added libtommath-0.30
6
bn.ilg
@ -1,6 +1,6 @@
|
||||
This is makeindex, version 2.14 [02-Oct-2002] (kpathsea + Thai support).
|
||||
Scanning input file bn.idx....done (57 entries accepted, 0 rejected).
|
||||
Sorting entries....done (342 comparisons).
|
||||
Generating output file bn.ind....done (60 lines written, 0 warnings).
|
||||
Scanning input file bn.idx....done (79 entries accepted, 0 rejected).
|
||||
Sorting entries....done (511 comparisons).
|
||||
Generating output file bn.ind....done (82 lines written, 0 warnings).
|
||||
Output written in bn.ind.
|
||||
Transcript written in bn.ilg.
|
||||
|
100
bn.ind
@ -1,60 +1,82 @@
|
||||
\begin{theindex}
|
||||
|
||||
\item mp\_add, \hyperpage{23}
|
||||
\item mp\_and, \hyperpage{23}
|
||||
\item mp\_add, \hyperpage{25}
|
||||
\item mp\_add\_d, \hyperpage{48}
|
||||
\item mp\_and, \hyperpage{25}
|
||||
\item mp\_clear, \hyperpage{7}
|
||||
\item mp\_clear\_multi, \hyperpage{8}
|
||||
\item mp\_cmp, \hyperpage{18}
|
||||
\item mp\_cmp\_d, \hyperpage{20}
|
||||
\item mp\_cmp\_mag, \hyperpage{17}
|
||||
\item mp\_div, \hyperpage{29}
|
||||
\item mp\_div\_2, \hyperpage{21}
|
||||
\item mp\_div\_2d, \hyperpage{22}
|
||||
\item MP\_EQ, \hyperpage{17}
|
||||
\item mp\_cmp, \hyperpage{20}
|
||||
\item mp\_cmp\_d, \hyperpage{21}
|
||||
\item mp\_cmp\_mag, \hyperpage{19}
|
||||
\item mp\_div, \hyperpage{26}
|
||||
\item mp\_div\_2, \hyperpage{22}
|
||||
\item mp\_div\_2d, \hyperpage{24}
|
||||
\item mp\_div\_d, \hyperpage{48}
|
||||
\item mp\_dr\_reduce, \hyperpage{36}
|
||||
\item mp\_dr\_setup, \hyperpage{36}
|
||||
\item MP\_EQ, \hyperpage{18}
|
||||
\item mp\_error\_to\_string, \hyperpage{6}
|
||||
\item mp\_expt\_d, \hyperpage{31}
|
||||
\item mp\_exptmod, \hyperpage{31}
|
||||
\item mp\_exteuclid, \hyperpage{39}
|
||||
\item mp\_gcd, \hyperpage{39}
|
||||
\item mp\_expt\_d, \hyperpage{39}
|
||||
\item mp\_exptmod, \hyperpage{39}
|
||||
\item mp\_exteuclid, \hyperpage{47}
|
||||
\item mp\_gcd, \hyperpage{47}
|
||||
\item mp\_get\_int, \hyperpage{16}
|
||||
\item mp\_grow, \hyperpage{12}
|
||||
\item MP\_GT, \hyperpage{17}
|
||||
\item MP\_GT, \hyperpage{18}
|
||||
\item mp\_init, \hyperpage{7}
|
||||
\item mp\_init\_copy, \hyperpage{9}
|
||||
\item mp\_init\_multi, \hyperpage{8}
|
||||
\item mp\_init\_set, \hyperpage{17}
|
||||
\item mp\_init\_set\_int, \hyperpage{17}
|
||||
\item mp\_init\_size, \hyperpage{10}
|
||||
\item mp\_int, \hyperpage{6}
|
||||
\item mp\_invmod, \hyperpage{40}
|
||||
\item mp\_jacobi, \hyperpage{40}
|
||||
\item mp\_lcm, \hyperpage{39}
|
||||
\item mp\_lshd, \hyperpage{23}
|
||||
\item MP\_LT, \hyperpage{17}
|
||||
\item mp\_invmod, \hyperpage{48}
|
||||
\item mp\_jacobi, \hyperpage{48}
|
||||
\item mp\_lcm, \hyperpage{47}
|
||||
\item mp\_lshd, \hyperpage{24}
|
||||
\item MP\_LT, \hyperpage{18}
|
||||
\item MP\_MEM, \hyperpage{5}
|
||||
\item mp\_mul, \hyperpage{25}
|
||||
\item mp\_mul\_2, \hyperpage{21}
|
||||
\item mp\_mul\_2d, \hyperpage{22}
|
||||
\item mp\_n\_root, \hyperpage{31}
|
||||
\item mp\_neg, \hyperpage{24}
|
||||
\item mp\_mod, \hyperpage{31}
|
||||
\item mp\_mod\_d, \hyperpage{48}
|
||||
\item mp\_montgomery\_calc\_normalization, \hyperpage{34}
|
||||
\item mp\_montgomery\_reduce, \hyperpage{33}
|
||||
\item mp\_montgomery\_setup, \hyperpage{33}
|
||||
\item mp\_mul, \hyperpage{27}
|
||||
\item mp\_mul\_2, \hyperpage{22}
|
||||
\item mp\_mul\_2d, \hyperpage{24}
|
||||
\item mp\_mul\_d, \hyperpage{48}
|
||||
\item mp\_n\_root, \hyperpage{40}
|
||||
\item mp\_neg, \hyperpage{25}
|
||||
\item MP\_NO, \hyperpage{5}
|
||||
\item MP\_OKAY, \hyperpage{5}
|
||||
\item mp\_or, \hyperpage{23}
|
||||
\item mp\_prime\_fermat, \hyperpage{33}
|
||||
\item mp\_prime\_is\_divisible, \hyperpage{33}
|
||||
\item mp\_prime\_is\_prime, \hyperpage{34}
|
||||
\item mp\_prime\_miller\_rabin, \hyperpage{33}
|
||||
\item mp\_prime\_next\_prime, \hyperpage{34}
|
||||
\item mp\_prime\_rabin\_miller\_trials, \hyperpage{34}
|
||||
\item mp\_prime\_random, \hyperpage{35}
|
||||
\item mp\_radix\_size, \hyperpage{37}
|
||||
\item mp\_read\_radix, \hyperpage{37}
|
||||
\item mp\_rshd, \hyperpage{23}
|
||||
\item mp\_or, \hyperpage{25}
|
||||
\item mp\_prime\_fermat, \hyperpage{41}
|
||||
\item mp\_prime\_is\_divisible, \hyperpage{41}
|
||||
\item mp\_prime\_is\_prime, \hyperpage{42}
|
||||
\item mp\_prime\_miller\_rabin, \hyperpage{41}
|
||||
\item mp\_prime\_next\_prime, \hyperpage{42}
|
||||
\item mp\_prime\_rabin\_miller\_trials, \hyperpage{42}
|
||||
\item mp\_prime\_random, \hyperpage{43}
|
||||
\item mp\_prime\_random\_ex, \hyperpage{43}
|
||||
\item mp\_radix\_size, \hyperpage{45}
|
||||
\item mp\_read\_radix, \hyperpage{45}
|
||||
\item mp\_read\_unsigned\_bin, \hyperpage{46}
|
||||
\item mp\_reduce, \hyperpage{32}
|
||||
\item mp\_reduce\_2k, \hyperpage{37}
|
||||
\item mp\_reduce\_2k\_setup, \hyperpage{37}
|
||||
\item mp\_reduce\_setup, \hyperpage{32}
|
||||
\item mp\_rshd, \hyperpage{24}
|
||||
\item mp\_set, \hyperpage{15}
|
||||
\item mp\_set\_int, \hyperpage{16}
|
||||
\item mp\_shrink, \hyperpage{11}
|
||||
\item mp\_sqr, \hyperpage{25}
|
||||
\item mp\_sub, \hyperpage{23}
|
||||
\item mp\_toradix, \hyperpage{37}
|
||||
\item mp\_sqr, \hyperpage{29}
|
||||
\item mp\_sub, \hyperpage{25}
|
||||
\item mp\_sub\_d, \hyperpage{48}
|
||||
\item mp\_to\_unsigned\_bin, \hyperpage{46}
|
||||
\item mp\_toradix, \hyperpage{45}
|
||||
\item mp\_unsigned\_bin\_size, \hyperpage{46}
|
||||
\item MP\_VAL, \hyperpage{5}
|
||||
\item mp\_xor, \hyperpage{23}
|
||||
\item mp\_xor, \hyperpage{25}
|
||||
\item MP\_YES, \hyperpage{5}
|
||||
|
||||
\end{theindex}
|
||||
|
568
bn.tex
@ -49,7 +49,7 @@
|
||||
\begin{document}
|
||||
\frontmatter
|
||||
\pagestyle{empty}
|
||||
\title{LibTomMath User Manual \\ v0.28}
|
||||
\title{LibTomMath User Manual \\ v0.30}
|
||||
\author{Tom St Denis \\ tomstdenis@iahu.ca}
|
||||
\maketitle
|
||||
This text, the library and the accompanying textbook are all hereby placed in the public domain. This book has been
|
||||
@ -87,7 +87,7 @@ release the textbook ``Implementing Multiple Precision Arithmetic'' has been pla
|
||||
release as well. This textbook is meant to compliment the project by providing a more solid walkthrough of the development
|
||||
algorithms used in the library.
|
||||
|
||||
Since both\footnote{Note that the MPI files under mtest/ are copyrighted by Michael Fromberger.} are in the
|
||||
Since both\footnote{Note that the MPI files under mtest/ are copyrighted by Michael Fromberger. They are not required to use LibTomMath.} are in the
|
||||
public domain everyone is entitled to do with them as they see fit.
|
||||
|
||||
\section{Building LibTomMath}
|
||||
@ -114,7 +114,7 @@ nmake -f makefile.msvc
|
||||
This will build the library and archive the object files in ``tommath.lib''. This has been tested with MSVC version 6.00
|
||||
with service pack 5.
|
||||
|
||||
Tbere is limited support for making a ``DLL'' in windows via the ``makefile.cygwin\_dll'' makefile. It requires Cygwin
|
||||
There is limited support for making a ``DLL'' in windows via the ``makefile.cygwin\_dll'' makefile. It requires Cygwin
|
||||
to work with since it requires the auto-export/import functionality. The resulting DLL and imprt library ``libtomcrypt.dll.a''
|
||||
can be used to link LibTomMath dynamically to any Windows program using Cygwin.
|
||||
|
||||
@ -385,7 +385,7 @@ To initialized and make a copy of an mp\_int the mp\_init\_copy() function has b
|
||||
int mp_init_copy (mp_int * a, mp_int * b);
|
||||
\end{alltt}
|
||||
|
||||
This function will initialize ``a'' and make it a copy of ``b'' if all goes well.
|
||||
This function will initialize $a$ and make it a copy of $b$ if all goes well.
|
||||
|
||||
\begin{small} \begin{alltt}
|
||||
int main(void)
|
||||
@ -420,8 +420,8 @@ you override this behaviour.
|
||||
int mp_init_size (mp_int * a, int size);
|
||||
\end{alltt}
|
||||
|
||||
The ``size'' parameter must be greater than zero. If the function succeeds the mp\_int ``a'' will be initialized
|
||||
to have ``size'' digits (which are all initially zero).
|
||||
The $size$ parameter must be greater than zero. If the function succeeds the mp\_int $a$ will be initialized
|
||||
to have $size$ digits (which are all initially zero).
|
||||
|
||||
\begin{small} \begin{alltt}
|
||||
int main(void)
|
||||
@ -453,7 +453,7 @@ digits can be removed to return memory to the heap with the mp\_shrink() functio
|
||||
int mp_shrink (mp_int * a);
|
||||
\end{alltt}
|
||||
|
||||
This will remove excess digits of the mp\_int ``a''. If the operation fails the mp\_int should be intact without the
|
||||
This will remove excess digits of the mp\_int $a$. If the operation fails the mp\_int should be intact without the
|
||||
excess digits being removed. Note that you can use a shrunk mp\_int in further computations, however, such operations
|
||||
will require heap operations which can be slow. It is not ideal to shrink mp\_int variables that you will further
|
||||
modify in the system (unless you are seriously low on memory).
|
||||
@ -502,8 +502,8 @@ your desired size.
|
||||
int mp_grow (mp_int * a, int size);
|
||||
\end{alltt}
|
||||
|
||||
This will grow the array of digits of ``a'' to ``size''. If the \textit{alloc} parameter is already bigger than
|
||||
``size'' the function will not do anything.
|
||||
This will grow the array of digits of $a$ to $size$. If the \textit{alloc} parameter is already bigger than
|
||||
$size$ the function will not do anything.
|
||||
|
||||
\begin{small} \begin{alltt}
|
||||
int main(void)
|
||||
@ -552,7 +552,7 @@ Setting a single digit can be accomplished with the following function.
|
||||
void mp_set (mp_int * a, mp_digit b);
|
||||
\end{alltt}
|
||||
|
||||
This will zero the contents of ``a'' and make it represent an integer equal to the value of ``b''. Note that this
|
||||
This will zero the contents of $a$ and make it represent an integer equal to the value of $b$. Note that this
|
||||
function has a return type of \textbf{void}. It cannot cause an error so it is safe to assume the function
|
||||
succeeded.
|
||||
|
||||
@ -578,20 +578,29 @@ int main(void)
|
||||
\}
|
||||
\end{alltt} \end{small}
|
||||
|
||||
\subsection{Long Constant}
|
||||
\subsection{Long Constants}
|
||||
|
||||
When you want to set a constant that is the size of an ISO C ``unsigned long'' and larger than a single
|
||||
digit the following function is provided.
|
||||
To set a constant that is the size of an ISO C ``unsigned long'' and larger than a single digit the following function
|
||||
can be used.
|
||||
|
||||
\index{mp\_set\_int}
|
||||
\begin{alltt}
|
||||
int mp_set_int (mp_int * a, unsigned long b);
|
||||
\end{alltt}
|
||||
|
||||
This will assign the value of the 32-bit variable ``b'' to the mp\_int ``a''. Unlike mp\_set() this function will always
|
||||
This will assign the value of the 32-bit variable $b$ to the mp\_int $a$. Unlike mp\_set() this function will always
|
||||
accept a 32-bit input regardless of the size of a single digit. However, since the value may span several digits
|
||||
this function can fail if it runs out of heap memory.
|
||||
|
||||
To get the ``unsigned long'' copy of an mp\_int the following function can be used.
|
||||
|
||||
\index{mp\_get\_int}
|
||||
\begin{alltt}
|
||||
unsigned long mp_get_int (mp_int * a);
|
||||
\end{alltt}
|
||||
|
||||
This will return the 32 least significant bits of the mp\_int $a$.
|
||||
|
||||
\begin{small} \begin{alltt}
|
||||
int main(void)
|
||||
\{
|
||||
@ -610,6 +619,9 @@ int main(void)
|
||||
mp_error_to_string(result));
|
||||
return EXIT_FAILURE;
|
||||
\}
|
||||
|
||||
printf("number == \%lu", mp_get_int(&number));
|
||||
|
||||
/* we're done with it. */
|
||||
mp_clear(&number);
|
||||
|
||||
@ -617,6 +629,58 @@ int main(void)
|
||||
\}
|
||||
\end{alltt} \end{small}
|
||||
|
||||
This should output the following if the program succeeds.
|
||||
|
||||
\begin{alltt}
|
||||
number == 654321
|
||||
\end{alltt}
|
||||
|
||||
\subsection{Initialize and Setting Constants}
|
||||
To both initialize and set small constants the following two functions are available.
|
||||
\index{mp\_init\_set} \index{mp\_init\_set\_int}
|
||||
\begin{alltt}
|
||||
int mp_init_set (mp_int * a, mp_digit b);
|
||||
int mp_init_set_int (mp_int * a, unsigned long b);
|
||||
\end{alltt}
|
||||
|
||||
Both functions work like the previous counterparts except they first mp\_init $a$ before setting the values.
