libtommath/bn_mp_exptmod.c

113 lines
2.8 KiB
C
Raw Normal View History

#include <tommath_private.h>
2004-10-29 22:07:18 +00:00
#ifdef BN_MP_EXPTMOD_C
2003-02-28 16:08:34 +00:00
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
2003-08-05 01:24:44 +00:00
* LibTomMath is a library that provides multiple-precision
2003-02-28 16:08:34 +00:00
* integer arithmetic as well as number theoretic functionality.
*
2003-08-05 01:24:44 +00:00
* The library was designed directly after the MPI library by
2003-02-28 16:08:34 +00:00
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
2003-02-28 16:08:34 +00:00
*/
2003-02-28 16:09:08 +00:00
/* this is a shell function that calls either the normal or Montgomery
2003-05-17 12:33:54 +00:00
* exptmod functions. Originally the call to the montgomery code was
2003-02-28 16:09:08 +00:00
* embedded in the normal function but that wasted alot of stack space
* for nothing (since 99% of the time the Montgomery code would be called)
*/
2003-12-24 18:59:22 +00:00
int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
2003-02-28 16:08:34 +00:00
{
2003-03-22 15:10:20 +00:00
int dr;
2003-05-17 12:33:54 +00:00
/* modulus P must be positive */
if (P->sign == MP_NEG) {
return MP_VAL;
}
/* if exponent X is negative we have to recurse */
if (X->sign == MP_NEG) {
2004-10-29 22:07:18 +00:00
#ifdef BN_MP_INVMOD_C
2003-05-17 12:33:54 +00:00
mp_int tmpG, tmpX;
int err;
/* first compute 1/G mod P */
if ((err = mp_init(&tmpG)) != MP_OKAY) {
return err;
}
if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
mp_clear(&tmpG);
return err;
}
/* now get |X| */
if ((err = mp_init(&tmpX)) != MP_OKAY) {
mp_clear(&tmpG);
return err;
}
if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
mp_clear_multi(&tmpG, &tmpX, NULL);
return err;
}
2003-05-29 13:35:26 +00:00
/* and now compute (1/G)**|X| instead of G**X [X < 0] */
2003-05-17 12:33:54 +00:00
err = mp_exptmod(&tmpG, &tmpX, P, Y);
mp_clear_multi(&tmpG, &tmpX, NULL);
return err;
2004-10-29 22:07:18 +00:00
#else
/* no invmod */
2004-12-23 02:40:37 +00:00
return MP_VAL;
2004-10-29 22:07:18 +00:00
#endif
2003-05-17 12:33:54 +00:00
}
2005-02-12 08:40:15 +00:00
/* modified diminished radix reduction */
2005-08-01 16:37:28 +00:00
#if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C)
2005-02-12 08:40:15 +00:00
if (mp_reduce_is_2k_l(P) == MP_YES) {
return s_mp_exptmod(G, X, P, Y, 1);
}
#endif
2004-10-29 22:07:18 +00:00
#ifdef BN_MP_DR_IS_MODULUS_C
2003-08-05 01:24:44 +00:00
/* is it a DR modulus? */
2003-03-22 15:10:20 +00:00
dr = mp_dr_is_modulus(P);
2004-10-29 22:07:18 +00:00
#else
2005-02-12 08:40:15 +00:00
/* default to no */
2004-10-29 22:07:18 +00:00
dr = 0;
#endif
2003-08-05 01:24:44 +00:00
2004-10-29 22:07:18 +00:00
#ifdef BN_MP_REDUCE_IS_2K_C
2005-02-12 08:40:15 +00:00
/* if not, is it a unrestricted DR modulus? */
2003-05-29 13:35:26 +00:00
if (dr == 0) {
dr = mp_reduce_is_2k(P) << 1;
}
2004-10-29 22:07:18 +00:00
#endif
2003-06-06 19:35:48 +00:00
2005-02-12 08:40:15 +00:00
/* if the modulus is odd or dr != 0 use the montgomery method */
2004-10-29 22:07:18 +00:00
#ifdef BN_MP_EXPTMOD_FAST_C
if ((mp_isodd (P) == MP_YES) || (dr != 0)) {
2003-03-22 15:10:20 +00:00
return mp_exptmod_fast (G, X, P, Y, dr);
2003-02-28 16:09:08 +00:00
} else {
2004-10-29 22:07:18 +00:00
#endif
#ifdef BN_S_MP_EXPTMOD_C
2003-08-05 01:24:44 +00:00
/* otherwise use the generic Barrett reduction technique */
2005-02-12 08:40:15 +00:00
return s_mp_exptmod (G, X, P, Y, 0);
2004-10-29 22:07:18 +00:00
#else
/* no exptmod for evens */
return MP_VAL;
#endif
#ifdef BN_MP_EXPTMOD_FAST_C
2003-02-28 16:08:34 +00:00
}
2004-10-29 22:07:18 +00:00
#endif
2003-02-28 16:09:08 +00:00
}
2004-10-29 22:07:18 +00:00
#endif
2005-08-01 16:37:28 +00:00
/* $Source$ */
/* $Revision$ */
/* $Date$ */