225 lines
5.0 KiB
C
225 lines
5.0 KiB
C
#include "mycrypt.h"
|
|
|
|
#ifdef SHA1
|
|
|
|
const struct _hash_descriptor sha1_desc =
|
|
{
|
|
"sha1",
|
|
2,
|
|
20,
|
|
64,
|
|
&sha1_init,
|
|
&sha1_process,
|
|
&sha1_done,
|
|
&sha1_test
|
|
};
|
|
|
|
#define F0(x,y,z) (z ^ (x & (y ^ z)))
|
|
#define F1(x,y,z) (x ^ y ^ z)
|
|
#define F2(x,y,z) ((x & y) | (z & (x | y)))
|
|
#define F3(x,y,z) (x ^ y ^ z)
|
|
|
|
#ifdef CLEAN_STACK
|
|
static void _sha1_compress(hash_state *md)
|
|
#else
|
|
static void sha1_compress(hash_state *md)
|
|
#endif
|
|
{
|
|
unsigned long a,b,c,d,e,W[80],i,j,j2,j3;
|
|
|
|
_ARGCHK(md != NULL);
|
|
|
|
/* copy the state into 512-bits into W[0..15] */
|
|
for (i = 0; i < 16; i++) {
|
|
LOAD32H(W[i], md->sha1.buf + (4*i));
|
|
}
|
|
|
|
/* copy state */
|
|
a = md->sha1.state[0];
|
|
b = md->sha1.state[1];
|
|
c = md->sha1.state[2];
|
|
d = md->sha1.state[3];
|
|
e = md->sha1.state[4];
|
|
|
|
/* expand it */
|
|
for (i = 16; i < 80; i++) {
|
|
j = W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16];
|
|
W[i] = ROL(j, 1);
|
|
}
|
|
|
|
|
|
/* compress */
|
|
/* round one */
|
|
for (i = 0; i < 20; i++) {
|
|
j = (ROL(a, 5) + F0(b,c,d) + e + W[i] + 0x5a827999UL);
|
|
e = d;
|
|
d = c;
|
|
c = ROL(b, 30);
|
|
b = a;
|
|
a = j;
|
|
}
|
|
|
|
/* round two */
|
|
for (i = 20; i < 40; i++) {
|
|
j = (ROL(a, 5) + F1(b,c,d) + e + W[i] + 0x6ed9eba1UL);
|
|
e = d;
|
|
d = c;
|
|
c = ROL(b, 30);
|
|
b = a;
|
|
a = j;
|
|
}
|
|
|
|
/* round three */
|
|
for (i = 40; i < 60; i++) {
|
|
j = (ROL(a, 5) + F2(b,c,d) + e + W[i] + 0x8f1bbcdcUL);
|
|
e = d;
|
|
d = c;
|
|
c = ROL(b, 30);
|
|
b = a;
|
|
a = j;
|
|
}
|
|
|
|
/* round four */
|
|
for (i = 60; i < 80; i++) {
|
|
j = (ROL(a, 5) + F3(b,c,d) + e + W[i] + 0xca62c1d6UL);
|
|
e = d;
|
|
d = c;
|
|
c = ROL(b, 30);
|
|
b = a;
|
|
a = j;
|
|
}
|
|
|
|
/* store */
|
|
md->sha1.state[0] = md->sha1.state[0] + a;
|
|
md->sha1.state[1] = md->sha1.state[1] + b;
|
|
md->sha1.state[2] = md->sha1.state[2] + c;
|
|
md->sha1.state[3] = md->sha1.state[3] + d;
|
|
md->sha1.state[4] = md->sha1.state[4] + e;
|
|
}
|
|
|
|
#ifdef CLEAN_STACK
|
|
static void sha1_compress(hash_state *md)
|
|
{
|
|
_sha1_compress(md);
|
|
burn_stack(sizeof(unsigned long) * 87);
|
|
}
|
|
#endif
|
|
|
|
void sha1_init(hash_state * md)
|
|
{
|
|
_ARGCHK(md != NULL);
|
|
md->sha1.state[0] = 0x67452301UL;
|
|
md->sha1.state[1] = 0xefcdab89UL;
|
|
md->sha1.state[2] = 0x98badcfeUL;
|
|
md->sha1.state[3] = 0x10325476UL;
|
|
md->sha1.state[4] = 0xc3d2e1f0UL;
|
|
md->sha1.curlen = 0;
|
|
md->sha1.length = 0;
|
|
}
|
|
