: CRYPT_OK if parsed OK, CRYPT_ERROR if not
|
|
* Side Effects: infile's read pointer += 16
|
|
*/
|
|
int parse_openssl_header(FILE *in, unsigned char *out)
|
|
{
|
|
unsigned char tmp[SALT_LENGTH];
|
|
if(fread(tmp, 1, sizeof(tmp), in) != sizeof(tmp))
|
|
return CRYPT_ERROR;
|
|
if(memcmp(tmp, salt_header, sizeof(tmp)))
|
|
return CRYPT_ERROR;
|
|
if(fread(tmp, 1, sizeof(tmp), in) != sizeof(tmp))
|
|
return CRYPT_ERROR;
|
|
memcpy(out, tmp, sizeof(tmp));
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
/*
|
|
* Dump a hexed stream of bytes (convenience func).
|
|
*
|
|
* Input: buf to read from, length
|
|
* Output: none
|
|
* Side Effects: bytes printed as a hex blob, no lf at the end
|
|
*/
|
|
void dump_bytes(unsigned char *in, unsigned long len)
|
|
{
|
|
unsigned long idx;
|
|
for(idx=0; idx<len; idx++)
|
|
printf("%02hhX", *(in+idx));
|
|
}
|
|
|
|
/*
|
|
* Pad or unpad a message using PKCS#7 padding.
|
|
* Padding will add 1-(blocksize) bytes and unpadding will remove that amount.
|
|
* Set is_padding to 1 to pad, 0 to unpad.
|
|
*
|
|
* Input: paddable buffer, size read, block length of cipher, mode
|
|
* Output: number of bytes after padding resp. after unpadding
|
|
* Side Effects: none
|
|
*/
|
|
static size_t _pkcs7_pad(union paddable *buf, size_t nb, int block_length,
|
|
int is_padding)
|
|
{
|
|
unsigned long length;
|
|
|
|
if(is_padding) {
|
|
length = sizeof(buf->pad);
|
|
if (padding_pad(buf->pad, nb, &length, block_length) != CRYPT_OK)
|
|
return 0;
|
|
return length;
|
|
} else {
|
|
length = nb;
|
|
if (padding_depad(buf->pad, &length, 0) != CRYPT_OK)
|
|
return 0;
|
|
return length;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Perform an encrypt/decrypt operation to/from files using AES+CBC+PKCS7 pad.
|
|
* Set encrypt to 1 to encrypt, 0 to decrypt.
|
|
*
|
|
* Input: in/out files, key, iv, and mode
|
|
* Output: CRYPT_OK if no error
|
|
* Side Effects: bytes slurped from infile, pushed to outfile, fds updated.
|
|
*/
|
|
int do_crypt(FILE *infd, FILE *outfd, unsigned char *key, unsigned char *iv,
|
|
int encrypt)
|
|
{
|
|
union paddable inbuf, outbuf;
|
|
int cipher, ret;
|
|
symmetric_CBC cbc;
|
|
size_t nb;
|
|
|
|
/* Register your cipher! */
|
|
cipher = register_cipher(&aes_desc);
|
|
if(cipher == -1)
|
|
return CRYPT_INVALID_CIPHER;
|
|
|
|
/* Start a CBC session with cipher/key/val params */
|
|
ret = cbc_start(cipher, iv, key, KEY_LENGTH, 0, &cbc);
|
|
if( ret != CRYPT_OK )
|
|
return -1;
|
|
|
|
do {
|
|
/* Get bytes from the source */
|
|
nb = fread(inbuf.unpad, 1, sizeof(inbuf.unpad), infd);
|
|
if(!nb)
|
|
return encrypt ? CRYPT_OK : CRYPT_ERROR;
|
|
|
|
/* Barf if we got a read error */
|
|
if(ferror(infd))
|
|
return CRYPT_ERROR;
|
|
|
|
if(encrypt) {
|
|
/* We're encrypting, so pad first (if at EOF) and then
|
|
crypt */
|
|
if(feof(infd))
|
|
nb = _pkcs7_pad(&inbuf, nb,
|
|
aes_desc.block_length, 1);
|
|
|
|
ret = cbc_encrypt(inbuf.pad, outbuf.pad, nb, &cbc);
|
|
if(ret != CRYPT_OK)
|
|
return ret;
|
|
|
|
} else {
|
|
/* We're decrypting, so decrypt and then unpad if at
|
|
EOF */
|
|
ret = cbc_decrypt(inbuf.unpad, outbuf.unpad, nb, &cbc);
|
|
if( ret != CRYPT_OK )
|
|
return ret;
|
|
|
|
if(feof(infd))
|
|
nb = _pkcs7_pad(&outbuf, nb,
|
|
aes_desc.block_length, 0);
|
|
if(nb == 0)
|
|
/* The file didn't decrypt correctly */
|
|
return CRYPT_ERROR;
|
|
|
|
}
|
|
|
|
/* Push bytes to outfile */
|
|
if(fwrite(outbuf.unpad, 1, nb, outfd) != nb)
|
|
return CRYPT_ERROR;
|
|
|
|
} while(!feof(infd));
|
|
|
|
/* Close up */
|
|
cbc_done(&cbc);
|
|
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
/* Convenience macro for the various barfable places below */
|
|
#define BARF(a) { \
|
|
if(infd) fclose(infd); \
|
|
if(outfd) { fclose(outfd); remove(argv[3]); } \
|
|
barf(argv[0], a); \
|
|
}
|
|
/*
|
|
* The main routine. Mostly validate cmdline params, open files, run the KDF,
|
|
* and do the crypt.