|
||||
|
||||
\begin{alltt}
|
||||
int main(void)
|
||||
\{
|
||||
mp_int number1, number2;
|
||||
int result;
|
||||
|
||||
/* initialize and set a single digit */
|
||||
if ((result = mp_init_set(&number1, 100)) != MP_OKAY) \{
|
||||
printf("Error setting number1: \%s",
|
||||
mp_error_to_string(result));
|
||||
return EXIT_FAILURE;
|
||||
\}
|
||||
|
||||
/* initialize and set a long */
|
||||
if ((result = mp_init_set_int(&number2, 1023)) != MP_OKAY) \{
|
||||
printf("Error setting number2: \%s",
|
||||
mp_error_to_string(result));
|
||||
return EXIT_FAILURE;
|
||||
\}
|
||||
|
||||
/* display */
|
||||
printf("Number1, Number2 == \%lu, \%lu",
|
||||
mp_get_int(&number1), mp_get_int(&number2));
|
||||
|
||||
/* clear */
|
||||
mp_clear_multi(&number1, &number2, NULL);
|
||||
|
||||
return EXIT_SUCCESS;
|
||||
\}
|
||||
\end{alltt}
|
||||
|
||||
If this program succeeds it shall output.
|
||||
\begin{alltt}
|
||||
Number1, Number2 == 100, 1023
|
||||
\end{alltt}
|
||||
|
||||
\section{Comparisons}
|
||||
|
||||
Comparisons in LibTomMath are always performed in a ``left to right'' fashion. There are three possible return codes
|
||||
@ -650,7 +714,7 @@ mp\_int variables based on their digits only.
|
||||
\begin{alltt}
|
||||
int mp_cmp(mp_int * a, mp_int * b);
|
||||
\end{alltt}
|
||||
This will compare ``a'' to ``b'' placing ``a'' to the left of ``b''. This function cannot fail and will return one of the
|
||||
This will compare $a$ to $b$ placing $a$ to the left of $b$. This function cannot fail and will return one of the
|
||||
three compare codes listed in figure \ref{fig:CMP}.
|
||||
|
||||
\begin{small} \begin{alltt}
|
||||
@ -707,7 +771,7 @@ To compare two mp\_int variables based on their signed value the mp\_cmp() funct
|
||||
int mp_cmp(mp_int * a, mp_int * b);
|
||||
\end{alltt}
|
||||
|
||||
This will compare ``a'' to the left of ``b''. It will first compare the signs of the two mp\_int variables. If they
|
||||
This will compare $a$ to the left of $b$. It will first compare the signs of the two mp\_int variables. If they
|
||||
differ it will return immediately based on their signs. If the signs are equal then it will compare the digits
|
||||
individually. This function will return one of the compare conditions codes listed in figure \ref{fig:CMP}.
|
||||
|
||||
@ -763,7 +827,7 @@ To compare a single digit against an mp\_int the following function has been pro
|
||||
int mp_cmp_d(mp_int * a, mp_digit b);
|
||||
\end{alltt}
|
||||
|
||||
This will compare ``a'' to the left of ``b'' using a signed comparison. Note that it will always treat ``b'' as
|
||||
This will compare $a$ to the left of $b$ using a signed comparison. Note that it will always treat $b$ as
|
||||
positive. This function is rather handy when you have to compare against small values such as $1$ (which often
|
||||
comes up in cryptography). The function cannot fail and will return one of the tree compare condition codes
|
||||
listed in figure \ref{fig:CMP}.
|
||||
@ -820,7 +884,7 @@ int mp_mul_2(mp_int * a, mp_int * b);
|
||||
int mp_div_2(mp_int * a, mp_int * b);
|
||||
\end{alltt}
|
||||
|
||||
The former will assign twice ``a'' to ``b'' while the latter will assign half ``a'' to ``b''. These functions are fast
|
||||
The former will assign twice $a$ to $b$ while the latter will assign half $a$ to $b$. These functions are fast
|
||||
since the shift counts and maskes are hardcoded into the routines.
|
||||
|
||||
\begin{small} \begin{alltt}
|
||||
@ -883,8 +947,8 @@ Since $10 > 7$ and $5 < 7$. To multiply by a power of two the following functio
|
||||
int mp_mul_2d(mp_int * a, int b, mp_int * c);
|
||||
\end{alltt}
|
||||
|
||||
This will multiply ``a'' by $2^b$ and store the result in ``c''. If the value of $b$ is less than or equal to
|
||||
zero the function will copy ``a'' to ``c'' without performing any further actions.
|
||||
This will multiply $a$ by $2^b$ and store the result in ``c''. If the value of $b$ is less than or equal to
|
||||
zero the function will copy $a$ to ``c'' without performing any further actions.
|
||||
|
||||
To divide by a power of two use the following.
|
||||
|
||||
@ -892,8 +956,8 @@ To divide by a power of two use the following.
|
||||
\begin{alltt}
|
||||
int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d);
|
||||
\end{alltt}
|
||||
Which will divide ``a'' by $2^b$, store the quotient in ``c'' and the remainder in ``d'. If $b \le 0$ then the
|
||||
function simply copies ``a'' over to ``c'' and zeroes ``d''. The variable ``d'' may be passed as a \textbf{NULL}
|
||||
Which will divide $a$ by $2^b$, store the quotient in ``c'' and the remainder in ``d'. If $b \le 0$ then the
|
||||
function simply copies $a$ over to ``c'' and zeroes $d$. The variable $d$ may be passed as a \textbf{NULL}
|
||||
value to signal that the remainder is not desired.
|
||||
|
||||
\subsection{Polynomial Basis Operations}
|
||||
@ -911,14 +975,14 @@ following function provides this operation.
|
||||
int mp_lshd (mp_int * a, int b);
|
||||
\end{alltt}
|
||||
|
||||
This will multiply ``a'' in place by $x^b$ which is equivalent to shifting the digits left $b$ places and inserting zeroes
|
||||
This will multiply $a$ in place by $x^b$ which is equivalent to shifting the digits left $b$ places and inserting zeroes
|
||||
in the least significant digits. Similarly to divide by a power of $x$ the following function is provided.
|
||||
|
||||
\index{mp\_rshd}
|
||||
\begin{alltt}
|
||||
void mp_rshd (mp_int * a, int b)
|
||||
\end{alltt}
|
||||
This will divide ``a'' in place by $x^b$ and discard the remainder. This function cannot fail as it performs the operations
|
||||
This will divide $a$ in place by $x^b$ and discard the remainder. This function cannot fail as it performs the operations
|
||||
in place and no new digits are required to complete it.
|
||||
|
||||
\subsection{AND, OR and XOR Operations}
|
||||
@ -948,7 +1012,6 @@ int mp_sub (mp_int * a, mp_int * b, mp_int * c)
|
||||
Which perform $c = a \odot b$ where $\odot$ is one of signed addition or subtraction. The operations are fully sign
|
||||
aware.
|
||||
|
||||
|
||||
\section{Sign Manipulation}
|
||||
\subsection{Negation}
|
||||
\label{sec:NEG}
|
||||
@ -959,7 +1022,7 @@ Simple integer negation can be performed with the following.
|
||||
int mp_neg (mp_int * a, mp_int * b);
|
||||
\end{alltt}
|
||||
|
||||
Which assigns $-b$ to $a$.
|
||||
Which assigns $-a$ to $b$.
|
||||
|
||||
\subsection{Absolute}
|
||||
Simple integer absolutes can be performed with the following.
|
||||
@ -969,7 +1032,20 @@ Simple integer absolutes can be performed with the following.
|
||||
int mp_abs (mp_int * a, mp_int * b);
|
||||
\end{alltt}
|
||||
|
||||
Which assigns $\vert b \vert$ to $a$.
|
||||
Which assigns $\vert a \vert$ to $b$.
|
||||
|
||||
\section{Integer Division and Remainder}
|
||||
To perform a complete and general integer division with remainder use the following function.
|
||||
|
||||
\index{mp\_div}
|
||||
\begin{alltt}
|
||||
int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d);
|
||||
\end{alltt}
|
||||
|
||||
This divides $a$ by $b$ and stores the quotient in $c$ and $d$. The signed quotient is computed such that
|
||||
$bc + d = a$. Note that either of $c$ or $d$ can be set to \textbf{NULL} if their value is not required. If
|
||||
$b$ is zero the function returns \textbf{MP\_VAL}.
|
||||
|
||||
|
||||
\chapter{Multiplication and Squaring}
|
||||
\section{Multiplication}
|
||||
@ -986,6 +1062,57 @@ sized inputs. Then followed by the Comba and baseline multipliers.
|
||||
Fortunately for the developer you don't really need to know this unless you really want to fine tune the system. mp\_mul()
|
||||
will determine on its own\footnote{Some tweaking may be required.} what routine to use automatically when it is called.
|
||||
|
||||
\begin{alltt}
|
||||
int main(void)
|
||||
\{
|
||||
mp_int number1, number2;
|
||||
int result;
|
||||
|
||||
/* Initialize the numbers */
|
||||
if ((result = mp_init_multi(&number1,
|
||||
&number2, NULL)) != MP_OKAY) \{
|
||||
printf("Error initializing the numbers. \%s",
|
||||
mp_error_to_string(result));
|
||||
return EXIT_FAILURE;
|
||||
\}
|
||||
|
||||
/* set the terms */
|
||||
if ((result = mp_set_int(&number, 257)) != MP_OKAY) \{
|
||||
printf("Error setting number1. \%s",
|
||||
mp_error_to_string(result));
|
||||
return EXIT_FAILURE;
|
||||
\}
|
||||
|
||||
if ((result = mp_set_int(&number2, 1023)) != MP_OKAY) \{
|
||||
printf("Error setting number2. \%s",
|
||||
mp_error_to_string(result));
|
||||
return EXIT_FAILURE;
|
||||
\}
|
||||
|
||||
/* multiply them */
|
||||
if ((result = mp_mul(&number1, &number2,
|
||||
&number1)) != MP_OKAY) \{
|
||||
printf("Error multiplying terms. \%s",
|
||||
mp_error_to_string(result));
|
||||
return EXIT_FAILURE;
|
||||
\}
|
||||
|
||||
/* display */
|
||||
printf("number1 * number2 == \%lu", mp_get_int(&number1));
|
||||
|
||||
/* free terms and return */
|
||||
mp_clear_multi(&number1, &number2, NULL);
|
||||
|
||||
return EXIT_SUCCESS;
|
||||
\}
|
||||
\end{alltt}
|
||||
|
||||
If this program succeeds it shall output the following.
|
||||
|
||||
\begin{alltt}
|
||||
number1 * number2 == 262911
|
||||
\end{alltt}
|
||||
|
||||
\section{Squaring}
|
||||
Since squaring can be performed faster than multiplication it is performed it's own function instead of just using
|
||||
mp\_mul().
|
||||
@ -995,12 +1122,12 @@ mp\_mul().
|
||||
int mp_sqr (mp_int * a, mp_int * b);
|
||||
\end{alltt}
|
||||
|
||||
Will square ``a'' and store it in ``b''. Like the case of multiplication there are four different squaring
|
||||
algorithms all which can be called from mp\_sqr().
|
||||
Will square $a$ and store it in $b$. Like the case of multiplication there are four different squaring
|
||||
algorithms all which can be called from mp\_sqr(). It is ideal to use mp\_sqr over mp\_mul when squaring terms.
|
||||
|
||||
\section{Tuning Polynomial Basis Routines}
|
||||
|
||||
Both Toom-Cook and Karatsuba multiplication algorithms are faster than the traditional $O(n^2)$ approach that
|
||||
Both of the Toom-Cook and Karatsuba multiplication algorithms are faster than the traditional $O(n^2)$ approach that
|
||||
the Comba and baseline algorithms use. At $O(n^{1.464973})$ and $O(n^{1.584962})$ running times respectfully they require
|
||||
considerably less work. For example, a 10000-digit multiplication would take roughly 724,000 single precision
|
||||
multiplications with Toom-Cook or 100,000,000 single precision multiplications with the standard Comba (a factor
|
||||
@ -1044,30 +1171,286 @@ good Karatsuba squaring and multiplication points. Then it proceeds to find Too
|
||||
tuning takes a very long time as the cutoff points are likely to be very high.
|
||||
|
||||
\chapter{Modular Reduction}
|
||||
\section{Integer Division and Remainder}
|
||||
To perform a complete and general integer division with remainder use the following function.
|
||||
|
||||
\index{mp\_div}
|
||||
Modular reduction is process of taking the remainder of one quantity divided by another. Expressed
|
||||
as (\ref{eqn:mod}) the modular reduction is equivalent to the remainder of $b$ divided by $c$.
|
||||
|
||||
\begin{equation}
|
||||
a \equiv b \mbox{ (mod }c\mbox{)}
|
||||
\label{eqn:mod}
|
||||
\end{equation}
|
||||
|
||||
Of particular interest to cryptography are reductions where $b$ is limited to the range $0 \le b < c^2$ since particularly
|
||||
fast reduction algorithms can be written for the limited range.
|
||||
|
||||
Note that one of the four optimized reduction algorithms are automatically chosen in the modular exponentiation
|
||||
algorithm mp\_exptmod when an appropriate modulus is detected.
|
||||
|
||||
\section{Straight Division}
|
||||
In order to effect an arbitrary modular reduction the following algorithm is provided.
|
||||
|
||||
\index{mp\_mod}
|
||||
\begin{alltt}
|
||||
int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d);
|
||||
int mp_mod(mp_int *a, mp_int *b, mp_int *c);
|
||||
\end{alltt}
|
||||
|
||||
This divides ``a'' by ``b'' and stores the quotient in ``c'' and ``d''. The signed quotient is computed such that
|
||||
$bc + d = a$. Note that either of ``c'' or ``d'' can be set to \textbf{NULL} if their value is not required.
|
||||
This reduces $a$ modulo $b$ and stores the result in $c$. The sign of $c$ shall agree with the sign
|
||||
of $b$. This algorithm accepts an input $a$ of any range and is not limited by $0 \le a < b^2$.
|
||||
|
||||
\section{Barrett Reduction}
|
||||
|
||||
Barrett reduction is a generic optimized reduction algorithm that requires pre--computation to achieve
|
||||
a decent speedup over straight division. First a $mu$ value must be precomputed with the following function.
|
||||
|
||||
\index{mp\_reduce\_setup}
|
||||
\begin{alltt}
|
||||
int mp_reduce_setup(mp_int *a, mp_int *b);
|
||||
\end{alltt}
|
||||
|
||||
Given a modulus in $b$ this produces the required $mu$ value in $a$. For any given modulus this only has to
|
||||
be computed once. Modular reduction can now be performed with the following.
|
||||
|
||||
\index{mp\_reduce}
|
||||
\begin{alltt}
|
||||
int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
|
||||
\end{alltt}
|
||||
|
||||
This will reduce $a$ in place modulo $b$ with the precomputed $mu$ value in $c$. $a$ must be in the range
|
||||
$0 \le a < b^2$.
|
||||
|
||||
\begin{alltt}
|
||||
int main(void)
|
||||
\{
|
||||
mp_int a, b, c, mu;
|
||||
int result;
|
||||
|
||||
/* initialize a,b to desired values, mp_init mu,
|
||||
* c and set c to 1...we want to compute a^3 mod b
|
||||
*/
|
||||
|
||||
/* get mu value */
|
||||
if ((result = mp_reduce_setup(&mu, b)) != MP_OKAY) \{
|
||||
printf("Error getting mu. \%s",
|
||||
mp_error_to_string(result));
|
||||
return EXIT_FAILURE;
|
||||
\}
|
||||
|
||||
/* square a to get c = a^2 */
|
||||
if ((result = mp_sqr(&a, &c)) != MP_OKAY) \{
|
||||
printf("Error squaring. \%s",
|
||||
mp_error_to_string(result));
|
||||
return EXIT_FAILURE;
|
||||
\}
|
||||
|
||||
/* now reduce `c' modulo b */
|
||||
if ((result = mp_reduce(&c, &b, &mu)) != MP_OKAY) \{
|
||||
printf("Error reducing. \%s",
|
||||
mp_error_to_string(result));
|
||||
return EXIT_FAILURE;
|
||||
\}
|
||||
|
||||
/* multiply a to get c = a^3 */
|
||||
if ((result = mp_mul(&a, &c, &c)) != MP_OKAY) \{
|
||||
printf("Error reducing. \%s",
|
||||
mp_error_to_string(result));
|
||||
return EXIT_FAILURE;
|
||||
\}
|
||||
|
||||
/* now reduce `c' modulo b */
|
||||
if ((result = mp_reduce(&c, &b, &mu)) != MP_OKAY) \{
|
||||
printf("Error reducing. \%s",
|
||||
mp_error_to_string(result));
|
||||
return EXIT_FAILURE;
|
||||
\}
|
||||
|
||||
/* c now equals a^3 mod b */
|
||||
|
||||
return EXIT_SUCCESS;
|
||||
\}
|
||||
\end{alltt}
|
||||
|
||||
This program will calculate $a^3 \mbox{ mod }b$ if all the functions succeed.
