115 lines
2.4 KiB
C
115 lines
2.4 KiB
C
|
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||
|
*
|
||
|
* LibTomMath is library that provides for multiple-precision
|
||
|
* integer arithmetic as well as number theoretic functionality.
|
||
|
*
|
||
|
* The library is designed directly after the MPI library by
|
||
|
* Michael Fromberger but has been written from scratch with
|
||
|
* additional optimizations in place.
|
||
|
*
|
||
|
* The library is free for all purposes without any express
|
||
|
* guarantee it works.
|
||
|
*
|
||
|
* Tom St Denis, tomstdenis@iahu.ca, http://libtommath.iahu.ca
|
||
|
*/
|
||
|
#include <tommath.h>
|
||
|
|
||
|
/* computes the jacobi c = (a | n) (or Legendre if b is prime)
|
||
|
* HAC pp. 73 Algorithm 2.149
|
||
|
*/
|
||
|
int
|
||
|
mp_jacobi (mp_int * a, mp_int * n, int *c)
|
||
|
{
|
||
|
mp_int a1, n1, e;
|
||
|
int s, r, res;
|
||
|
mp_digit residue;
|
||
|
|
||
|
/* step 1. if a == 0, return 0 */
|
||
|
if (mp_iszero (a) == 1) {
|
||
|
*c = 0;
|
||
|
return MP_OKAY;
|
||
|
}
|
||
|
|
||
|
/* step 2. if a == 1, return 1 */
|
||
|
if (mp_cmp_d (a, 1) == MP_EQ) {
|
||
|
*c = 1;
|
||
|
return MP_OKAY;
|
||
|
}
|
||
|
|
||
|
/* default */
|
||
|
s = 0;
|
||
|
|
||
|
/* step 3. write a = a1 * 2^e */
|
||
|
if ((res = mp_init_copy (&a1, a)) != MP_OKAY) {
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
if ((res = mp_init (&n1)) != MP_OKAY) {
|
||
|
goto __A1;
|
||
|
}
|
||
|
|
||
|
if ((res = mp_init (&e)) != MP_OKAY) {
|
||
|
goto __N1;
|
||
|
}
|
||
|
|
||
|
while (mp_iseven (&a1) == 1) {
|
||
|
if ((res = mp_add_d (&e, 1, &e)) != MP_OKAY) {
|
||
|
goto __E;
|
||
|
}
|
||
|
|
||
|
if ((res = mp_div_2 (&a1, &a1)) != MP_OKAY) {
|
||
|
goto __E;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* step 4. if e is even set s=1 */
|
||
|
if (mp_iseven (&e) == 1) {
|
||
|
s = 1;
|
||
|
} else {
|
||
|
/* else set s=1 if n = 1/7 (mod 8) or s=-1 if n = 3/5 (mod 8) */
|
||
|
if ((res = mp_mod_d (n, 8, &residue)) != MP_OKAY) {
|
||
|
goto __E;
|
||
|
}
|
||
|
|
||
|
if (residue == 1 || residue == 7) {
|
||
|
s = 1;
|
||
|
} else if (residue == 3 || residue == 5) {
|
||
|
s = -1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* step 5. if n == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */
|
||
|
if ((res = mp_mod_d (n, 4, &residue)) != MP_OKAY) {
|
||
|
goto __E;
|
||
|
}
|
||
|
if (residue == 3) {
|
||
|
if ((res = mp_mod_d (&a1, 4, &residue)) != MP_OKAY) {
|
||
|
goto __E;
|
||
|
}
|
||
|
if (residue == 3) {
|
||
|
s = -s;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* if a1 == 1 we're done */
|
||
|
if (mp_cmp_d (&a1, 1) == MP_EQ) {
|
||
|
*c = s;
|
||
|
} else {
|
||
|
/* n1 = n mod a1 */
|
||
|
if ((res = mp_mod (n, &a1, &n1)) != MP_OKAY) {
|
||
|
goto __E;
|
||
|
}
|
||
|
if ((res = mp_jacobi (&n1, &a1, &r)) != MP_OKAY) {
|
||
|
goto __E;
|
||
|
}
|
||
|
*c = s * r;
|
||
|
}
|
||
|
|
||
|
/* done */
|
||
|
res = MP_OKAY;
|
||
|
__E:mp_clear (&e);
|
||
|
__N1:mp_clear (&n1);
|
||
|
__A1:mp_clear (&a1);
|
||
|
return res;
|
||
|
}
|