|
|
*/
|
|
int main(int argc, char *argv[]) {
|
|
unsigned char salt[SALT_LENGTH];
|
|
FILE *infd = NULL, *outfd = NULL;
|
|
int encrypt = -1;
|
|
int hash = -1;
|
|
int ret;
|
|
unsigned char keyiv[KEY_LENGTH + IV_LENGTH];
|
|
unsigned long keyivlen = (KEY_LENGTH + IV_LENGTH);
|
|
unsigned char *key, *iv;
|
|
|
|
/* Check proper number of cmdline args */
|
|
if(argc < 5 || argc > 6)
|
|
BARF("Invalid number of arguments");
|
|
|
|
/* Check proper mode of operation */
|
|
if (!strncmp(argv[1], "enc", 3))
|
|
encrypt = 1;
|
|
else if(!strncmp(argv[1], "dec", 3))
|
|
encrypt = 0;
|
|
else
|
|
BARF("Bad command name");
|
|
|
|
/* Check we can open infile/outfile */
|
|
infd = fopen(argv[2], "rb");
|
|
if(infd == NULL)
|
|
BARF("Could not open infile");
|
|
outfd = fopen(argv[3], "wb");
|
|
if(outfd == NULL)
|
|
BARF("Could not open outfile");
|
|
|
|
/* Get the salt from wherever */
|
|
if(argc == 6) {
|
|
/* User-provided */
|
|
if(parse_hex_salt((unsigned char*) argv[5], salt) != CRYPT_OK)
|
|
BARF("Bad user-specified salt");
|
|
} else if(!strncmp(argv[1], "enc", 3)) {
|
|
/* Encrypting; get from RNG */
|
|
if(rng_get_bytes(salt, sizeof(salt), NULL) != sizeof(salt))
|
|
BARF("Not enough random data");
|
|
} else {
|
|
/* Parse from infile (decrypt only) */
|
|
if(parse_openssl_header(infd, salt) != CRYPT_OK)
|
|
BARF("Invalid OpenSSL header in infile");
|
|
}
|
|
|
|
/* Fetch the MD5 hasher for PKCS#5 */
|
|
hash = register_hash(&md5_desc);
|
|
if(hash == -1)
|
|
BARF("Could not register MD5 hash");
|
|
|
|
/* Set things to a sane initial state */
|
|
zeromem(keyiv, sizeof(keyiv));
|
|
key = keyiv + 0; /* key comes first */
|
|
iv = keyiv + KEY_LENGTH; /* iv comes next */
|
|
|
|
/* Run the key derivation from the provided passphrase. This gets us
|
|
the key and iv. */
|
|
ret = pkcs_5_alg1_openssl((unsigned char*)argv[4], strlen(argv[4]), salt,
|
|
OPENSSL_ITERATIONS, hash, keyiv, &keyivlen );
|
|
if(ret != CRYPT_OK)
|
|
BARF("Could not derive key/iv from passphrase");
|
|
|
|
/* Display the salt/key/iv like OpenSSL cmdline does when -p */
|
|
printf("salt="); dump_bytes(salt, sizeof(salt)); printf("\n");
|
|
printf("key="); dump_bytes(key, KEY_LENGTH); printf("\n");
|
|
printf("iv ="); dump_bytes(iv, IV_LENGTH ); printf("\n");
|
|
|
|
/* If we're encrypting, write the salt header as OpenSSL does */
|
|
if(!strncmp(argv[1], "enc", 3)) {
|
|
if(fwrite(salt_header, 1, sizeof(salt_header), outfd) !=
|
|
sizeof(salt_header) )
|
|
BARF("Error writing salt header to outfile");
|
|
if(fwrite(salt, 1, sizeof(salt), outfd) != sizeof(salt))
|
|
BARF("Error writing salt to outfile");
|
|
}
|
|
|
|
/* At this point, the files are open, the salt has been figured out,
|
|
and we're ready to pump data through crypt. */
|
|
|
|
/* Do the crypt operation */
|
|
if(do_crypt(infd, outfd, key, iv, encrypt) != CRYPT_OK)
|
|
BARF("Error during crypt operation");
|
|
|
|
/* Clean up */
|
|
fclose(infd); fclose(outfd);
|
|
return 0;
|
|
}
|
|
|
|
/* ref: $Format:%D$ */
|
|
/* git commit: $Format:%H$ */
|
|
/* commit time: $Format:%ai$ */
|