|
||||
|
||||
\section{Montgomery Reduction}
|
||||
|
||||
Montgomery is a specialized reduction algorithm for any odd moduli. Like Barrett reduction a pre--computation
|
||||
step is required. This is accomplished with the following.
|
||||
|
||||
\index{mp\_montgomery\_setup}
|
||||
\begin{alltt}
|
||||
int mp_montgomery_setup(mp_int *a, mp_digit *mp);
|
||||
\end{alltt}
|
||||
|
||||
For the given odd moduli $a$ the precomputation value is placed in $mp$. The reduction is computed with the
|
||||
following.
|
||||
|
||||
\index{mp\_montgomery\_reduce}
|
||||
\begin{alltt}
|
||||
int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
|
||||
\end{alltt}
|
||||
This reduces $a$ in place modulo $m$ with the pre--computed value $mp$. $a$ must be in the range
|
||||
$0 \le a < b^2$.
|
||||
|
||||
Montgomery reduction is faster than Barrett reduction for moduli smaller than the ``comba'' limit. With the default
|
||||
setup for instance, the limit is $127$ digits ($3556$--bits). Note that this function is not limited to
|
||||
$127$ digits just that it falls back to a baseline algorithm after that point.
|
||||
|
||||
An important observation is that this reduction does not return $a \mbox{ mod }m$ but $aR^{-1} \mbox{ mod }m$
|
||||
where $R = \beta^n$, $n$ is the n number of digits in $m$ and $\beta$ is radix used (default is $2^{28}$).
|
||||
|
||||
To quickly calculate $R$ the following function was provided.
|
||||
|
||||
\index{mp\_montgomery\_calc\_normalization}
|
||||
\begin{alltt}
|
||||
int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
|
||||
\end{alltt}
|
||||
Which calculates $a = R$ for the odd moduli $b$ without using multiplication or division.
|
||||
|
||||
The normal modus operandi for Montgomery reductions is to normalize the integers before entering the system. For
|
||||
example, to calculate $a^3 \mbox { mod }b$ using Montgomery reduction the value of $a$ can be normalized by
|
||||
multiplying it by $R$. Consider the following code snippet.
|
||||
|
||||
\begin{alltt}
|
||||
int main(void)
|
||||
\{
|
||||
mp_int a, b, c, R;
|
||||
mp_digit mp;
|
||||
int result;
|
||||
|
||||
/* initialize a,b to desired values,
|
||||
* mp_init R, c and set c to 1....
|
||||
*/
|
||||
|
||||
/* get normalization */
|
||||
if ((result = mp_montgomery_calc_normalization(&R, b)) != MP_OKAY) \{
|
||||
printf("Error getting norm. \%s",
|
||||
mp_error_to_string(result));
|
||||
return EXIT_FAILURE;
|
||||
\}
|
||||
|
||||
/* get mp value */
|
||||
if ((result = mp_montgomery_setup(&c, &mp)) != MP_OKAY) \{
|
||||
printf("Error setting up montgomery. \%s",
|
||||
mp_error_to_string(result));
|
||||
return EXIT_FAILURE;
|
||||
\}
|
||||
|
||||
/* normalize `a' so now a is equal to aR */
|
||||
if ((result = mp_mulmod(&a, &R, &b, &a)) != MP_OKAY) \{
|
||||
printf("Error computing aR. \%s",
|
||||
mp_error_to_string(result));
|
||||
return EXIT_FAILURE;
|
||||
\}
|
||||
|
||||
/* square a to get c = a^2R^2 */
|
||||
if ((result = mp_sqr(&a, &c)) != MP_OKAY) \{
|
||||
printf("Error squaring. \%s",
|
||||
mp_error_to_string(result));
|
||||
return EXIT_FAILURE;
|
||||
\}
|
||||
|
||||
/* now reduce `c' back down to c = a^2R^2 * R^-1 == a^2R */
|
||||
if ((result = mp_montgomery_reduce(&c, &b, mp)) != MP_OKAY) \{
|
||||
printf("Error reducing. \%s",
|
||||
mp_error_to_string(result));
|
||||
return EXIT_FAILURE;
|
||||
\}
|
||||
|
||||
/* multiply a to get c = a^3R^2 */
|
||||
if ((result = mp_mul(&a, &c, &c)) != MP_OKAY) \{
|
||||
printf("Error reducing. \%s",
|
||||
mp_error_to_string(result));
|
||||
return EXIT_FAILURE;
|
||||
\}
|
||||
|
||||
/* now reduce `c' back down to c = a^3R^2 * R^-1 == a^3R */
|
||||
if ((result = mp_montgomery_reduce(&c, &b, mp)) != MP_OKAY) \{
|
||||
printf("Error reducing. \%s",
|
||||
mp_error_to_string(result));
|
||||
return EXIT_FAILURE;
|
||||
\}
|
||||
|
||||
/* now reduce (again) `c' back down to c = a^3R * R^-1 == a^3 */
|
||||
if ((result = mp_montgomery_reduce(&c, &b, mp)) != MP_OKAY) \{
|
||||
printf("Error reducing. \%s",
|
||||
mp_error_to_string(result));
|
||||
return EXIT_FAILURE;
|
||||
\}
|
||||
|
||||
/* c now equals a^3 mod b */
|
||||
|
||||
return EXIT_SUCCESS;
|
||||
\}
|
||||
\end{alltt}
|
||||
|
||||
This particular example does not look too efficient but it demonstrates the point of the algorithm. By
|
||||
normalizing the inputs the reduced results are always of the form $aR$ for some variable $a$. This allows
|
||||
a single final reduction to correct for the normalization and the fast reduction used within the algorithm.
|
||||
|
||||
For more details consider examining the file \textit{bn\_mp\_exptmod\_fast.c}.
|
||||
|
||||
\section{Restricted Dimminished Radix}
|
||||
|
||||
``Dimminished Radix'' reduction refers to reduction with respect to moduli that are ameniable to simple
|
||||
digit shifting and small multiplications. In this case the ``restricted'' variant refers to moduli of the
|
||||
form $\beta^k - p$ for some $k \ge 0$ and $0 < p < \beta$ where $\beta$ is the radix (default to $2^{28}$).
|
||||
|
||||
As in the case of Montgomery reduction there is a pre--computation phase required for a given modulus.
|
||||
|
||||
\index{mp\_dr\_setup}
|
||||
\begin{alltt}
|
||||
void mp_dr_setup(mp_int *a, mp_digit *d);
|
||||
\end{alltt}
|
||||
|
||||
This computes the value required for the modulus $a$ and stores it in $d$. This function cannot fail
|
||||
and does not return any error codes. After the pre--computation a reduction can be performed with the
|
||||
following.
|
||||
|
||||
\index{mp\_dr\_reduce}
|
||||
\begin{alltt}
|
||||
int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
|
||||
\end{alltt}
|
||||
|
||||
This reduces $a$ in place modulo $b$ with the pre--computed value $mp$. $b$ must be of a restricted
|
||||
dimminished radix form and $a$ must be in the range $0 \le a < b^2$. Dimminished radix reductions are
|
||||
much faster than both Barrett and Montgomery reductions as they have a much lower asymtotic running time.
|
||||
|
||||
Since the moduli are restricted this algorithm is not particularly useful for something like Rabin, RSA or
|
||||
BBS cryptographic purposes. This reduction algorithm is useful for Diffie-Hellman and ECC where fixed
|
||||
primes are acceptable.
|
||||
|
||||
Note that unlike Montgomery reduction there is no normalization process. The result of this function is
|
||||
equal to the correct residue.
|
||||
|
||||
\section{Unrestricted Dimminshed Radix}
|
||||
|
||||
Unrestricted reductions work much like the restricted counterparts except in this case the moduli is of the
|
||||
form $2^k - p$ for $0 < p < \beta$. In this sense the unrestricted reductions are more flexible as they
|
||||
can be applied to a wider range of numbers.
|
||||
|
||||
\index{mp\_reduce\_2k\_setup}
|
||||
\begin{alltt}
|
||||
int mp_reduce_2k_setup(mp_int *a, mp_digit *d);
|
||||
\end{alltt}
|
||||
|
||||
This will compute the required $d$ value for the given moduli $a$.
|
||||
|
||||
\index{mp\_reduce\_2k}
|
||||
\begin{alltt}
|
||||
int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d);
|
||||
\end{alltt}
|
||||
|
||||
This will reduce $a$ in place modulo $n$ with the pre--computed value $d$. From my experience this routine is
|
||||
slower than mp\_dr\_reduce but faster for most moduli sizes than the Montgomery reduction.
|
||||
|
||||
\chapter{Exponentiation}
|
||||
\section{Single Digit Exponentiation}
|
||||
\index{mp\_expt\_d}
|
||||
\begin{alltt}
|
||||
int mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
|
||||
\end{alltt}
|
||||
This computes $c = a^b$ using a simple binary left-to-write algorithm. It is faster than repeated multiplications for
|
||||
all values of $b$ greater than three.
|
||||
This computes $c = a^b$ using a simple binary left-to-right algorithm. It is faster than repeated multiplications by
|
||||
$a$ for all values of $b$ greater than three.
|
||||
|
||||
\section{Modular Exponentiation}
|
||||
\index{mp\_exptmod}
|
||||
@ -1079,6 +1462,11 @@ will automatically detect the fastest modular reduction technique to use during
|
||||
$X$ the operation is performed as $Y \equiv (G^{-1} \mbox{ mod }P)^{\vert X \vert} \mbox{ (mod }P\mbox{)}$ provided that
|
||||
$gcd(G, P) = 1$.
|
||||
|
||||
This function is actually a shell around the two internal exponentiation functions. This routine will automatically
|
||||
detect when Barrett, Montgomery, Restricted and Unrestricted Dimminished Radix based exponentiation can be used. Generally
|
||||
moduli of the a ``restricted dimminished radix'' form lead to the fastest modular exponentiations. Followed by Montgomery
|
||||
and the other two algorithms.
|
||||
|
||||
\section{Root Finding}
|
||||
\index{mp\_n\_root}
|
||||
\begin{alltt}
|
||||
@ -1090,6 +1478,11 @@ numbers (less than 1000 bits) I'd avoid $b > 3$ situations. Will return a posit
|
||||
a root with the sign of the input for odd roots. For example, performing $4^{1/2}$ will return $2$ whereas $(-8)^{1/3}$
|
||||
will return $-2$.
|
||||
|
||||
This algorithm uses the ``Newton Approximation'' method and will converge on the correct root fairly quickly. Since
|
||||
the algorithm requires raising $a$ to the power of $b$ it is not ideal to attempt to find roots for large
|
||||
values of $b$. If particularly large roots are required then a factor method could be used instead. For example,
|
||||
$a^{1/16}$ is equivalent to $\left (a^{1/4} \right)^{1/4}$.
|
||||
|
||||
\chapter{Prime Numbers}
|
||||
\section{Trial Division}
|
||||
\index{mp\_prime\_is\_divisible}
|
||||
@ -1168,10 +1561,44 @@ typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);
|
||||
\end{alltt}
|
||||
|
||||
Which is a function that must read $len$ bytes (and return the amount stored) into $dst$. The $dat$ variable is simply
|
||||
copied from the original input. It can be used to pass RNG context data to the callback.
|
||||
copied from the original input. It can be used to pass RNG context data to the callback. The function
|
||||
mp\_prime\_random() is more suitable for generating primes which must be secret (as in the case of RSA) since there
|
||||
is no skew on the least significant bits.
|
||||
|
||||
The function mp\_prime\_random() is more suitable for generating primes which must be secret (as in the case of RSA) since
|
||||
there is no skew on the least significant bits.
|
||||
\textit{Note:} As of v0.30 of the LibTomMath library this function has been deprecated. It is still available
|
||||
but users are encouraged to use the new mp\_prime\_random\_ex() function instead.
|
||||
|
||||
\subsection{Extended Generation}
|
||||
\index{mp\_prime\_random\_ex}
|
||||
\begin{alltt}
|
||||
int mp_prime_random_ex(mp_int *a, int t,
|
||||
int size, int flags,
|
||||
ltm_prime_callback cb, void *dat);
|
||||
\end{alltt}
|
||||
This will generate a prime in $a$ using $t$ tests of the primality testing algorithms. The variable $size$
|
||||
specifies the bit length of the prime desired. The variable $flags$ specifies one of several options available
|
||||
(see fig. \ref{fig:primeopts}) which can be OR'ed together. The callback parameters are used as in
|
||||
mp\_prime\_random().
|
||||
|
||||
\begin{figure}[here]
|
||||
\begin{center}
|
||||
\begin{small}
|
||||
\begin{tabular}{|r|l|}
|
||||
\hline \textbf{Flag} & \textbf{Meaning} \\
|
||||
\hline LTM\_PRIME\_BBS & Make the prime congruent to $3$ modulo $4$ \\
|
||||
\hline LTM\_PRIME\_SAFE & Make a prime $p$ such that $(p - 1)/2$ is also prime. \\
|
||||
& This option implies LTM\_PRIME\_BBS as well. \\
|
||||
\hline LTM\_PRIME\_2MSB\_OFF & Makes sure that the bit adjacent to the most significant bit \\
|
||||
& Is forced to zero. \\
|
||||
\hline LTM\_PRIME\_2MSB\_ON & Makes sure that the bit adjacent to the most significant bit \\
|
||||
& Is forced to one. \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{small}
|
||||
\end{center}
|
||||
\caption{Primality Generation Options}
|
||||
\label{fig:primeopts}
|
||||
\end{figure}
|
||||
|
||||
\chapter{Input and Output}
|
||||
\section{ASCII Conversions}
|
||||
@ -1180,7 +1607,7 @@ there is no skew on the least significant bits.
|
||||
\begin{alltt}
|
||||
int mp_toradix (mp_int * a, char *str, int radix);
|
||||
\end{alltt}
|
||||
This still store ``a'' in ``str'' as a base-``radix'' string of ASCII chars. This function appends a NUL character
|
||||
This still store $a$ in ``str'' as a base-``radix'' string of ASCII chars. This function appends a NUL character
|
||||
to terminate the string. Valid values of ``radix'' line in the range $[2, 64]$. To determine the size (exact) required
|
||||
by the conversion before storing any data use the following function.
|
||||
|
||||
@ -1196,12 +1623,46 @@ function returns an error code and ``size'' will be zero.
|
||||
\begin{alltt}
|
||||
int mp_read_radix (mp_int * a, char *str, int radix);
|
||||
\end{alltt}
|
||||
This will read the base-``radix'' NUL terminated string from ``str'' into ``a''. It will stop reading when it reads a
|
||||
This will read the base-``radix'' NUL terminated string from ``str'' into $a$. It will stop reading when it reads a
|
||||
character it does not recognize (which happens to include th NUL char... imagine that...). A single leading $-$ sign
|
||||
can be used to denote a negative number.
|
||||
|
||||
\section{Binary Conversions}
|
||||
\section{Stream Functions}
|
||||
|
||||
Converting an mp\_int to and from binary is another keen idea.
|
||||
|
||||
\index{mp\_unsigned\_bin\_size}
|
||||
\begin{alltt}
|
||||
int mp_unsigned_bin_size(mp_int *a);
|
||||
\end{alltt}
|
||||
|
||||
This will return the number of bytes (octets) required to store the unsigned copy of the integer $a$.
|
||||
|
||||
\index{mp\_to\_unsigned\_bin}
|
||||
\begin{alltt}
|
||||
int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
|
||||
\end{alltt}
|
||||
This will store $a$ into the buffer $b$ in big--endian format. Fortunately this is exactly what DER (or is it ASN?)
|
||||
requires. It does not store the sign of the integer.
|
||||
|
||||
\index{mp\_read\_unsigned\_bin}
|
||||
\begin{alltt}
|
||||
int mp_read_unsigned_bin(mp_int *a, unsigned char *b, int c);
|
||||
\end{alltt}
|
||||
This will read in an unsigned big--endian array of bytes (octets) from $b$ of length $c$ into $a$. The resulting
|
||||
integer $a$ will always be positive.
|
||||
|
||||
For those who acknowledge the existence of negative numbers (heretic!) there are ``signed'' versions of the
|
||||
previous functions.
