libtommath/mp_gcd.c

93 lines
2.1 KiB
C
Raw Normal View History

#include "tommath_private.h"
#ifdef MP_GCD_C
2019-04-07 13:29:11 +00:00
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
2003-02-28 16:08:34 +00:00
2003-07-02 15:39:39 +00:00
/* Greatest Common Divisor using the binary method */
mp_err mp_gcd(const mp_int *a, const mp_int *b, mp_int *c)
2003-02-28 16:08:34 +00:00
{
2017-08-29 20:23:48 +00:00
mp_int u, v;
int k, u_lsb, v_lsb;
2019-05-19 15:16:13 +00:00
mp_err err;
2003-02-28 16:08:34 +00:00
2017-08-29 20:23:48 +00:00
/* either zero than gcd is the largest */
2019-10-24 15:43:31 +00:00
if (mp_iszero(a)) {
2017-08-29 20:23:48 +00:00
return mp_abs(b, c);
}
2019-10-24 15:43:31 +00:00
if (mp_iszero(b)) {
2017-08-29 20:23:48 +00:00
return mp_abs(a, c);
}
2003-08-05 01:24:44 +00:00
2017-08-29 20:23:48 +00:00
/* get copies of a and b we can modify */
2019-05-19 15:16:13 +00:00
if ((err = mp_init_copy(&u, a)) != MP_OKAY) {
return err;
2017-08-29 20:23:48 +00:00
}
2003-02-28 16:08:34 +00:00
2019-05-19 15:16:13 +00:00
if ((err = mp_init_copy(&v, b)) != MP_OKAY) {
2017-08-29 20:23:48 +00:00
goto LBL_U;
}
2003-02-28 16:08:34 +00:00
2017-08-29 20:23:48 +00:00
/* must be positive for the remainder of the algorithm */
u.sign = v.sign = MP_ZPOS;
2003-02-28 16:08:34 +00:00
2017-08-29 20:23:48 +00:00
/* B1. Find the common power of two for u and v */
u_lsb = mp_cnt_lsb(&u);
v_lsb = mp_cnt_lsb(&v);
k = MP_MIN(u_lsb, v_lsb);
2003-02-28 16:08:34 +00:00
2017-08-29 20:23:48 +00:00
if (k > 0) {
/* divide the power of two out */
2019-05-19 15:16:13 +00:00
if ((err = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) {
2017-08-29 20:23:48 +00:00
goto LBL_V;
}
2003-02-28 16:08:34 +00:00
2019-05-19 15:16:13 +00:00
if ((err = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) {
2017-08-29 20:23:48 +00:00
goto LBL_V;
}
}
2003-02-28 16:08:34 +00:00
2017-08-29 20:23:48 +00:00
/* divide any remaining factors of two out */
if (u_lsb != k) {
2019-05-19 15:16:13 +00:00
if ((err = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) {
2017-08-29 20:23:48 +00:00
goto LBL_V;
}
}
2003-02-28 16:08:34 +00:00
2017-08-29 20:23:48 +00:00
if (v_lsb != k) {
2019-05-19 15:16:13 +00:00
if ((err = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) {
2017-08-29 20:23:48 +00:00
goto LBL_V;
}
}
2003-08-05 01:24:44 +00:00
2019-10-24 15:43:31 +00:00
while (!mp_iszero(&v)) {
2017-08-29 20:23:48 +00:00
/* make sure v is the largest */
if (mp_cmp_mag(&u, &v) == MP_GT) {
/* swap u and v to make sure v is >= u */
mp_exch(&u, &v);
}
2017-08-30 03:51:11 +00:00
2017-08-29 20:23:48 +00:00
/* subtract smallest from largest */
2019-05-19 15:16:13 +00:00
if ((err = s_mp_sub(&v, &u, &v)) != MP_OKAY) {
2017-08-29 20:23:48 +00:00
goto LBL_V;
}
2017-08-30 03:51:11 +00:00
2017-08-29 20:23:48 +00:00
/* Divide out all factors of two */
2019-05-19 15:16:13 +00:00
if ((err = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) {
2017-08-29 20:23:48 +00:00
goto LBL_V;
}
}
2003-08-05 01:24:44 +00:00
2017-08-29 20:23:48 +00:00
/* multiply by 2**k which we divided out at the beginning */
2019-05-19 15:16:13 +00:00
if ((err = mp_mul_2d(&u, k, c)) != MP_OKAY) {
2017-08-29 20:23:48 +00:00
goto LBL_V;
}
c->sign = MP_ZPOS;
2019-05-19 15:16:13 +00:00
err = MP_OKAY;
2017-08-28 20:34:46 +00:00
LBL_V:
2017-08-29 20:23:48 +00:00
mp_clear(&u);
2017-08-28 20:34:46 +00:00
LBL_U:
2017-08-29 20:23:48 +00:00
mp_clear(&v);
2019-05-19 15:16:13 +00:00
return err;
2003-02-28 16:08:34 +00:00
}
2004-10-29 22:07:18 +00:00
#endif