libtommath/bn_mp_n_root.c

133 lines
2.8 KiB
C
Raw Normal View History

2004-10-29 22:07:18 +00:00
#include <tommath.h>
#ifdef BN_MP_N_ROOT_C
2003-02-28 16:08:34 +00:00
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
2003-08-05 01:24:44 +00:00
* LibTomMath is a library that provides multiple-precision
2003-02-28 16:08:34 +00:00
* integer arithmetic as well as number theoretic functionality.
*
2003-08-05 01:24:44 +00:00
* The library was designed directly after the MPI library by
2003-02-28 16:08:34 +00:00
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
2007-04-18 09:58:18 +00:00
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
2003-02-28 16:08:34 +00:00
*/
/* find the n'th root of an integer
*
2003-06-19 10:04:50 +00:00
* Result found such that (c)**b <= a and (c+1)**b > a
2003-02-28 16:09:08 +00:00
*
2003-06-19 10:04:50 +00:00
* This algorithm uses Newton's approximation
* x[i+1] = x[i] - f(x[i])/f'(x[i])
* which will find the root in log(N) time where
* each step involves a fair bit. This is not meant to
* find huge roots [square and cube, etc].
2003-02-28 16:08:34 +00:00
*/
2003-12-24 18:59:22 +00:00
int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
2003-02-28 16:08:34 +00:00
{
2003-02-28 16:09:08 +00:00
mp_int t1, t2, t3;
int res, neg;
2003-02-28 16:08:34 +00:00
/* input must be positive if b is even */
if ((b & 1) == 0 && a->sign == MP_NEG) {
return MP_VAL;
}
if ((res = mp_init (&t1)) != MP_OKAY) {
return res;
}
if ((res = mp_init (&t2)) != MP_OKAY) {
2004-12-23 02:40:37 +00:00
goto LBL_T1;
2003-02-28 16:08:34 +00:00
}
if ((res = mp_init (&t3)) != MP_OKAY) {
2004-12-23 02:40:37 +00:00
goto LBL_T2;
2003-02-28 16:08:34 +00:00
}
/* if a is negative fudge the sign but keep track */
2003-08-05 01:24:44 +00:00
neg = a->sign;
2003-02-28 16:08:34 +00:00
a->sign = MP_ZPOS;
/* t2 = 2 */
mp_set (&t2, 2);
do {
/* t1 = t2 */
if ((res = mp_copy (&t2, &t1)) != MP_OKAY) {
2004-12-23 02:40:37 +00:00
goto LBL_T3;
2003-02-28 16:08:34 +00:00
}
2003-06-19 10:04:50 +00:00
/* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */
/* t3 = t1**(b-1) */
if ((res = mp_expt_d (&t1, b - 1, &t3)) != MP_OKAY) {
2004-12-23 02:40:37 +00:00
goto LBL_T3;
2003-02-28 16:08:34 +00:00
}
/* numerator */
2003-06-19 10:04:50 +00:00
/* t2 = t1**b */
if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) {
2004-12-23 02:40:37 +00:00
goto LBL_T3;
2003-02-28 16:08:34 +00:00
}
2003-06-19 10:04:50 +00:00
/* t2 = t1**b - a */
if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) {
2004-12-23 02:40:37 +00:00
goto LBL_T3;
2003-02-28 16:08:34 +00:00
}
2003-06-19 10:04:50 +00:00
/* denominator */
/* t3 = t1**(b-1) * b */
if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) {
2004-12-23 02:40:37 +00:00
goto LBL_T3;
2003-02-28 16:08:34 +00:00
}
2003-06-19 10:04:50 +00:00
/* t3 = (t1**b - a)/(b * t1**(b-1)) */
if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) {
2004-12-23 02:40:37 +00:00
goto LBL_T3;
2003-02-28 16:08:34 +00:00
}
if ((res = mp_sub (&t1, &t3, &t2)) != MP_OKAY) {
2004-12-23 02:40:37 +00:00
goto LBL_T3;
2003-02-28 16:08:34 +00:00
}
2003-06-19 10:04:50 +00:00
} while (mp_cmp (&t1, &t2) != MP_EQ);
2003-02-28 16:08:34 +00:00
/* result can be off by a few so check */
for (;;) {
if ((res = mp_expt_d (&t1, b, &t2)) != MP_OKAY) {
2004-12-23 02:40:37 +00:00
goto LBL_T3;
2003-02-28 16:08:34 +00:00
}
if (mp_cmp (&t2, a) == MP_GT) {
if ((res = mp_sub_d (&t1, 1, &t1)) != MP_OKAY) {
2004-12-23 02:40:37 +00:00
goto LBL_T3;
2003-02-28 16:08:34 +00:00
}
} else {
break;
}
}
/* reset the sign of a first */
a->sign = neg;
/* set the result */
mp_exch (&t1, c);
/* set the sign of the result */
c->sign = neg;
res = MP_OKAY;
2004-12-23 02:40:37 +00:00
LBL_T3:mp_clear (&t3);
LBL_T2:mp_clear (&t2);
LBL_T1:mp_clear (&t1);
2003-02-28 16:08:34 +00:00
return res;
}
2004-10-29 22:07:18 +00:00
#endif
2005-08-01 16:37:28 +00:00
/* $Source$ */
/* $Revision$ */
/* $Date$ */