|
||||
|
||||
\begin{alltt}
|
||||
int mp_signed_bin_size(mp_int *a);
|
||||
int mp_read_signed_bin(mp_int *a, unsigned char *b, int c);
|
||||
int mp_to_signed_bin(mp_int *a, unsigned char *b);
|
||||
\end{alltt}
|
||||
They operate essentially the same as the unsigned copies except they prefix the data with zero or non--zero
|
||||
byte depending on the sign. If the sign is zpos (e.g. not negative) the prefix is zero, otherwise the prefix
|
||||
is non--zero.
|
||||
|
||||
\chapter{Algebraic Functions}
|
||||
\section{Extended Euclidean Algorithm}
|
||||
@ -1217,6 +1678,8 @@ This finds the triple U1/U2/U3 using the Extended Euclidean algorithm such that
|
||||
a \cdot U1 + b \cdot U2 = U3
|
||||
\end{equation}
|
||||
|
||||
Any of the U1/U2/U3 paramters can be set to \textbf{NULL} if they are not desired.
|
||||
|
||||
\section{Greatest Common Divisor}
|
||||
\index{mp\_gcd}
|
||||
\begin{alltt}
|
||||
@ -1248,10 +1711,23 @@ int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
|
||||
\end{alltt}
|
||||
Computes the multiplicative inverse of $a$ modulo $b$ and stores the result in $c$ such that $ac \equiv 1 \mbox{ (mod }b\mbox{)}$.
|
||||
|
||||
|
||||
|
||||
\section{Single Digit Functions}
|
||||
|
||||
For those using small numbers (\textit{snicker snicker}) there are several ``helper'' functions
|
||||
|
||||
\index{mp\_add\_d} \index{mp\_sub\_d} \index{mp\_mul\_d} \index{mp\_div\_d} \index{mp\_mod\_d}
|
||||
\begin{alltt}
|
||||
int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
|
||||
int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
|
||||
int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
|
||||
int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
|
||||
int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
|
||||
\end{alltt}
|
||||
|
||||
These work like the full mp\_int capable variants except the second parameter $b$ is a mp\_digit. These
|
||||
functions fairly handy if you have to work with relatively small numbers since you will not have to allocate
|
||||
an entire mp\_int to store a number like $1$ or $2$.
|
||||
|
||||
\input{bn.ind}
|
||||
|
||||
\end{document}
|
||||
|
@ -31,8 +31,7 @@
|
||||
* Based on Algorithm 14.16 on pp.597 of HAC.
|
||||
*
|
||||
*/
|
||||
int
|
||||
fast_s_mp_sqr (mp_int * a, mp_int * b)
|
||||
int fast_s_mp_sqr (mp_int * a, mp_int * b)
|
||||
{
|
||||
int olduse, newused, res, ix, pa;
|
||||
mp_word W2[MP_WARRAY], W[MP_WARRAY];
|
||||
|
@ -14,11 +14,15 @@
|
||||
*/
|
||||
#include <tommath.h>
|
||||
|
||||
static const int lnz[16] = {
|
||||
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
|
||||
};
|
||||
|
||||
/* Counts the number of lsbs which are zero before the first zero bit */
|
||||
int mp_cnt_lsb(mp_int *a)
|
||||
{
|
||||
int x;
|
||||
mp_digit q;
|
||||
mp_digit q, qq;
|
||||
|
||||
/* easy out */
|
||||
if (mp_iszero(a) == 1) {
|
||||
@ -31,11 +35,13 @@ int mp_cnt_lsb(mp_int *a)
|
||||
x *= DIGIT_BIT;
|
||||
|
||||
/* now scan this digit until a 1 is found */
|
||||
while ((q & 1) == 0) {
|
||||
q >>= 1;
|
||||
x += 1;
|
||||
if ((q & 1) == 0) {
|
||||
do {
|
||||
qq = q & 15;
|
||||
x += lnz[qq];
|
||||
q >>= 4;
|
||||
} while (qq == 0);
|
||||
}
|
||||
|
||||
return x;
|
||||
}
|
||||
|
||||
|
@ -23,7 +23,7 @@ int mp_fwrite(mp_int *a, int radix, FILE *stream)
|
||||
return err;
|
||||
}
|
||||
|
||||
buf = XMALLOC (len);
|
||||
buf = OPT_CAST(char) XMALLOC (len);
|
||||
if (buf == NULL) {
|
||||
return MP_MEM;
|
||||
}
|
||||
|
39
bn_mp_get_int.c
Normal file
@ -0,0 +1,39 @@
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
|
||||
*/
|
||||
#include <tommath.h>
|
||||
|
||||
/* get the lower 32-bits of an mp_int */
|
||||
unsigned long mp_get_int(mp_int * a)
|
||||
{
|
||||
int i;
|
||||
unsigned long res;
|
||||
|
||||
if (a->used == 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* get number of digits of the lsb we have to read */
|
||||
i = MIN(a->used,(int)((sizeof(unsigned long)*CHAR_BIT+DIGIT_BIT-1)/DIGIT_BIT))-1;
|
||||
|
||||
/* get most significant digit of result */
|
||||
res = DIGIT(a,i);
|
||||
|
||||
while (--i >= 0) {
|
||||
res = (res << DIGIT_BIT) | DIGIT(a,i);
|
||||
}
|
||||
|
||||
/* force result to 32-bits always so it is consistent on non 32-bit platforms */
|
||||
return res & 0xFFFFFFFFUL;
|
||||
}
|
@ -31,7 +31,7 @@ int mp_grow (mp_int * a, int size)
|
||||
* in case the operation failed we don't want
|
||||
* to overwrite the dp member of a.
|
||||
*/
|
||||
tmp = OPT_CAST XREALLOC (a->dp, sizeof (mp_digit) * size);
|
||||
tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * size);
|
||||
if (tmp == NULL) {
|
||||
/* reallocation failed but "a" is still valid [can be freed] */
|
||||
return MP_MEM;
|
||||
|
@ -18,7 +18,7 @@
|
||||
int mp_init (mp_int * a)
|
||||
{
|
||||
/* allocate memory required and clear it */
|
||||
a->dp = OPT_CAST XCALLOC (sizeof (mp_digit), MP_PREC);
|
||||
a->dp = OPT_CAST(mp_digit) XCALLOC (sizeof (mp_digit), MP_PREC);
|
||||
if (a->dp == NULL) {
|
||||
return MP_MEM;
|
||||
}
|
||||
|
26
bn_mp_init_set.c
Normal file
@ -0,0 +1,26 @@
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
|
||||
*/
|
||||
#include <tommath.h>
|
||||
|
||||
/* initialize and set a digit */
|
||||
int mp_init_set (mp_int * a, mp_digit b)
|
||||
{
|
||||
int err;
|
||||
if ((err = mp_init(a)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
mp_set(a, b);
|
||||
return err;
|
||||
}
|
25
bn_mp_init_set_int.c
Normal file
@ -0,0 +1,25 @@
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
|
||||
*/
|
||||
#include <tommath.h>
|
||||
|
||||
/* initialize and set a digit */
|
||||
int mp_init_set_int (mp_int * a, unsigned long b)
|
||||
{
|
||||
int err;
|
||||
if ((err = mp_init(a)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
return mp_set_int(a, b);
|
||||
}
|
@ -21,7 +21,7 @@ int mp_init_size (mp_int * a, int size)
|
||||
size += (MP_PREC * 2) - (size % MP_PREC);
|
||||
|
||||
/* alloc mem */
|
||||
a->dp = OPT_CAST XCALLOC (sizeof (mp_digit), size);
|
||||
a->dp = OPT_CAST(mp_digit) XCALLOC (sizeof (mp_digit), size);
|
||||
if (a->dp == NULL) {
|
||||
return MP_MEM;
|
||||
}
|
||||
|
103
bn_mp_is_square.c
Normal file
@ -0,0 +1,103 @@
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
|
||||
*/
|
||||
#include <tommath.h>
|
||||
|
||||
/* Check if remainders are possible squares - fast exclude non-squares */
|
||||
static const char rem_128[128] = {
|
||||
0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
|
||||
0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
|
||||
1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
|
||||
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
|
||||
0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
|
||||
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
|
||||
1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
|
||||
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1
|
||||
};
|
||||
|
||||
static const char rem_105[105] = {
|
||||
0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
|
||||
0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1,
|
||||
0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1,
|
||||
1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1,
|
||||
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1
|
||||
};
|
||||
|
||||
/* Store non-zero to ret if arg is square, and zero if not */
|
||||
int mp_is_square(mp_int *arg,int *ret)
|
||||
{
|
||||
int res;
|
||||
mp_digit c;
|
||||
mp_int t;
|
||||
unsigned long r;
|
||||
|
||||
/* Default to Non-square :) */
|
||||
*ret = MP_NO;
|
||||
|
||||
if (arg->sign == MP_NEG) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* digits used? (TSD) */
|
||||
if (arg->used == 0) {
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* First check mod 128 (suppose that DIGIT_BIT is at least 7) */
|
||||
if (rem_128[127 & DIGIT(arg,0)] == 1) {
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* Next check mod 105 (3*5*7) */
|
||||
if ((res = mp_mod_d(arg,105,&c)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
if (rem_105[c] == 1) {
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* product of primes less than 2^31 */
|
||||
if ((res = mp_init_set_int(&t,11L*13L*17L*19L*23L*29L*31L)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
if ((res = mp_mod(arg,&t,&t)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
r = mp_get_int(&t);
|
||||
/* Check for other prime modules, note it's not an ERROR but we must
|
||||
* free "t" so the easiest way is to goto ERR. We know that res
|
||||
* is already equal to MP_OKAY from the mp_mod call
|
||||
*/
|
||||
if ( (1L<<(r%11)) & 0x5C4L ) goto ERR;
|
||||
if ( (1L<<(r%13)) & 0x9E4L ) goto ERR;
|
||||
if ( (1L<<(r%17)) & 0x5CE8L ) goto ERR;
|
||||
if ( (1L<<(r%19)) & 0x4F50CL ) goto ERR;
|
||||
if ( (1L<<(r%23)) & 0x7ACCA0L ) goto ERR;
|
||||
if ( (1L<<(r%29)) & 0xC2EDD0CL ) goto ERR;
|
||||
if ( (1L<<(r%31)) & 0x6DE2B848L ) goto ERR;
|
||||
|
||||
/* Final check - is sqr(sqrt(arg)) == arg ? */
|
||||
if ((res = mp_sqrt(arg,&t)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_sqr(&t,&t)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
*ret = (mp_cmp_mag(&t,arg) == MP_EQ) ? MP_YES : MP_NO;
|
||||
ERR:mp_clear(&t);
|
||||
return res;
|
||||
}
|
@ -43,8 +43,7 @@
|
||||
* Generally though the overhead of this method doesn't pay off
|
||||
* until a certain size (N ~ 80) is reached.
|
||||
*/
|
||||
int
|
||||
mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
|
||||
int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
|
||||
{
|
||||
mp_int x0, x1, y0, y1, t1, x0y0, x1y1;
|
||||
int B, err;
|
||||
@ -56,7 +55,7 @@ mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
|
||||
B = MIN (a->used, b->used);
|
||||
|
||||
/* now divide in two */
|
||||
B = B / 2;
|
||||
B = B >> 1;
|
||||
|
||||
/* init copy all the temps */
|
||||
if (mp_init_size (&x0, B) != MP_OKAY)
|
||||
|
@ -21,8 +21,7 @@
|
||||
* is essentially the same algorithm but merely
|
||||
* tuned to perform recursive squarings.
|
||||
*/
|
||||
int
|
||||
mp_karatsuba_sqr (mp_int * a, mp_int * b)
|
||||
int mp_karatsuba_sqr (mp_int * a, mp_int * b)
|
||||
{
|
||||
mp_int x0, x1, t1, t2, x0x0, x1x1;
|
||||
int B, err;
|
||||
@ -33,7 +32,7 @@ mp_karatsuba_sqr (mp_int * a, mp_int * b)
|
||||
B = a->used;
|
||||
|
||||
/* now divide in two */
|
||||
B = B / 2;
|
||||
B = B >> 1;
|
||||
|
||||
/* init copy all the temps */
|
||||
if (mp_init_size (&x0, B) != MP_OKAY)
|
||||
|
@ -21,7 +21,6 @@ mp_mod (mp_int * a, mp_int * b, mp_int * c)
|
||||
mp_int t;
|
||||
int res;
|
||||
|
||||
|
||||
if ((res = mp_init (&t)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
@ -31,7 +30,7 @@ mp_mod (mp_int * a, mp_int * b, mp_int * c)
|
||||
return res;
|
||||
}
|
||||
|
||||
if (t.sign == MP_NEG) {
|
||||
if (t.sign != b->sign) {
|
||||
res = mp_add (b, &t, c);
|
||||
} else {
|
||||
res = MP_OKAY;
|
||||
|
@ -21,7 +21,7 @@ int mp_neg (mp_int * a, mp_int * b)
|
||||
if ((res = mp_copy (a, b)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
if (mp_iszero(b) != 1) {
|
||||
if (mp_iszero(b) != MP_YES) {
|
||||
b->sign = (a->sign == MP_ZPOS) ? MP_NEG : MP_ZPOS;
|
||||
}
|
||||
return MP_OKAY;
|
||||
|
@ -1,74 +0,0 @@
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
|
||||
*/
|
||||
#include <tommath.h>
|
||||
|
||||
/* makes a truly random prime of a given size (bytes),
|
||||
* call with bbs = 1 if you want it to be congruent to 3 mod 4
|
||||
*
|
||||
* You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
|
||||
* have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
|
||||
* so it can be NULL
|
||||
*
|
||||
* The prime generated will be larger than 2^(8*size).
