296 lines
5.0 KiB
C
296 lines
5.0 KiB
C
/* polynomial basis GF(2^w) routines */
|
|
#include "mycrypt.h"
|
|
|
|
#ifdef GF
|
|
|
|
#define FORLOOP for (i = 0; i < LSIZE; i++)
|
|
|
|
/* c = a + b */
|
|
void gf_add(gf_intp a, gf_intp b, gf_intp c)
|
|
{
|
|
int i;
|
|
FORLOOP c[i] = a[i]^b[i];
|
|
}
|
|
|
|
/* b = a */
|
|
void gf_copy(gf_intp a, gf_intp b)
|
|
{
|
|
int i;
|
|
FORLOOP b[i] = a[i];
|
|
}
|
|
|
|
/* a = 0 */
|
|
void gf_zero(gf_intp a)
|
|
{
|
|
int i;
|
|
FORLOOP a[i] = 0;
|
|
}
|
|
|
|
/* is a zero? */
|
|
int gf_iszero(gf_intp a)
|
|
{
|
|
int i;
|
|
FORLOOP if (a[i]) {
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* is a one? */
|
|
int gf_isone(gf_intp a)
|
|
{
|
|
int i;
|
|
for (i = 1; i < LSIZE; i++) {
|
|
if (a[i]) {
|
|
return 0;
|
|
}
|
|
}
|
|
return a[0] == 1;
|
|
}
|
|
|
|
/* b = a << 1*/
|
|
void gf_shl(gf_intp a, gf_intp b)
|
|
{
|
|
int i;
|
|
gf_int tmp;
|
|
|
|
gf_copy(a, tmp);
|
|
for (i = LSIZE-1; i > 0; i--)
|
|
b[i] = ((tmp[i]<<1)|((tmp[i-1]&0xFFFFFFFFUL)>>31))&0xFFFFFFFFUL;
|
|
b[0] = (tmp[0] << 1)&0xFFFFFFFFUL;
|
|
gf_zero(tmp);
|
|
}
|
|
|
|
/* b = a >> 1 */
|
|
void gf_shr(gf_intp a, gf_intp b)
|
|
{
|
|
int i;
|
|
gf_int tmp;
|
|
|
|
gf_copy(a, tmp);
|
|
for (i = 0; i < LSIZE-1; i++)
|
|
b[i] = (((tmp[i]&0xFFFFFFFFUL)>>1)|(tmp[i+1]<<31))&0xFFFFFFFFUL;
|
|
b[LSIZE-1] = (tmp[LSIZE-1]&0xFFFFFFFFUL)>>1;
|
|
gf_zero(tmp);
|
|
}
|
|
|
|
/* returns -1 if its zero, otherwise degree of a */
|
|
int gf_deg(gf_intp a)
|
|
{
|
|
int i, ii;
|
|
unsigned long t;
|
|
|
|
ii = -1;
|
|
for (i = LSIZE-1; i >= 0; i--)
|
|
if (a[i]) {
|
|
for (t = a[i], ii = 0; t; t >>= 1, ++ii);
|
|
break;
|
|
}
|
|
if (i == -1) i = 0;
|
|
return (i<<5)+ii;
|
|
}
|
|
|
|
/* c = ab */
|
|
void gf_mul(gf_intp a, gf_intp b, gf_intp c)
|
|
{
|
|
gf_int ta, tb;
|
|
int i, n;
|
|
|
|
gf_copy(a, ta);
|
|
gf_copy(b, tb);
|
|
gf_zero(c);
|
|
n = gf_deg(ta)+1;
|
|
for (i = 0; i < n; i++) {
|
|
if (ta[i>>5]&(1<<(i&31)))
|
|
gf_add(c, tb, c);
|
|
gf_shl(tb, tb);
|
|
}
|
|
gf_zero(ta);
|
|
gf_zero(tb);
|
|
}
|
|
|
|
/* q = a/b, r = a%b */
|
|
void gf_div(gf_intp a, gf_intp b, gf_intp q, gf_intp r)
|
|
{
|
|
gf_int ta, tb, shifts[LSIZE*32];
|
|
int i, magb, mag;
|
|
|
|
mag = gf_deg(a);
|
|
magb = gf_deg(b);
|
|
|
|
/* special cases */
|
|
if (magb > mag) {
|
|
gf_copy(a, r);
|
|
gf_zero(q);
|
|
return;
|
|
}
|
|
if (magb == -1) {
|
|
return;
|
|
}
|
|
|
|
/* copy locally */
|
|
gf_copy(a, ta);
|
|
gf_copy(b, tb);
|
|
gf_zero(q);
|
|
|
|
/* make shifted versions of "b" */
|
|
gf_copy(tb, shifts[0]);
|
|
for (i = 1; i <= (mag-magb); i++)
|
|
gf_shl(shifts[i-1], shifts[i]);
|
|
|
|
while (mag >= magb) {
|
|
i = (mag - magb);
|
|
q[i>>5] |= (1<<(i&31));
|
|
gf_add(ta, shifts[i], ta);
|
|
mag = gf_deg(ta);
|
|
}
|
|
gf_copy(ta, r);
|
|
gf_zero(ta);
|
|
gf_zero(tb);
|
|
