2003-02-28 16:08:34 +00:00
|
|
|
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
|
|
*
|
|
|
|
* LibTomMath is library that provides for multiple-precision
|
|
|
|
* integer arithmetic as well as number theoretic functionality.
|
|
|
|
*
|
|
|
|
* The library is designed directly after the MPI library by
|
|
|
|
* Michael Fromberger but has been written from scratch with
|
|
|
|
* additional optimizations in place.
|
|
|
|
*
|
|
|
|
* The library is free for all purposes without any express
|
|
|
|
* guarantee it works.
|
|
|
|
*
|
2003-03-13 02:11:11 +00:00
|
|
|
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
|
2003-02-28 16:08:34 +00:00
|
|
|
*/
|
|
|
|
#include <tommath.h>
|
|
|
|
|
|
|
|
/* pre-calculate the value required for Barrett reduction
|
|
|
|
* For a given modulus "b" it calulates the value required in "a"
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
mp_reduce_setup (mp_int * a, mp_int * b)
|
|
|
|
{
|
2003-02-28 16:09:08 +00:00
|
|
|
int res;
|
2003-02-28 16:08:34 +00:00
|
|
|
|
|
|
|
|
|
|
|
if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
res = mp_div (a, b, a, NULL);
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* reduces x mod m, assumes 0 < x < m^2, mu is precomputed via mp_reduce_setup
|
|
|
|
* From HAC pp.604 Algorithm 14.42
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
|
|
|
|
{
|
2003-02-28 16:09:08 +00:00
|
|
|
mp_int q;
|
|
|
|
int res, um = m->used;
|
2003-02-28 16:08:34 +00:00
|
|
|
|
|
|
|
|
|
|
|
if ((res = mp_init_copy (&q, x)) != MP_OKAY) {
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
mp_rshd (&q, um - 1); /* q1 = x / b^(k-1) */
|
|
|
|
|
|
|
|
/* according to HAC this is optimization is ok */
|
|
|
|
if (((unsigned long) m->used) > (1UL << (unsigned long) (DIGIT_BIT - 1UL))) {
|
|
|
|
if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) {
|
|
|
|
goto CLEANUP;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if ((res = s_mp_mul_high_digs (&q, mu, &q, um - 1)) != MP_OKAY) {
|
|
|
|
goto CLEANUP;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
mp_rshd (&q, um + 1); /* q3 = q2 / b^(k+1) */
|
|
|
|
|
|
|
|
/* x = x mod b^(k+1), quick (no division) */
|
|
|
|
if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
|
|
|
|
goto CLEANUP;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* q = q * m mod b^(k+1), quick (no division) */
|
|
|
|
if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) {
|
|
|
|
goto CLEANUP;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* x = x - q */
|
|
|
|
if ((res = mp_sub (x, &q, x)) != MP_OKAY)
|
|
|
|
goto CLEANUP;
|
|
|
|
|
|
|
|
/* If x < 0, add b^(k+1) to it */
|
|
|
|
if (mp_cmp_d (x, 0) == MP_LT) {
|
|
|
|
mp_set (&q, 1);
|
|
|
|
if ((res = mp_lshd (&q, um + 1)) != MP_OKAY)
|
|
|
|
goto CLEANUP;
|
|
|
|
if ((res = mp_add (x, &q, x)) != MP_OKAY)
|
|
|
|
goto CLEANUP;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Back off if it's too big */
|
|
|
|
while (mp_cmp (x, m) != MP_LT) {
|
|
|
|
if ((res = s_mp_sub (x, m, x)) != MP_OKAY)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
CLEANUP:
|
|
|
|
mp_clear (&q);
|
|
|
|
|
|
|
|
return res;
|
|
|
|
}
|