|
||||
*/
|
||||
|
||||
/* this sole function may hold the key to enslaving all mankind! */
|
||||
int mp_prime_random(mp_int *a, int t, int size, int bbs, ltm_prime_callback cb, void *dat)
|
||||
{
|
||||
unsigned char *tmp;
|
||||
int res, err;
|
||||
|
||||
/* sanity check the input */
|
||||
if (size <= 0) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* we need a buffer of size+1 bytes */
|
||||
tmp = XMALLOC(size+1);
|
||||
if (tmp == NULL) {
|
||||
return MP_MEM;
|
||||
}
|
||||
|
||||
/* fix MSB */
|
||||
tmp[0] = 1;
|
||||
|
||||
do {
|
||||
/* read the bytes */
|
||||
if (cb(tmp+1, size, dat) != size) {
|
||||
err = MP_VAL;
|
||||
goto error;
|
||||
}
|
||||
|
||||
/* fix the LSB */
|
||||
tmp[size] |= (bbs ? 3 : 1);
|
||||
|
||||
/* read it in */
|
||||
if ((err = mp_read_unsigned_bin(a, tmp, size+1)) != MP_OKAY) {
|
||||
goto error;
|
||||
}
|
||||
|
||||
/* is it prime? */
|
||||
if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) {
|
||||
goto error;
|
||||
}
|
||||
} while (res == MP_NO);
|
||||
|
||||
err = MP_OKAY;
|
||||
error:
|
||||
XFREE(tmp);
|
||||
return err;
|
||||
}
|
||||
|
||||
|
118
bn_mp_prime_random_ex.c
Normal file
@ -0,0 +1,118 @@
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
|
||||
*/
|
||||
#include <tommath.h>
|
||||
|
||||
/* makes a truly random prime of a given size (bits),
|
||||
*
|
||||
* Flags are as follows:
|
||||
*
|
||||
* LTM_PRIME_BBS - make prime congruent to 3 mod 4
|
||||
* LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
|
||||
* LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero
|
||||
* LTM_PRIME_2MSB_ON - make the 2nd highest bit one
|
||||
*
|
||||
* You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
|
||||
* have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
|
||||
* so it can be NULL
|
||||
*
|
||||
*/
|
||||
|
||||
/* This is possibly the mother of all prime generation functions, muahahahahaha! */
|
||||
int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat)
|
||||
{
|
||||
unsigned char *tmp, maskAND, maskOR_msb, maskOR_lsb;
|
||||
int res, err, bsize, maskOR_msb_offset;
|
||||
|
||||
/* sanity check the input */
|
||||
if (size <= 1 || t <= 0) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* LTM_PRIME_SAFE implies LTM_PRIME_BBS */
|
||||
if (flags & LTM_PRIME_SAFE) {
|
||||
flags |= LTM_PRIME_BBS;
|
||||
}
|
||||
|
||||
/* calc the byte size */
|
||||
bsize = (size>>3)+(size&7?1:0);
|
||||
|
||||
/* we need a buffer of bsize bytes */
|
||||
tmp = OPT_CAST(unsigned char) XMALLOC(bsize);
|
||||
if (tmp == NULL) {
|
||||
return MP_MEM;
|
||||
}
|
||||
|
||||
/* calc the maskAND value for the MSbyte*/
|
||||
maskAND = 0xFF >> (8 - (size & 7));
|
||||
|
||||
/* calc the maskOR_msb */
|
||||
maskOR_msb = 0;
|
||||
maskOR_msb_offset = (size - 2) >> 3;
|
||||
if (flags & LTM_PRIME_2MSB_ON) {
|
||||
maskOR_msb |= 1 << ((size - 2) & 7);
|
||||
} else if (flags & LTM_PRIME_2MSB_OFF) {
|
||||
maskAND &= ~(1 << ((size - 2) & 7));
|
||||
}
|
||||
|
||||
/* get the maskOR_lsb */
|
||||
maskOR_lsb = 0;
|
||||
if (flags & LTM_PRIME_BBS) {
|
||||
maskOR_lsb |= 3;
|
||||
}
|
||||
|
||||
do {
|
||||
/* read the bytes */
|
||||
if (cb(tmp, bsize, dat) != bsize) {
|
||||
err = MP_VAL;
|
||||
goto error;
|
||||
}
|
||||
|
||||
/* work over the MSbyte */
|
||||
tmp[0] &= maskAND;
|
||||
tmp[0] |= 1 << ((size - 1) & 7);
|
||||
|
||||
/* mix in the maskORs */
|
||||
tmp[maskOR_msb_offset] |= maskOR_msb;
|
||||
tmp[bsize-1] |= maskOR_lsb;
|
||||
|
||||
/* read it in */
|
||||
if ((err = mp_read_unsigned_bin(a, tmp, bsize)) != MP_OKAY) { goto error; }
|
||||
|
||||
/* is it prime? */
|
||||
if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) { goto error; }
|
||||
|
||||
if (flags & LTM_PRIME_SAFE) {
|
||||
/* see if (a-1)/2 is prime */
|
||||
if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) { goto error; }
|
||||
if ((err = mp_div_2(a, a)) != MP_OKAY) { goto error; }
|
||||
|
||||
/* is it prime? */
|
||||
if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) { goto error; }
|
||||
}
|
||||
} while (res == MP_NO);
|
||||
|
||||
if (flags & LTM_PRIME_SAFE) {
|
||||
/* restore a to the original value */
|
||||
if ((err = mp_mul_2(a, a)) != MP_OKAY) { goto error; }
|
||||
if ((err = mp_add_d(a, 1, a)) != MP_OKAY) { goto error; }
|
||||
}
|
||||
|
||||
err = MP_OKAY;
|
||||
error:
|
||||
XFREE(tmp);
|
||||
return err;
|
||||
}
|
||||
|
||||
|
@ -14,9 +14,9 @@
|
||||
*/
|
||||
#include <tommath.h>
|
||||
|
||||
/* reduces a modulo n where n is of the form 2**p - k */
|
||||
/* reduces a modulo n where n is of the form 2**p - d */
|
||||
int
|
||||
mp_reduce_2k(mp_int *a, mp_int *n, mp_digit k)
|
||||
mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d)
|
||||
{
|
||||
mp_int q;
|
||||
int p, res;
|
||||
@ -32,9 +32,9 @@ top:
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
if (k != 1) {
|
||||
/* q = q * k */
|
||||
if ((res = mp_mul_d(&q, k, &q)) != MP_OKAY) {
|
||||
if (d != 1) {
|
||||
/* q = q * d */
|
||||
if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
}
|
||||
|
@ -19,7 +19,7 @@ int mp_shrink (mp_int * a)
|
||||
{
|
||||
mp_digit *tmp;
|
||||
if (a->alloc != a->used && a->used > 0) {
|
||||
if ((tmp = OPT_CAST XREALLOC (a->dp, sizeof (mp_digit) * a->used)) == NULL) {
|
||||
if ((tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * a->used)) == NULL) {
|
||||
return MP_MEM;
|
||||
}
|
||||
a->dp = tmp;
|
||||
|
75
bn_mp_sqrt.c
Normal file
@ -0,0 +1,75 @@
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
|
||||
*/
|
||||
#include <tommath.h>
|
||||
|
||||
/* this function is less generic than mp_n_root, simpler and faster */
|
||||
int mp_sqrt(mp_int *arg, mp_int *ret)
|
||||
{
|
||||
int res;
|
||||
mp_int t1,t2;
|
||||
|
||||
/* must be positive */
|
||||
if (arg->sign == MP_NEG) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* easy out */
|
||||
if (mp_iszero(arg) == MP_YES) {
|
||||
mp_zero(ret);
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
if ((res = mp_init_copy(&t1, arg)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
if ((res = mp_init(&t2)) != MP_OKAY) {
|
||||
goto E2;
|
||||
}
|
||||
|
||||
/* First approx. (not very bad for large arg) */
|
||||
mp_rshd (&t1,t1.used/2);
|
||||
|
||||
/* t1 > 0 */
|
||||
if ((res = mp_div(arg,&t1,&t2,NULL)) != MP_OKAY) {
|
||||
goto E1;
|
||||
}
|
||||
if ((res = mp_add(&t1,&t2,&t1)) != MP_OKAY) {
|
||||
goto E1;
|
||||
}
|
||||
if ((res = mp_div_2(&t1,&t1)) != MP_OKAY) {
|
||||
goto E1;
|
||||
}
|
||||
/* And now t1 > sqrt(arg) */
|
||||
do {
|
||||
if ((res = mp_div(arg,&t1,&t2,NULL)) != MP_OKAY) {
|
||||
goto E1;
|
||||
}
|
||||
if ((res = mp_add(&t1,&t2,&t1)) != MP_OKAY) {
|
||||
goto E1;
|
||||
}
|
||||
if ((res = mp_div_2(&t1,&t1)) != MP_OKAY) {
|
||||
goto E1;
|
||||
}
|
||||
/* t1 >= sqrt(arg) >= t2 at this point */
|
||||
} while (mp_cmp_mag(&t1,&t2) == MP_GT);
|
||||
|
||||
mp_exch(&t1,ret);
|
||||
|
||||
E1: mp_clear(&t2);
|
||||
E2: mp_clear(&t1);
|
||||
return res;
|
||||
}
|
||||
|
@ -15,8 +15,7 @@
|
||||
#include <tommath.h>
|
||||
|
||||
/* multiplication using the Toom-Cook 3-way algorithm */
|
||||
int
|
||||
mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
|
||||
int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
|
||||
{
|
||||
mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2;
|
||||
int res, B;
|
||||
|
83
bn_mp_toradix_n.c
Normal file
@ -0,0 +1,83 @@
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
|
||||
*/
|
||||
#include <tommath.h>
|
||||
|
||||
/* stores a bignum as a ASCII string in a given radix (2..64)
|
||||
*
|
||||
* Stores upto maxlen-1 chars and always a NULL byte
|
||||
*/
|
||||
int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen)
|
||||
{
|
||||
int res, digs;
|
||||
mp_int t;
|
||||
mp_digit d;
|
||||
char *_s = str;
|
||||
|
||||
/* check range of the maxlen, radix */
|
||||
if (maxlen < 3 || radix < 2 || radix > 64) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* quick out if its zero */
|
||||
if (mp_iszero(a) == 1) {
|
||||
*str++ = '0';
|
||||
*str = '\0';
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
/* if it is negative output a - */
|
||||
if (t.sign == MP_NEG) {
|
||||
/* we have to reverse our digits later... but not the - sign!! */
|
||||
++_s;
|
||||
|
||||
/* store the flag and mark the number as positive */
|
||||
*str++ = '-';
|
||||
t.sign = MP_ZPOS;
|
||||
|
||||
/* subtract a char */
|
||||
--maxlen;
|
||||
}
|
||||
|
||||
digs = 0;
|
||||
while (mp_iszero (&t) == 0) {
|
||||
if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
|
||||
mp_clear (&t);
|
||||
return res;
|
||||
}
|
||||
*str++ = mp_s_rmap[d];
|
||||
++digs;
|
||||
|
||||
if (--maxlen == 1) {
|
||||
/* no more room */
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/* reverse the digits of the string. In this case _s points
|
||||
* to the first digit [exluding the sign] of the number]
|
||||
*/
|
||||
bn_reverse ((unsigned char *)_s, digs);
|
||||
|
||||
/* append a NULL so the string is properly terminated */
|
||||
*str = '\0';
|
||||
|
||||
mp_clear (&t);
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
19
changes.txt
@ -1,3 +1,22 @@
|
||||
April 11th, 2004
|
||||
v0.30 -- Added "mp_toradix_n" which stores upto "n-1" least significant digits of an mp_int
|
||||
-- Johan Lindh sent a patch so MSVC wouldn't whine about redefining malloc [in weird dll modes]
|
||||
-- Henrik Goldman spotted a missing OPT_CAST in mp_fwrite()
|
||||
-- Tuned tommath.h so that when MP_LOW_MEM is defined MP_PREC shall be reduced.
|
||||
[I also allow MP_PREC to be externally defined now]
|
||||
-- Sped up mp_cnt_lsb() by using a 4x4 table [e.g. 4x speedup]
|
||||
-- Added mp_prime_random_ex() which is a more versatile prime generator accurate to
|
||||
exact bit lengths (unlike the deprecated but still available mp_prime_random() which
|
||||
is only accurate to byte lengths). See the new LTM_PRIME_* flags ;-)
|
||||
-- Alex Polushin contributed an optimized mp_sqrt() as well as mp_get_int() and mp_is_square().
|
||||
I've cleaned them all up to be a little more consistent [along with one bug fix] for this release.
|
||||
-- Added mp_init_set and mp_init_set_int to initialize and set small constants with one function
|
||||
call.
|
||||
-- Removed /etclib directory [um LibTomPoly deprecates this].
|
||||
-- Fixed mp_mod() so the sign of the result agrees with the sign of the modulus.
|
||||
++ N.B. My semester is almost up so expect updates to the textbook to be posted to the libtomcrypt.org
|
||||
website.
|
||||
|
||||
Jan 25th, 2004
|
||||
v0.29 ++ Note: "Henrik" from the v0.28 changelog refers to Henrik Goldman ;-)
|
||||
-- Added fix to mp_shrink to prevent a realloc when used == 0 [e.g. realloc zero bytes???]
|
||||
|
245
demo/demo.c
@ -1,5 +1,7 @@
|
||||
#include <time.h>
|
||||
|
||||
#define TESTING
|
||||
|
||||
#ifdef IOWNANATHLON
|
||||
#include <unistd.h>
|
||||
#define SLEEP sleep(4)
|
||||
@ -11,8 +13,45 @@
|
||||
|
||||
#ifdef TIMER
|
||||
ulong64 _tt;
|
||||
void reset(void) { _tt = clock(); }
|
||||
ulong64 rdtsc(void) { return clock() - _tt; }
|
||||
|
||||
#if defined(__i386__) || defined(_M_IX86) || defined(_M_AMD64)
|
||||
/* RDTSC from Scott Duplichan */
|
||||
static ulong64 TIMFUNC (void)
|
||||
{
|
||||
#if defined __GNUC__
|
||||
#ifdef __i386__
|
||||
ulong64 a;
|
||||
__asm__ __volatile__ ("rdtsc ":"=A" (a));
|
||||
return a;
|
||||
#else /* gcc-IA64 version */
|
||||
unsigned long result;
|
||||
__asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
|
||||
while (__builtin_expect ((int) result == -1, 0))
|
||||
__asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
|
||||
return result;
|
||||
#endif
|
||||
|
||||
// Microsoft and Intel Windows compilers
|
||||
#elif defined _M_IX86
|
||||
__asm rdtsc
|
||||
#elif defined _M_AMD64
|
||||
return __rdtsc ();
|
||||
#elif defined _M_IA64
|
||||
#if defined __INTEL_COMPILER
|
||||
#include <ia64intrin.h>
|
||||
#endif
|
||||
return __getReg (3116);
|
||||
#else
|
||||
#error need rdtsc function for this build
|
||||
#endif
|
||||
}
|
||||
#else
|
||||
#define TIMFUNC clock
|
||||
#endif
|
||||
|
||||
ulong64 rdtsc(void) { return TIMFUNC() - _tt; }
|
||||
void reset(void) { _tt = TIMFUNC(); }
|
||||
|
||||
#endif
|
||||
|
||||
void ndraw(mp_int *a, char *name)
|
||||
@ -42,6 +81,13 @@ int lbit(void)
|
||||
}
|
||||
}
|
||||
|
||||
int myrng(unsigned char *dst, int len, void *dat)
|
||||
{
|
||||
int x;
|
||||
for (x = 0; x < len; x++) dst[x] = rand() & 0xFF;
|
||||
return len;
|
||||
}
|
||||
|
||||
|
||||
#define DO2(x) x; x;
|
||||
#define DO4(x) DO2(x); DO2(x);
|
||||
@ -53,13 +99,12 @@ int main(void)