|
|
void sha1_process(hash_state * md, const unsigned char *buf, unsigned long len)
|
|
{
|
|
unsigned long n;
|
|
_ARGCHK(md != NULL);
|
|
_ARGCHK(buf != NULL);
|
|
|
|
while (len > 0) {
|
|
n = MIN(len, (64 - md->sha1.curlen));
|
|
memcpy(md->sha1.buf + md->sha1.curlen, buf, (size_t)n);
|
|
md->sha1.curlen += n;
|
|
buf += n;
|
|
len -= n;
|
|
|
|
/* is 64 bytes full? */
|
|
if (md->sha1.curlen == 64) {
|
|
sha1_compress(md);
|
|
md->sha1.length += 512;
|
|
md->sha1.curlen = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
void sha1_done(hash_state * md, unsigned char *hash)
|
|
{
|
|
int i;
|
|
|
|
_ARGCHK(md != NULL);
|
|
_ARGCHK(hash != NULL);
|
|
|
|
/* increase the length of the message */
|
|
md->sha1.length += md->sha1.curlen * 8;
|
|
|
|
/* append the '1' bit */
|
|
md->sha1.buf[md->sha1.curlen++] = (unsigned char)0x80;
|
|
|
|
/* if the length is currently above 56 bytes we append zeros
|
|
* then compress. Then we can fall back to padding zeros and length
|
|
* encoding like normal.
|
|
*/
|
|
if (md->sha1.curlen > 56) {
|
|
while (md->sha1.curlen < 64) {
|
|
md->sha1.buf[md->sha1.curlen++] = (unsigned char)0;
|
|
}
|
|
sha1_compress(md);
|
|
md->sha1.curlen = 0;
|
|
}
|
|
|
|
/* pad upto 56 bytes of zeroes */
|
|
while (md->sha1.curlen < 56) {
|
|
md->sha1.buf[md->sha1.curlen++] = (unsigned char)0;
|
|
}
|
|
|
|
/* store length */
|
|
STORE64H(md->sha1.length, md->sha1.buf+56);
|
|
sha1_compress(md);
|
|
|
|
/* copy output */
|
|
for (i = 0; i < 5; i++) {
|
|
STORE32H(md->sha1.state[i], hash+(4*i));
|
|
}
|
|
#ifdef CLEAN_STACK
|
|
zeromem(md, sizeof(hash_state));
|
|
#endif
|
|
}
|
|
|
|
int sha1_test(void)
|
|
{
|
|
#ifndef LTC_TEST
|
|
return CRYPT_NOP;
|
|
#else
|
|
static const struct {
|
|
char *msg;
|
|
unsigned char hash[20];
|
|
} tests[] = {
|
|
{ "abc",
|
|
{ 0xa9, 0x99, 0x3e, 0x36, 0x47, 0x06, 0x81, 0x6a,
|
|
0xba, 0x3e, 0x25, 0x71, 0x78, 0x50, 0xc2, 0x6c,
|
|
0x9c, 0xd0, 0xd8, 0x9d }
|
|
},
|
|
{ "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
|
|
{ 0x84, 0x98, 0x3E, 0x44, 0x1C, 0x3B, 0xD2, 0x6E,
|
|
0xBA, 0xAE, 0x4A, 0xA1, 0xF9, 0x51, 0x29, 0xE5,
|
|
0xE5, 0x46, 0x70, 0xF1 }
|
|
}
|
|
};
|
|
|
|
int i;
|
|
unsigned char tmp[20];
|
|
hash_state md;
|
|
|
|
for (i = 0; i < (int)(sizeof(tests) / sizeof(tests[0])); i++) {
|
|
sha1_init(&md);
|
|
sha1_process(&md, (unsigned char*)tests[i].msg, (unsigned long)strlen(tests[i].msg));
|
|
sha1_done(&md, tmp);
|
|
if (memcmp(tmp, tests[i].hash, 20) != 0) {
|
|
return CRYPT_FAIL_TESTVECTOR;
|
|
}
|
|
}
|
|
return CRYPT_OK;
|
|
#endif
|
|
}
|
|
|
|
#endif
|
|
|
|
|