zeromem(shifts, sizeof(shifts));
|
|
}
|
|
|
|
/* b = a mod m */
|
|
void gf_mod(gf_intp a, gf_intp m, gf_intp b)
|
|
{
|
|
gf_int tmp;
|
|
gf_div(a,m,tmp,b);
|
|
gf_zero(tmp);
|
|
}
|
|
|
|
/* c = ab (mod m) */
|
|
void gf_mulmod(gf_intp a, gf_intp b, gf_intp m, gf_intp c)
|
|
{
|
|
gf_int tmp;
|
|
gf_mul(a, b, tmp);
|
|
gf_mod(tmp, m, c);
|
|
gf_zero(tmp);
|
|
}
|
|
|
|
/* B = 1/A mod M */
|
|
void gf_invmod(gf_intp A, gf_intp M, gf_intp B)
|
|
{
|
|
gf_int m, n, p0, p1, p2, r, q, tmp;
|
|
|
|
/* put all variables in known setup state */
|
|
gf_zero(p0);
|
|
gf_zero(p2);
|
|
gf_copy(M, m);
|
|
gf_copy(A, n);
|
|
p0[0] = 1;
|
|
gf_div(m, n, p1, r);
|
|
gf_copy(p1, q);
|
|
|
|
/* loop until r == 0 */
|
|
while (!gf_iszero(r)) {
|
|
gf_copy(n, m);
|
|
gf_copy(r, n);
|
|
gf_div(m, n, q, r);
|
|
gf_mul(q, p1, tmp);
|
|
gf_add(tmp, p0, p2);
|
|
gf_copy(p1, p0);
|
|
gf_copy(p2, p1);
|
|
}
|
|
gf_copy(p0, B);
|
|
gf_zero(p0);
|
|
}
|
|
|
|
/* find a square root modulo a prime. Note the number of
|
|
* elements is 2^k - 1, so we must square k-2 times to get the
|
|
* square root..
|
|
*/
|
|
void gf_sqrt(gf_intp a, gf_intp M, gf_intp b)
|
|
{
|
|
int k;
|
|
k = gf_deg(M)-2;
|
|
gf_copy(a, b);
|
|
while (k--)
|
|
gf_mulmod(b, b, M, b);
|
|
}
|
|
|
|
/* c = gcd(A,B) */
|
|
void gf_gcd(gf_intp A, gf_intp B, gf_intp c)
|
|
{
|
|
gf_int a, b, r;
|
|
int n;
|
|
|
|
gf_add(A, B, r);
|
|
n = gf_deg(r);
|
|
if (gf_deg(A) > n) {
|
|
gf_copy(A, a);
|
|
gf_copy(B, b);
|
|
} else {
|
|
gf_copy(A, b);
|
|
gf_copy(B, a);
|
|
}
|
|
|
|
do {
|
|
gf_mod(a, b, r);
|
|
gf_copy(b, a);
|
|
gf_copy(r, b);
|
|
} while (!gf_iszero(r));
|
|
gf_copy(a, c);
|
|
gf_zero(a);
|
|
gf_zero(b);
|
|
}
|
|
|
|
/* returns non-zero if 'a' is irreducible */
|
|
int gf_is_prime(gf_intp a)
|
|
{
|
|
gf_int u, tmp;
|
|
int m, n;
|
|
|
|
gf_zero(u);
|
|
u[0] = 2; /* u(x) = x */
|
|
m = gf_deg(a);
|
|
for (n = 0; n < (m/2); n++) {
|
|
gf_mulmod(u, u, a, u); /* u(x) = u(x)^2 mod a(x) */
|
|
gf_copy(u, tmp);
|
|
tmp[0] ^= 2; /* tmp(x) = u(x) - x */
|
|
gf_gcd(tmp, a, tmp); /* tmp(x) = gcd(a(x), u(x) - x) */
|
|
if (!gf_isone(tmp)) {
|
|
return 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* returns bytes required to store a gf_int */
|
|
int gf_size(gf_intp a)
|
|
{
|
|
int n;
|
|
|
|
n = gf_deg(a);
|
|
if (n == -1) {
|
|
return 4;
|
|
}
|
|
n = n + (32 - (n&31));
|
|
return n/8;
|
|
}
|
|
|
|
/* store a gf_int */
|
|
void gf_toraw(gf_intp a, unsigned char *dst)
|
|
{
|
|
int x, n;
|
|
n = gf_size(a)/4;
|
|
for (x = 0; x < n; x++) {
|
|
STORE32L(a[x], dst);
|
|
dst += 4;
|
|
}
|
|
}
|
|
|
|
/* read a gf_int (len == in bytes) */
|
|
void gf_readraw(gf_intp a, unsigned char *str, int len)
|
|
{
|
|
int x;
|
|
gf_zero(a);
|
|
for (x = 0; x < len/4; x++) {
|
|
LOAD32L(a[x], str);
|
|
str += 4;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
|