|
||||
{
|
||||
mp_int a, b, c, d, e, f;
|
||||
unsigned long expt_n, add_n, sub_n, mul_n, div_n, sqr_n, mul2d_n, div2d_n, gcd_n, lcm_n, inv_n,
|
||||
div2_n, mul2_n, add_d_n, sub_d_n;
|
||||
div2_n, mul2_n, add_d_n, sub_d_n, t;
|
||||
unsigned rr;
|
||||
int cnt, ix, old_kara_m, old_kara_s;
|
||||
int i, n, err, cnt, ix, old_kara_m, old_kara_s;
|
||||
|
||||
#ifdef TIMER
|
||||
int n;
|
||||
ulong64 tt;
|
||||
ulong64 tt, CLK_PER_SEC;
|
||||
FILE *log, *logb, *logc;
|
||||
#endif
|
||||
|
||||
@ -72,6 +117,127 @@ int main(void)
|
||||
|
||||
srand(time(NULL));
|
||||
|
||||
#ifdef TESTING
|
||||
// test mp_get_int
|
||||
printf("Testing: mp_get_int\n");
|
||||
for(i=0;i<1000;++i) {
|
||||
t = (unsigned long)rand()*rand()+1;
|
||||
mp_set_int(&a,t);
|
||||
if (t!=mp_get_int(&a)) {
|
||||
printf("mp_get_int() bad result!\n");
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
mp_set_int(&a,0);
|
||||
if (mp_get_int(&a)!=0)
|
||||
{ printf("mp_get_int() bad result!\n");
|
||||
return 1;
|
||||
}
|
||||
mp_set_int(&a,0xffffffff);
|
||||
if (mp_get_int(&a)!=0xffffffff)
|
||||
{ printf("mp_get_int() bad result!\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
// test mp_sqrt
|
||||
printf("Testing: mp_sqrt\n");
|
||||
for (i=0;i<10000;++i) {
|
||||
printf("%6d\r", i); fflush(stdout);
|
||||
n = (rand()&15)+1;
|
||||
mp_rand(&a,n);
|
||||
if (mp_sqrt(&a,&b) != MP_OKAY)
|
||||
{ printf("mp_sqrt() error!\n");
|
||||
return 1;
|
||||
}
|
||||
mp_n_root(&a,2,&a);
|
||||
if (mp_cmp_mag(&b,&a) != MP_EQ)
|
||||
{ printf("mp_sqrt() bad result!\n");
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
printf("\nTesting: mp_is_square\n");
|
||||
for (i=0;i<100000;++i) {
|
||||
printf("%6d\r", i); fflush(stdout);
|
||||
|
||||
/* test mp_is_square false negatives */
|
||||
n = (rand()&7)+1;
|
||||
mp_rand(&a,n);
|
||||
mp_sqr(&a,&a);
|
||||
if (mp_is_square(&a,&n)!=MP_OKAY) {
|
||||
printf("fn:mp_is_square() error!\n");
|
||||
return 1;
|
||||
}
|
||||
if (n==0) {
|
||||
printf("fn:mp_is_square() bad result!\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* test for false positives */
|
||||
mp_add_d(&a, 1, &a);
|
||||
if (mp_is_square(&a,&n)!=MP_OKAY) {
|
||||
printf("fp:mp_is_square() error!\n");
|
||||
return 1;
|
||||
}
|
||||
if (n==1) {
|
||||
printf("fp:mp_is_square() bad result!\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
}
|
||||
printf("\n\n");
|
||||
#endif
|
||||
|
||||
#ifdef TESTING
|
||||
/* test for size */
|
||||
for (ix = 16; ix < 512; ix++) {
|
||||
printf("Testing (not safe-prime): %9d bits \r", ix); fflush(stdout);
|
||||
err = mp_prime_random_ex(&a, 8, ix, (rand()&1)?LTM_PRIME_2MSB_OFF:LTM_PRIME_2MSB_ON, myrng, NULL);
|
||||
if (err != MP_OKAY) {
|
||||
printf("failed with err code %d\n", err);
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
if (mp_count_bits(&a) != ix) {
|
||||
printf("Prime is %d not %d bits!!!\n", mp_count_bits(&a), ix);
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
}
|
||||
|
||||
for (ix = 16; ix < 512; ix++) {
|
||||
printf("Testing ( safe-prime): %9d bits \r", ix); fflush(stdout);
|
||||
err = mp_prime_random_ex(&a, 8, ix, ((rand()&1)?LTM_PRIME_2MSB_OFF:LTM_PRIME_2MSB_ON)|LTM_PRIME_SAFE, myrng, NULL);
|
||||
if (err != MP_OKAY) {
|
||||
printf("failed with err code %d\n", err);
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
if (mp_count_bits(&a) != ix) {
|
||||
printf("Prime is %d not %d bits!!!\n", mp_count_bits(&a), ix);
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
/* let's see if it's really a safe prime */
|
||||
mp_sub_d(&a, 1, &a);
|
||||
mp_div_2(&a, &a);
|
||||
mp_prime_is_prime(&a, 8, &cnt);
|
||||
if (cnt != MP_YES) {
|
||||
printf("sub is not prime!\n");
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
}
|
||||
|
||||
printf("\n\n");
|
||||
#endif
|
||||
|
||||
#ifdef TESTING
|
||||
mp_read_radix(&a, "123456", 10);
|
||||
mp_toradix_n(&a, buf, 10, 3);
|
||||
printf("a == %s\n", buf);
|
||||
mp_toradix_n(&a, buf, 10, 4);
|
||||
printf("a == %s\n", buf);
|
||||
mp_toradix_n(&a, buf, 10, 30);
|
||||
printf("a == %s\n", buf);
|
||||
#endif
|
||||
|
||||
|
||||
#if 0
|
||||
for (;;) {
|
||||
fgets(buf, sizeof(buf), stdin);
|
||||
@ -97,12 +263,13 @@ int main(void)
|
||||
}
|
||||
#endif
|
||||
|
||||
#if 0
|
||||
#ifdef TESTING
|
||||
/* test mp_cnt_lsb */
|
||||
printf("testing mp_cnt_lsb...\n");
|
||||
mp_set(&a, 1);
|
||||
for (ix = 0; ix < 128; ix++) {
|
||||
for (ix = 0; ix < 1024; ix++) {
|
||||
if (mp_cnt_lsb(&a) != ix) {
|
||||
printf("Failed at %d\n", ix);
|
||||
printf("Failed at %d, %d\n", ix, mp_cnt_lsb(&a));
|
||||
return 0;
|
||||
}
|
||||
mp_mul_2(&a, &a);
|
||||
@ -110,7 +277,8 @@ int main(void)
|
||||
#endif
|
||||
|
||||
/* test mp_reduce_2k */
|
||||
#if 0
|
||||
#ifdef TESTING
|
||||
printf("Testing mp_reduce_2k...\n");
|
||||
for (cnt = 3; cnt <= 384; ++cnt) {
|
||||
mp_digit tmp;
|
||||
mp_2expt(&a, cnt);
|
||||
@ -137,7 +305,8 @@ int main(void)
|
||||
|
||||
|
||||
/* test mp_div_3 */
|
||||
#if 0
|
||||
#ifdef TESTING
|
||||
printf("Testing mp_div_3...\n");
|
||||
mp_set(&d, 3);
|
||||
for (cnt = 0; cnt < 1000000; ) {
|
||||
mp_digit r1, r2;
|
||||
@ -155,7 +324,8 @@ int main(void)
|
||||
#endif
|
||||
|
||||
/* test the DR reduction */
|
||||
#if 0
|
||||
#ifdef TESTING
|
||||
printf("testing mp_dr_reduce...\n");
|
||||
for (cnt = 2; cnt < 128; cnt++) {
|
||||
printf("%d digit modulus\n", cnt);
|
||||
mp_grow(&a, cnt);
|
||||
@ -190,7 +360,13 @@ int main(void)
|
||||
#ifdef TIMER
|
||||
/* temp. turn off TOOM */
|
||||
TOOM_MUL_CUTOFF = TOOM_SQR_CUTOFF = 100000;
|
||||
printf("CLOCKS_PER_SEC == %lu\n", CLOCKS_PER_SEC);
|
||||
|
||||
reset();
|
||||
sleep(1);
|
||||
CLK_PER_SEC = rdtsc();
|
||||
|
||||
printf("CLK_PER_SEC == %lu\n", CLK_PER_SEC);
|
||||
|
||||
|
||||
log = fopen("logs/add.log", "w");
|
||||
for (cnt = 8; cnt <= 128; cnt += 8) {
|
||||
@ -202,10 +378,10 @@ int main(void)
|
||||
do {
|
||||
DO(mp_add(&a,&b,&c));
|
||||
rr += 16;
|
||||
} while (rdtsc() < (CLOCKS_PER_SEC * 2));
|
||||
} while (rdtsc() < (CLK_PER_SEC * 2));
|
||||
tt = rdtsc();
|
||||
printf("Adding\t\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLOCKS_PER_SEC)/tt, tt);
|
||||
fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, (((ulong64)rr)*CLOCKS_PER_SEC)/tt);
|
||||
printf("Adding\t\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt, tt);
|
||||
fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, (((ulong64)rr)*CLK_PER_SEC)/tt); fflush(log);
|
||||
}
|
||||
fclose(log);
|
||||
|
||||
@ -219,10 +395,10 @@ int main(void)
|
||||
do {
|
||||
DO(mp_sub(&a,&b,&c));
|
||||
rr += 16;
|
||||
} while (rdtsc() < (CLOCKS_PER_SEC * 2));
|
||||
} while (rdtsc() < (CLK_PER_SEC * 2));
|
||||
tt = rdtsc();
|
||||
printf("Subtracting\t\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLOCKS_PER_SEC)/tt, tt);
|
||||
fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, (((ulong64)rr)*CLOCKS_PER_SEC)/tt);
|
||||
printf("Subtracting\t\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt, tt);
|
||||
fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, (((ulong64)rr)*CLK_PER_SEC)/tt); fflush(log);
|
||||
}
|
||||
fclose(log);
|
||||
|
||||
@ -237,7 +413,7 @@ mult_test:
|
||||
KARATSUBA_SQR_CUTOFF = (ix==0)?9999:old_kara_s;
|
||||
|
||||
log = fopen((ix==0)?"logs/mult.log":"logs/mult_kara.log", "w");
|
||||
for (cnt = 32; cnt <= 288; cnt += 16) {
|
||||
for (cnt = 32; cnt <= 288; cnt += 8) {
|
||||
SLEEP;
|
||||
mp_rand(&a, cnt);
|
||||
mp_rand(&b, cnt);
|
||||
@ -246,15 +422,15 @@ mult_test:
|
||||
do {
|
||||
DO(mp_mul(&a, &b, &c));
|
||||
rr += 16;
|
||||
} while (rdtsc() < (CLOCKS_PER_SEC * 2));
|
||||
} while (rdtsc() < (CLK_PER_SEC * 2));
|
||||
tt = rdtsc();
|
||||
printf("Multiplying\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLOCKS_PER_SEC)/tt, tt);
|
||||
fprintf(log, "%d %9llu\n", mp_count_bits(&a), (((ulong64)rr)*CLOCKS_PER_SEC)/tt);
|
||||
printf("Multiplying\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt, tt);
|
||||
fprintf(log, "%d %9llu\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt); fflush(log);
|
||||
}
|
||||
fclose(log);
|
||||
|
||||
log = fopen((ix==0)?"logs/sqr.log":"logs/sqr_kara.log", "w");
|
||||
for (cnt = 32; cnt <= 288; cnt += 16) {
|
||||
for (cnt = 32; cnt <= 288; cnt += 8) {
|
||||
SLEEP;
|
||||
mp_rand(&a, cnt);
|
||||
reset();
|
||||
@ -262,14 +438,15 @@ mult_test:
|
||||
do {
|
||||
DO(mp_sqr(&a, &b));
|
||||
rr += 16;
|
||||
} while (rdtsc() < (CLOCKS_PER_SEC * 2));
|
||||
} while (rdtsc() < (CLK_PER_SEC * 2));
|
||||
tt = rdtsc();
|
||||
printf("Squaring\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLOCKS_PER_SEC)/tt, tt);
|
||||
fprintf(log, "%d %9llu\n", mp_count_bits(&a), (((ulong64)rr)*CLOCKS_PER_SEC)/tt);
|
||||
printf("Squaring\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt, tt);
|
||||
fprintf(log, "%d %9llu\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt); fflush(log);
|
||||
}
|
||||
fclose(log);
|
||||
|
||||
}
|
||||
expt_test:
|
||||
{
|
||||
char *primes[] = {
|
||||
/* 2K moduli mersenne primes */
|
||||
@ -299,14 +476,12 @@ mult_test:
|
||||
"1214855636816562637502584060163403830270705000634713483015101384881871978446801224798536155406895823305035467591632531067547890948695117172076954220727075688048751022421198712032848890056357845974246560748347918630050853933697792254955890439720297560693579400297062396904306270145886830719309296352765295712183040773146419022875165382778007040109957609739589875590885701126197906063620133954893216612678838507540777138437797705602453719559017633986486649523611975865005712371194067612263330335590526176087004421363598470302731349138773205901447704682181517904064735636518462452242791676541725292378925568296858010151852326316777511935037531017413910506921922450666933202278489024521263798482237150056835746454842662048692127173834433089016107854491097456725016327709663199738238442164843147132789153725513257167915555162094970853584447993125488607696008169807374736711297007473812256272245489405898470297178738029484459690836250560495461579533254473316340608217876781986188705928270735695752830825527963838355419762516246028680280988020401914551825487349990306976304093109384451438813251211051597392127491464898797406789175453067960072008590614886532333015881171367104445044718144312416815712216611576221546455968770801413440778423979",
|
||||
NULL
|
||||
};
|
||||
expt_test:
|
||||
log = fopen("logs/expt.log", "w");
|
||||
logb = fopen("logs/expt_dr.log", "w");
|
||||
logc = fopen("logs/expt_2k.log", "w");
|
||||
for (n = 0; primes[n]; n++) {
|
||||
SLEEP;
|
||||
mp_read_radix(&a, primes[n], 10);
|
||||
printf("Different (%d)!!!\n", mp_count_bits(&a));
|
||||
mp_zero(&b);
|
||||
for (rr = 0; rr < mp_count_bits(&a); rr++) {
|
||||
mp_mul_2(&b, &b);
|
||||
@ -321,7 +496,7 @@ expt_test:
|
||||
do {
|
||||
DO(mp_exptmod(&c, &b, &a, &d));
|
||||
rr += 16;
|
||||
} while (rdtsc() < (CLOCKS_PER_SEC * 2));
|
||||
} while (rdtsc() < (CLK_PER_SEC * 2));
|
||||
tt = rdtsc();
|
||||
mp_sub_d(&a, 1, &e);
|
||||
mp_sub(&e, &b, &b);
|
||||
@ -332,8 +507,8 @@ expt_test:
|
||||
draw(&d);
|
||||
exit(0);
|
||||
}
|
||||
printf("Exponentiating\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLOCKS_PER_SEC)/tt, tt);
|
||||
fprintf((n < 6) ? logc : (n < 13) ? logb : log, "%d %9llu\n", mp_count_bits(&a), (((ulong64)rr)*CLOCKS_PER_SEC)/tt);
|
||||
printf("Exponentiating\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt, tt);
|
||||
fprintf((n < 6) ? logc : (n < 13) ? logb : log, "%d %9llu\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt);
|
||||
}
|
||||
}
|
||||
fclose(log);
|
||||
@ -356,15 +531,15 @@ expt_test:
|
||||
do {
|
||||
DO(mp_invmod(&b, &a, &c));
|
||||
rr += 16;
|
||||
} while (rdtsc() < (CLOCKS_PER_SEC * 2));
|
||||
} while (rdtsc() < (CLK_PER_SEC * 2));
|
||||
tt = rdtsc();
|
||||
mp_mulmod(&b, &c, &a, &d);
|
||||
if (mp_cmp_d(&d, 1) != MP_EQ) {
|
||||
printf("Failed to invert\n");
|
||||
return 0;
|
||||
}
|
||||
printf("Inverting mod\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLOCKS_PER_SEC)/tt, tt);
|
||||
fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, (((ulong64)rr)*CLOCKS_PER_SEC)/tt);
|
||||
printf("Inverting mod\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt, tt);
|
||||
fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, (((ulong64)rr)*CLK_PER_SEC)/tt);
|
||||
}
|
||||
fclose(log);
|
||||
|
||||
|
302
etclib/poly.c
@ -1,302 +0,0 @@
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is library that provides for multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* This file "poly.c" provides GF(p^k) functionality on top of the
|
||||
* libtommath library.
