libtommath/mp_prime_fermat.c

48 lines
1.0 KiB
C
Raw Normal View History

#include "tommath_private.h"
#ifdef MP_PRIME_FERMAT_C
2019-04-07 13:29:11 +00:00
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
2003-03-22 15:10:20 +00:00
/* performs one Fermat test.
2017-08-30 03:51:11 +00:00
*
2003-07-02 15:39:39 +00:00
* If "a" were prime then b**a == b (mod a) since the order of
2003-03-22 15:10:20 +00:00
* the multiplicative sub-group would be phi(a) = a-1. That means
2003-07-02 15:39:39 +00:00
* it would be the same as b**(a mod (a-1)) == b**1 == b (mod a).
2003-03-22 15:10:20 +00:00
*
* Sets result to 1 if the congruence holds, or zero otherwise.
*/
mp_err mp_prime_fermat(const mp_int *a, const mp_int *b, bool *result)
2003-03-22 15:10:20 +00:00
{
2017-08-30 17:13:53 +00:00
mp_int t;
mp_err err;
2003-03-22 15:10:20 +00:00
2017-08-30 17:13:53 +00:00
/* default to composite */
*result = false;
2003-03-22 15:10:20 +00:00
2017-08-30 17:13:53 +00:00
/* ensure b > 1 */
2017-10-15 14:11:09 +00:00
if (mp_cmp_d(b, 1uL) != MP_GT) {
2017-08-30 17:13:53 +00:00
return MP_VAL;
}
2003-07-12 14:31:43 +00:00
2017-08-30 17:13:53 +00:00
/* init t */
if ((err = mp_init(&t)) != MP_OKAY) {
return err;
}
2003-03-22 15:10:20 +00:00
2017-08-30 17:13:53 +00:00
/* compute t = b**a mod a */
if ((err = mp_exptmod(b, a, a, &t)) != MP_OKAY) {
goto LBL_T;
}
2003-03-22 15:10:20 +00:00
2017-08-30 17:13:53 +00:00
/* is it equal to b? */
if (mp_cmp(&t, b) == MP_EQ) {
*result = true;
2017-08-30 17:13:53 +00:00
}
2003-03-22 15:10:20 +00:00
2017-08-30 17:13:53 +00:00
err = MP_OKAY;
2017-08-28 20:34:46 +00:00
LBL_T:
2017-08-30 17:13:53 +00:00
mp_clear(&t);
return err;
2003-03-22 15:10:20 +00:00
}
2004-10-29 22:07:18 +00:00
#endif