|
||||
*
|
||||
* The library is designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@iahu.ca, http://libtommath.iahu.ca
|
||||
*/
|
||||
#include "poly.h"
|
||||
|
||||
#undef MIN
|
||||
#define MIN(x,y) ((x)<(y)?(x):(y))
|
||||
#undef MAX
|
||||
#define MAX(x,y) ((x)>(y)?(x):(y))
|
||||
|
||||
static void s_free(mp_poly *a)
|
||||
{
|
||||
int k;
|
||||
for (k = 0; k < a->alloc; k++) {
|
||||
mp_clear(&(a->co[k]));
|
||||
}
|
||||
}
|
||||
|
||||
static int s_setup(mp_poly *a, int low, int high)
|
||||
{
|
||||
int res, k, j;
|
||||
for (k = low; k < high; k++) {
|
||||
if ((res = mp_init(&(a->co[k]))) != MP_OKAY) {
|
||||
for (j = low; j < k; j++) {
|
||||
mp_clear(&(a->co[j]));
|
||||
}
|
||||
return MP_MEM;
|
||||
}
|
||||
}
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
int mp_poly_init(mp_poly *a, mp_int *cha)
|
||||
{
|
||||
return mp_poly_init_size(a, cha, MP_POLY_PREC);
|
||||
}
|
||||
|
||||
/* init a poly of a given (size) degree */
|
||||
int mp_poly_init_size(mp_poly *a, mp_int *cha, int size)
|
||||
{
|
||||
int res;
|
||||
|
||||
/* allocate array of mp_ints for coefficients */
|
||||
a->co = malloc(size * sizeof(mp_int));
|
||||
if (a->co == NULL) {
|
||||
return MP_MEM;
|
||||
}
|
||||
a->used = 0;
|
||||
a->alloc = size;
|
||||
|
||||
/* now init the range */
|
||||
if ((res = s_setup(a, 0, size)) != MP_OKAY) {
|
||||
free(a->co);
|
||||
return res;
|
||||
}
|
||||
|
||||
/* copy characteristic */
|
||||
if ((res = mp_init_copy(&(a->cha), cha)) != MP_OKAY) {
|
||||
s_free(a);
|
||||
free(a->co);
|
||||
return res;
|
||||
}
|
||||
|
||||
/* return ok at this point */
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* grow the size of a poly */
|
||||
static int mp_poly_grow(mp_poly *a, int size)
|
||||
{
|
||||
int res;
|
||||
|
||||
if (size > a->alloc) {
|
||||
/* resize the array of coefficients */
|
||||
a->co = realloc(a->co, sizeof(mp_int) * size);
|
||||
if (a->co == NULL) {
|
||||
return MP_MEM;
|
||||
}
|
||||
|
||||
/* now setup the coefficients */
|
||||
if ((res = s_setup(a, a->alloc, a->alloc + size)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
a->alloc += size;
|
||||
}
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* copy, b = a */
|
||||
int mp_poly_copy(mp_poly *a, mp_poly *b)
|
||||
{
|
||||
int res, k;
|
||||
|
||||
/* resize b */
|
||||
if ((res = mp_poly_grow(b, a->used)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
/* now copy the used part */
|
||||
b->used = a->used;
|
||||
|
||||
/* now the cha */
|
||||
if ((res = mp_copy(&(a->cha), &(b->cha))) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
/* now all the coefficients */
|
||||
for (k = 0; k < b->used; k++) {
|
||||
if ((res = mp_copy(&(a->co[k]), &(b->co[k]))) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
/* now zero the top */
|
||||
for (k = b->used; k < b->alloc; k++) {
|
||||
mp_zero(&(b->co[k]));
|
||||
}
|
||||
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* init from a copy, a = b */
|
||||
int mp_poly_init_copy(mp_poly *a, mp_poly *b)
|
||||
{
|
||||
int res;
|
||||
|
||||
if ((res = mp_poly_init(a, &(b->cha))) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
return mp_poly_copy(b, a);
|
||||
}
|
||||
|
||||
/* free a poly from ram */
|
||||
void mp_poly_clear(mp_poly *a)
|
||||
{
|
||||
s_free(a);
|
||||
mp_clear(&(a->cha));
|
||||
free(a->co);
|
||||
|
||||
a->co = NULL;
|
||||
a->used = a->alloc = 0;
|
||||
}
|
||||
|
||||
/* exchange two polys */
|
||||
void mp_poly_exch(mp_poly *a, mp_poly *b)
|
||||
{
|
||||
mp_poly t;
|
||||
t = *a; *a = *b; *b = t;
|
||||
}
|
||||
|
||||
/* clamp the # of used digits */
|
||||
static void mp_poly_clamp(mp_poly *a)
|
||||
{
|
||||
while (a->used > 0 && mp_cmp_d(&(a->co[a->used]), 0) == MP_EQ) --(a->used);
|
||||
}
|
||||
|
||||
/* add two polynomials, c(x) = a(x) + b(x) */
|
||||
int mp_poly_add(mp_poly *a, mp_poly *b, mp_poly *c)
|
||||
{
|
||||
mp_poly t, *x, *y;
|
||||
int res, k;
|
||||
|
||||
/* ensure char's are the same */
|
||||
if (mp_cmp(&(a->cha), &(b->cha)) != MP_EQ) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* now figure out the sizes such that x is the
|
||||
largest degree poly and y is less or equal in degree
|
||||
*/
|
||||
if (a->used > b->used) {
|
||||
x = a;
|
||||
y = b;
|
||||
} else {
|
||||
x = b;
|
||||
y = a;
|
||||
}
|
||||
|
||||
/* now init the result to be a copy of the largest */
|
||||
if ((res = mp_poly_init_copy(&t, x)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
/* now add the coeffcients of the smaller one */
|
||||
for (k = 0; k < y->used; k++) {
|
||||
if ((res = mp_addmod(&(a->co[k]), &(b->co[k]), &(a->cha), &(t.co[k]))) != MP_OKAY) {
|
||||
goto __T;
|
||||
}
|
||||
}
|
||||
|
||||
mp_poly_clamp(&t);
|
||||
mp_poly_exch(&t, c);
|
||||
res = MP_OKAY;
|
||||
|
||||
__T: mp_poly_clear(&t);
|
||||
return res;
|
||||
}
|
||||
|
||||
/* subtracts two polynomials, c(x) = a(x) - b(x) */
|
||||
int mp_poly_sub(mp_poly *a, mp_poly *b, mp_poly *c)
|
||||
{
|
||||
mp_poly t, *x, *y;
|
||||
int res, k;
|
||||
|
||||
/* ensure char's are the same */
|
||||
if (mp_cmp(&(a->cha), &(b->cha)) != MP_EQ) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* now figure out the sizes such that x is the
|
||||
largest degree poly and y is less or equal in degree
|
||||
*/
|
||||
if (a->used > b->used) {
|
||||
x = a;
|
||||
y = b;
|
||||
} else {
|
||||
x = b;
|
||||
y = a;
|
||||
}
|
||||
|
||||
/* now init the result to be a copy of the largest */
|
||||
if ((res = mp_poly_init_copy(&t, x)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
/* now add the coeffcients of the smaller one */
|
||||
for (k = 0; k < y->used; k++) {
|
||||
if ((res = mp_submod(&(a->co[k]), &(b->co[k]), &(a->cha), &(t.co[k]))) != MP_OKAY) {
|
||||
goto __T;
|
||||
}
|
||||
}
|
||||
|
||||
mp_poly_clamp(&t);
|
||||
mp_poly_exch(&t, c);
|
||||
res = MP_OKAY;
|
||||
|
||||
__T: mp_poly_clear(&t);
|
||||
return res;
|
||||
}
|
||||
|
||||
/* multiplies two polynomials, c(x) = a(x) * b(x) */
|
||||
int mp_poly_mul(mp_poly *a, mp_poly *b, mp_poly *c)
|
||||
{
|
||||
mp_poly t;
|
||||
mp_int tt;
|
||||
int res, pa, pb, ix, iy;
|
||||
|
||||
/* ensure char's are the same */
|
||||
if (mp_cmp(&(a->cha), &(b->cha)) != MP_EQ) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* degrees of a and b */
|
||||
pa = a->used;
|
||||
pb = b->used;
|
||||
|
||||
/* now init the temp polynomial to be of degree pa+pb */
|
||||
if ((res = mp_poly_init_size(&t, &(a->cha), pa+pb)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
/* now init our temp int */
|
||||
if ((res = mp_init(&tt)) != MP_OKAY) {
|
||||
goto __T;
|
||||
}
|
||||
|
||||
/* now loop through all the digits */
|
||||
for (ix = 0; ix < pa; ix++) {
|
||||
for (iy = 0; iy < pb; iy++) {
|
||||
if ((res = mp_mul(&(a->co[ix]), &(b->co[iy]), &tt)) != MP_OKAY) {
|
||||
goto __TT;
|
||||
}
|
||||
if ((res = mp_addmod(&tt, &(t.co[ix+iy]), &(a->cha), &(t.co[ix+iy]))) != MP_OKAY) {
|
||||
goto __TT;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
mp_poly_clamp(&t);
|
||||
mp_poly_exch(&t, c);
|
||||
res = MP_OKAY;
|
||||
|
||||
__TT: mp_clear(&tt);
|
||||
__T: mp_poly_clear(&t);
|
||||
return res;
|
||||
}
|
||||
|
@ -1,73 +0,0 @@
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is library that provides for multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* This file "poly.h" provides GF(p^k) functionality on top of the
|
||||
* libtommath library.
|
||||
*
|
||||
* The library is designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@iahu.ca, http://libtommath.iahu.ca
|
||||
*/
|
||||
|
||||
#ifndef POLY_H_
|
||||
#define POLY_H_
|
||||
|
||||
#include "bn.h"
|
||||
|
||||
/* a mp_poly is basically a derived "class" of a mp_int
|
||||
* it uses the same technique of growing arrays via
|
||||
* used/alloc parameters except the base unit or "digit"
|
||||
* is in fact a mp_int. These hold the coefficients
|
||||
* of the polynomial
|
||||
*/
|
||||
typedef struct {
|
||||
int used, /* coefficients used */
|
||||
alloc; /* coefficients allocated (and initialized) */
|
||||
mp_int *co, /* coefficients */
|
||||
cha; /* characteristic */
|
||||
|
||||
} mp_poly;
|
||||
|
||||
|
||||
#define MP_POLY_PREC 16 /* default coefficients allocated */
|
||||
|
||||
/* init a poly */
|
||||
int mp_poly_init(mp_poly *a, mp_int *cha);
|
||||
|
||||
/* init a poly of a given (size) degree */
|
||||
int mp_poly_init_size(mp_poly *a, mp_int *cha, int size);
|
||||
|
||||
/* copy, b = a */
|
||||
int mp_poly_copy(mp_poly *a, mp_poly *b);
|
||||
|
||||
/* init from a copy, a = b */
|
||||
int mp_poly_init_copy(mp_poly *a, mp_poly *b);
|
||||
|
||||
/* free a poly from ram */
|
||||
void mp_poly_clear(mp_poly *a);
|
||||
|
||||
/* exchange two polys */
|
||||
void mp_poly_exch(mp_poly *a, mp_poly *b);
|
||||
|
||||
/* ---> Basic Arithmetic <--- */
|
||||
|
||||
/* add two polynomials, c(x) = a(x) + b(x) */
|
||||
int mp_poly_add(mp_poly *a, mp_poly *b, mp_poly *c);
|
||||
|
||||
/* subtracts two polynomials, c(x) = a(x) - b(x) */
|
||||
int mp_poly_sub(mp_poly *a, mp_poly *b, mp_poly *c);
|
||||
|
||||
/* multiplies two polynomials, c(x) = a(x) * b(x) */
|
||||
int mp_poly_mul(mp_poly *a, mp_poly *b, mp_poly *c);
|
||||
|
||||
|
||||
|
||||
#endif
|
||||
|
32
logs/add.log
@ -1,16 +1,16 @@
|
||||
224 8622881
|
||||
448 7241417
|
||||
672 5844712
|
||||
896 4938016
|
||||
1120 4256543
|
||||
1344 3728000
|
||||
1568 3328263
|
||||
1792 3012161
|
||||
2016 2743688
|
||||
2240 2512095
|
||||
2464 2234464
|
||||
2688 1960139
|
||||
2912 2013395
|
||||
3136 1879636
|
||||
3360 1756301
|
||||
3584 1680982
|
||||
224 20297071
|
||||
448 15151383
|
||||
672 13088682
|
||||
896 11111587
|
||||
1120 9240621
|
||||
1344 8221878
|
||||
1568 7227434
|
||||
1792 6718051
|
||||
2016 6042524
|
||||
2240 5685200
|
||||
2464 5240465
|
||||
2688 4818032
|
||||
2912 4412794
|
||||
3136 4155883
|
||||
3360 3927078
|
||||
3584 3722138
|
||||
|
BIN
logs/addsub.png
Before Width: | Height: | Size: 6.6 KiB After Width: | Height: | Size: 6.9 KiB |
@ -0,0 +1,7 @@
|
||||
513 745
|
||||
769 282
|
||||
1025 130
|
||||
2049 20
|
||||
2561 11
|
||||
3073 6
|
||||
4097 2
|
BIN
logs/expt.png
Before Width: | Height: | Size: 7.2 KiB After Width: | Height: | Size: 7.3 KiB |
@ -0,0 +1,6 @@
|
||||
521 783
|
||||
607 585
|
||||
1279 138
|
||||
2203 39
|
||||
3217 15
|
||||
4253 6
|
@ -0,0 +1,7 @@
|
||||
532 1296
|
||||
784 551
|
||||
1036 283
|
||||
1540 109
|
||||
2072 52
|
||||
3080 18
|
||||
4116 7
|
@ -1,4 +1,4 @@
|
||||
set terminal png color
|
||||
set terminal png
|
||||
set size 1.75
|
||||
set ylabel "Operations per Second"
|
||||
set xlabel "Operand size (bits)"
|
||||
|
@ -1,32 +1,32 @@
|
||||
112 14936
|
||||
224 7208
|
||||
336 6864
|
||||
448 5000
|
||||
560 3648
|
||||
672 1832
|
||||
784 1480
|
||||
896 1232
|
||||
1008 1010
|
||||
1120 1360
|
||||
1232 728
|
||||
1344 632
|
||||
1456 544
|
||||
1568 800
|
||||
1680 704
|
||||
1792 396
|
||||
1904 584
|
||||
2016 528
|
||||
2128 483
|
||||
2240 448
|
||||
2352 250
|
||||
2464 378
|
||||
2576 350
|
||||
2688 198
|
||||
2800 300
|
||||
2912 170
|
||||
3024 265
|
||||
3136 150
|
||||
3248 142
|
||||
3360 134
|
||||
3472 126
|
||||
3584 118
|
||||
112 17364
|
||||
224 8643
|
||||
336 8867
|
||||
448 6228
|
||||
560 4737
|
||||
672 2259
|
||||
784 2899
|
||||
896 1497
|
||||
1008 1238
|
||||
1120 1010
|
||||
1232 870
|
||||
1344 1265
|
||||
1456 1102
|
||||
1568 981
|
||||
1680 539
|
||||
1792 484
|
||||
1904 722
|
||||
2016 392
|
||||
2128 604
|
||||
2240 551
|
||||
2352 511
|
||||
2464 469
|
||||
2576 263
|
||||
2688 247
|
||||
2800 227
|
||||
2912 354
|
||||
3024 336
|
||||
3136 312
|
||||
3248 296
|
||||
3360 166
|
||||
3472 155
|
||||
3584 248
|
||||
|
BIN
logs/invmod.png
Before Width: | Height: | Size: 5.6 KiB After Width: | Height: | Size: 5.6 KiB |
@ -1,17 +1,33 @@
|
||||
896 348504
|
||||
1344 165040
|
||||
1792 98696
|
||||
2240 65400
|
||||
2688 46672
|
||||
3136 34968
|
||||
3584 27144
|
||||
4032 21648
|
||||
4480 17672
|
||||
4928 14768
|
||||
5376 12416
|
||||
5824 10696
|
||||
6272 9184
|
||||
6720 8064
|
||||
7168 1896
|
||||
7616 1680
|
||||
8064 1504
|
||||
920 374785
|
||||
1142 242737
|
||||
1371 176704
|
||||
1596 134341
|
||||
1816 105537
|
||||
2044 85089
|
||||
2268 70051
|
||||
2490 58671
|
||||
2716 49851
|
||||
2937 42881
|
||||
3162 37288
|
||||
3387 32697
|
||||
3608 28915
|
||||
3836 25759
|
||||
4057 23088
|
||||
4284 20800
|
||||
4508 18827
|
||||
4730 17164
|
||||
4956 15689
|
||||
5180 14397
|
||||
5398 13260
|
||||
5628 12249
|
||||
5852 11346
|
||||
6071 10537
|
||||
6298 9812
|
||||
6522 9161
|
||||
6742 8572
|
||||
6971 8038
|
||||
7195 2915
|
||||
7419 2744
|
||||
7644 2587
|
||||
7866 2444
|
||||
8090 2311
|
||||
|
BIN
logs/mult.png
Before Width: | Height: | Size: 8.0 KiB After Width: | Height: | Size: 7.9 KiB |
@ -1,17 +1,33 @@
|
||||
896 301784
|
||||
1344 141568
|
||||
1792 84592
|
||||
2240 55864
|
||||
2688 39576
|
||||
3136 30088
|
||||
3584 24032
|
||||
4032 19760
|
||||
4480 16536
|
||||
4928 13376
|
||||
5376 11880
|
||||
5824 10256
|
||||
6272 9160
|
||||
6720 8208
|
||||
7168 7384
|
||||
7616 6664
|
||||
8064 6112
|
||||
924 374171
|
||||
1147 243163
|
||||
1371 177111
|
||||
1596 134465
|
||||
1819 105619
|
||||
2044 85145
|
||||
2266 70086
|
||||
2488 58717
|
||||
2715 49869
|
||||
2939 42894
|
||||
3164 37389
|
||||
3387 33510
|
||||
3610 29993
|
||||
3836 27205
|
||||
4060 24751
|
||||
4281 22576
|
||||
4508 20670
|
||||
4732 19019
|
||||
4954 17527
|
||||
5180 16217
|
||||
5404 15044
|
||||
5624 14003
|
||||
5849 13051
|
||||
6076 12067
|
||||
6300 11438
|
||||
6524 10772
|
||||
6748 10298
|
||||
6972 9715
|
||||
7195 9330
|
||||
7416 8836
|
||||
7644 8465
|
||||
7864 8042
|
||||
8091 7735
|
||||
|
50
logs/sqr.log
@ -1,17 +1,33 @@
|
||||
911 167013
|
||||
1359 83796
|
||||
1807 50308
|
||||
2254 33637
|
||||
2703 24067
|
||||
3151 17997
|
||||
3599 5751
|
||||
4047 4561
|
||||
4490 3714
|
||||
4943 3067
|
||||
5391 2597
|
||||
5839 2204
|
||||
6286 1909
|
||||
6735 1637
|
||||
7183 1461
|
||||
7631 1302
|
||||
8078 1158
|
||||
922 471095
|
||||
1147 337137
|
||||
1366 254327
|
||||
1596 199732
|
||||
1819 161225
|
||||
2044 132852
|
||||
2268 111493
|
||||
2490 94864
|
||||
2715 81745
|
||||
2940 71187
|
||||
3162 62575
|
||||
3387 55418
|
||||
3612 14540
|
||||
3836 12944
|
||||
4060 11627
|
||||
4281 10546
|
||||
4508 9502
|
||||
4730 8688
|
||||
4954 7937
|
||||
5180 7273
|
||||
5402 6701
|
||||
5627 6189
|
||||
5850 5733
|
||||
6076 5310
|
||||
6300 4933
|
||||
6522 4631
|
||||
6748 4313
|
||||
6971 4064
|
||||
7196 3801
|
||||
7420 3576
|
||||
7642 3388
|
||||
7868 3191
|
||||
8092 3020
|
||||
|
@ -1,17 +1,33 @@
|
||||
910 165312
|
||||
1358 84355
|
||||
1806 50316
|
||||
2255 33661
|
||||
2702 24027
|
||||
3151 18068
|
||||
3599 14721
|
||||
4046 12101
|
||||
4493 10112
|
||||
4942 8591
|
||||
5390 7364
|
||||
5839 6398
|
||||
6285 5607
|
||||
6735 4952
|
||||
7182 4625
|
||||
7631 4193
|
||||
8079 3810
|
||||
922 470930
|
||||
1148 337217
|
||||
1372 254433
|
||||
1596 199827
|
||||
1820 161204
|
||||
2043 132871
|
||||
2267 111522
|
||||
2488 94932
|
||||
2714 81814
|
||||
2939 71231
|
||||
3164 62616
|
||||
3385 55467
|
||||
3611 44426
|
||||
3836 40695
|
||||
4060 37391
|
||||
4283 34371
|
||||
4508 31779
|
||||
4732 29499
|
||||
4956 27426
|
||||
5177 25598
|
||||
5403 23944
|
||||
5628 22416
|
||||
5851 21052
|
||||
6076 19781
|
||||
6299 18588
|
||||
6523 17539
|
||||
6746 16618
|
||||
6972 15705
|
||||
7196 13582
|
||||
7420 13004
|
||||
7643 12496
|
||||
7868 11963
|
||||
8092 11497
|
||||
|
32
logs/sub.log
@ -1,16 +1,16 @@
|
||||
224 10295756
|
||||
448 7577910
|
||||
672 6279588
|
||||
896 5345182
|
||||
1120 4646989
|
||||
1344 4101759
|
||||
1568 3685447
|
||||
1792 3337497
|
||||
2016 3051095
|
||||
2240 2811900
|
||||
2464 2605371
|
||||
2688 2420561
|
||||
2912 2273174
|
||||
3136 2134662
|
||||
3360 2014354
|
||||
3584 1901723
|
||||
224 16370431
|
||||
448 13327848
|
||||
672 11009401
|
||||
896 9125342
|
||||
1120 7930419
|
||||
1344 7114040
|
||||
1568 6506998
|
||||
1792 5899346
|
||||
2016 5435327
|
||||
2240 5038931
|
||||
2464 4696364
|
||||
2688 4425678
|
||||
2912 4134476
|
||||
3136 3913280
|
||||
3360 3692536
|
||||
3584 3505219
|
||||
|
24
makefile
@ -1,7 +1,7 @@
|
||||
#Makefile for GCC
|
||||
#
|
||||
#Tom St Denis
|
||||
CFLAGS += -I./ -Wall -W -Wshadow
|
||||
CFLAGS += -I./ -Wall -W -Wshadow -Wsign-compare
|
||||
|
||||
#for speed
|
||||
CFLAGS += -O3 -funroll-loops
|
||||
@ -12,7 +12,7 @@ CFLAGS += -O3 -funroll-loops
|
||||
#x86 optimizations [should be valid for any GCC install though]
|
||||
CFLAGS += -fomit-frame-pointer
|
||||
|
||||
VERSION=0.29
|
||||
VERSION=0.30
|
||||
|
||||
default: libtommath.a
|
||||
|
||||
@ -50,7 +50,9 @@ bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_div_3.o bn_s_mp_exptmod.o \
|
||||
bn_mp_reduce_2k.o bn_mp_reduce_is_2k.o bn_mp_reduce_2k_setup.o \
|
||||
bn_mp_radix_smap.o bn_mp_read_radix.o bn_mp_toradix.o bn_mp_radix_size.o \
|
||||
bn_mp_fread.o bn_mp_fwrite.o bn_mp_cnt_lsb.o bn_error.o \
|
||||
bn_mp_init_multi.o bn_mp_clear_multi.o bn_mp_prime_random.o bn_prime_sizes_tab.o bn_mp_exteuclid.o
|
||||
bn_mp_init_multi.o bn_mp_clear_multi.o bn_prime_sizes_tab.o bn_mp_exteuclid.o bn_mp_toradix_n.o \
|
||||
bn_mp_prime_random_ex.o bn_mp_get_int.o bn_mp_sqrt.o bn_mp_is_square.o bn_mp_init_set.o \
|
||||
bn_mp_init_set_int.o
|
||||
|
||||
libtommath.a: $(OBJECTS)
|
||||
$(AR) $(ARFLAGS) libtommath.a $(OBJECTS)
|
||||
@ -64,6 +66,8 @@ install: libtommath.a
|
||||
|
||||
test: libtommath.a demo/demo.o
|
||||
$(CC) demo/demo.o libtommath.a -o test
|
||||
|
||||
mtest: test
|
||||
cd mtest ; $(CC) $(CFLAGS) mtest.c -o mtest -s
|
||||
|
||||
timing: libtommath.a
|
||||
@ -75,6 +79,7 @@ docdvi: tommath.src
|
||||
echo "hello" > tommath.ind
|
||||
perl booker.pl
|
||||
latex tommath > /dev/null
|
||||
latex tommath > /dev/null
|
||||
makeindex tommath
|
||||
latex tommath > /dev/null
|
||||
|
||||
@ -83,15 +88,9 @@ poster: poster.tex
|
||||
pdflatex poster
|
||||
rm -f poster.aux poster.log
|
||||
|
||||
# makes the LTM book PS/PDF file, requires tetex, cleans up the LaTeX temp files
|
||||
docs:
|
||||
cd pics ; make pdfes
|
||||
echo "hello" > tommath.ind
|
||||
perl booker.pl PDF
|
||||
latex tommath > /dev/null
|
||||
makeindex tommath
|
||||
latex tommath > /dev/null
|
||||
pdflatex tommath
|
||||
# makes the LTM book PDF file, requires tetex, cleans up the LaTeX temp files
|
||||
docs: docdvi
|
||||
dvipdf tommath
|
||||
rm -f tommath.log tommath.aux tommath.dvi tommath.idx tommath.toc tommath.lof tommath.ind tommath.ilg
|
||||
cd pics ; make clean
|
||||
|
||||
@ -99,6 +98,7 @@ docs:
|
||||
mandvi: bn.tex
|
||||
echo "hello" > bn.ind
|
||||
latex bn > /dev/null
|
||||
latex bn > /dev/null
|
||||
makeindex bn
|
||||
latex bn > /dev/null
|
||||
|
||||
|
@ -29,12 +29,13 @@ bn_mp_toom_mul.obj bn_mp_toom_sqr.obj bn_mp_div_3.obj bn_s_mp_exptmod.obj \
|
||||
bn_mp_reduce_2k.obj bn_mp_reduce_is_2k.obj bn_mp_reduce_2k_setup.obj \
|
||||
bn_mp_radix_smap.obj bn_mp_read_radix.obj bn_mp_toradix.obj bn_mp_radix_size.obj \
|
||||
bn_mp_fread.obj bn_mp_fwrite.obj bn_mp_cnt_lsb.obj bn_error.obj \
|
||||
bn_mp_init_multi.obj bn_mp_clear_multi.obj bn_mp_prime_random.obj bn_prime_sizes_tab.obj bn_mp_exteuclid.obj
|
||||
bn_mp_init_multi.obj bn_mp_clear_multi.obj bn_prime_sizes_tab.obj bn_mp_exteuclid.obj bn_mp_toradix_n.obj \
|
||||
bn_mp_prime_random_ex.obj bn_mp_get_int.obj bn_mp_sqrt.obj bn_mp_is_square.obj
|
||||
|
||||
TARGET = libtommath.lib
|
||||
|
||||
$(TARGET): $(OBJECTS)
|
||||
|
||||
.c.objbj:
|
||||
.c.objbjbjbj:
|
||||
$(CC) $(CFLAGS) $<
|
||||
$(LIB) $(TARGET) -+$@
|
||||
|
@ -34,7 +34,8 @@ bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_div_3.o bn_s_mp_exptmod.o \
|
||||
bn_mp_reduce_2k.o bn_mp_reduce_is_2k.o bn_mp_reduce_2k_setup.o \
|
||||
bn_mp_radix_smap.o bn_mp_read_radix.o bn_mp_toradix.o bn_mp_radix_size.o \
|
||||
bn_mp_fread.o bn_mp_fwrite.o bn_mp_cnt_lsb.o bn_error.o \
|
||||
bn_mp_init_multi.o bn_mp_clear_multi.o bn_mp_prime_random.o bn_prime_sizes_tab.o bn_mp_exteuclid.o
|
||||
bn_mp_init_multi.o bn_mp_clear_multi.o bn_prime_sizes_tab.o bn_mp_exteuclid.o bn_mp_toradix_n.o \
|
||||
bn_mp_prime_random_ex.o bn_mp_get_int.o bn_mp_sqrt.o bn_mp_is_square.o
|
||||
|
||||
# make a Windows DLL via Cygwin
|
||||
windll: $(OBJECTS)
|
||||
|
@ -28,7 +28,8 @@ bn_mp_toom_mul.obj bn_mp_toom_sqr.obj bn_mp_div_3.obj bn_s_mp_exptmod.obj \
|
||||
bn_mp_reduce_2k.obj bn_mp_reduce_is_2k.obj bn_mp_reduce_2k_setup.obj \
|
||||
bn_mp_radix_smap.obj bn_mp_read_radix.obj bn_mp_toradix.obj bn_mp_radix_size.obj \
|
||||
bn_mp_fread.obj bn_mp_fwrite.obj bn_mp_cnt_lsb.obj bn_error.obj \
|
||||
bn_mp_init_multi.obj bn_mp_clear_multi.obj bn_mp_prime_random.obj bn_prime_sizes_tab.obj bn_mp_exteuclid.obj
|
||||
bn_mp_init_multi.obj bn_mp_clear_multi.obj bn_prime_sizes_tab.obj bn_mp_exteuclid.obj bn_mp_toradix_n.obj \
|
||||
bn_mp_prime_random_ex.obj bn_mp_get_int.obj bn_mp_sqrt.obj bn_mp_is_square.obj
|
||||
|
||||
library: $(OBJECTS)
|
||||
lib /out:tommath.lib $(OBJECTS)
|
||||
|
@ -110,7 +110,7 @@ int main(void)
|
||||
t1 = clock();
|
||||
for (;;) {
|
||||
if (clock() - t1 > CLOCKS_PER_SEC) {
|
||||
sleep(1);
|
||||
sleep(2);
|
||||
t1 = clock();
|
||||
}
|
||||
|
||||
|
@ -1,35 +0,0 @@
|
||||
# makes the images... yeah
|
||||
|
||||
default: pses
|
||||
|
||||
design_process.ps: design_process.tif
|
||||
tiff2ps -s -e design_process.tif > design_process.ps
|
||||
|
||||
sliding_window.ps: sliding_window.tif
|
||||
tiff2ps -e sliding_window.tif > sliding_window.ps
|
||||
|
||||
expt_state.ps: expt_state.tif
|
||||
tiff2ps -e expt_state.tif > expt_state.ps
|
||||
|
||||
primality.ps: primality.tif
|
||||
tiff2ps -e primality.tif > primality.ps
|
||||
|
||||
design_process.pdf: design_process.ps
|
||||
epstopdf design_process.ps
|
||||
|
||||
sliding_window.pdf: sliding_window.ps
|
||||
epstopdf sliding_window.ps
|
||||
|
||||
expt_state.pdf: expt_state.ps
|
||||
epstopdf expt_state.ps
|
||||
|
||||
primality.pdf: primality.ps
|
||||
epstopdf primality.ps
|
||||
|
||||
|
||||
pses: sliding_window.ps expt_state.ps primality.ps design_process.ps
|
||||
pdfes: sliding_window.pdf expt_state.pdf primality.pdf design_process.pdf
|
||||
|
||||
clean:
|
||||
rm -rf *.ps *.pdf .xvpics
|
||||
|
BIN
poster.pdf
520
pre_gen/mpi.c
@ -631,8 +631,7 @@ fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
||||
* Based on Algorithm 14.16 on pp.597 of HAC.
|
||||
*
|
||||
*/
|
||||
int
|
||||
fast_s_mp_sqr (mp_int * a, mp_int * b)
|
||||
int fast_s_mp_sqr (mp_int * a, mp_int * b)
|
||||
{
|
||||
int olduse, newused, res, ix, pa;
|
||||
mp_word W2[MP_WARRAY], W[MP_WARRAY];
|
||||
@ -1345,11 +1344,15 @@ int mp_cmp_mag (mp_int * a, mp_int * b)
|
||||
*/
|
||||
#include <tommath.h>
|
||||
|
||||
static const int lnz[16] = {
|
||||
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
|
||||
};
|
||||
|
||||
/* Counts the number of lsbs which are zero before the first zero bit */
|
||||
int mp_cnt_lsb(mp_int *a)
|
||||
{
|
||||
int x;
|
||||
mp_digit q;
|
||||
mp_digit q, qq;
|
||||
|
||||
/* easy out */
|
||||
if (mp_iszero(a) == 1) {
|
||||
@ -1362,11 +1365,13 @@ int mp_cnt_lsb(mp_int *a)
|
||||
x *= DIGIT_BIT;
|
||||
|
||||
/* now scan this digit until a 1 is found */
|
||||
while ((q & 1) == 0) {
|
||||
q >>= 1;
|
||||
x += 1;
|
||||
if ((q & 1) == 0) {
|
||||
do {
|
||||
qq = q & 15;
|
||||
x += lnz[qq];
|
||||
q >>= 4;
|
||||
} while (qq == 0);
|
||||
}
|
||||
|
||||
return x;
|
||||
}
|
||||
|
||||
@ -2828,7 +2833,7 @@ int mp_fwrite(mp_int *a, int radix, FILE *stream)
|
||||
return err;
|
||||
}
|
||||
|
||||
buf = XMALLOC (len);
|
||||
buf = OPT_CAST(char) XMALLOC (len);
|
||||
if (buf == NULL) {
|
||||
return MP_MEM;
|
||||
}
|
||||
@ -2963,6 +2968,49 @@ __U:mp_clear (&v);
|
||||
|
||||
/* End: bn_mp_gcd.c */
|
||||
|
||||
/* Start: bn_mp_get_int.c */
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
|
||||
*/
|
||||
#include <tommath.h>
|
||||
|
||||
/* get the lower 32-bits of an mp_int */
|
||||
unsigned long mp_get_int(mp_int * a)
|
||||
{
|
||||
int i;
|
||||
unsigned long res;
|
||||
|
||||
if (a->used == 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* get number of digits of the lsb we have to read */
|
||||
i = MIN(a->used,(int)((sizeof(unsigned long)*CHAR_BIT+DIGIT_BIT-1)/DIGIT_BIT))-1;
|
||||
|
||||
/* get most significant digit of result */
|
||||
res = DIGIT(a,i);
|
||||
|
||||
while (--i >= 0) {
|
||||
res = (res << DIGIT_BIT) | DIGIT(a,i);
|
||||
}
|
||||
|
||||
/* force result to 32-bits always so it is consistent on non 32-bit platforms */
|
||||
return res & 0xFFFFFFFFUL;
|
||||
}
|
||||
|
||||
/* End: bn_mp_get_int.c */
|
||||
|
||||
/* Start: bn_mp_grow.c */
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
@ -2997,7 +3045,7 @@ int mp_grow (mp_int * a, int size)
|
||||
* in case the operation failed we don't want
|
||||
* to overwrite the dp member of a.
|
||||
*/
|
||||
tmp = OPT_CAST XREALLOC (a->dp, sizeof (mp_digit) * size);
|
||||
tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * size);
|
||||
if (tmp == NULL) {
|
||||
/* reallocation failed but "a" is still valid [can be freed] */
|
||||
return MP_MEM;
|
||||
@ -3039,7 +3087,7 @@ int mp_grow (mp_int * a, int size)
|
||||
int mp_init (mp_int * a)
|
||||
{
|
||||
/* allocate memory required and clear it */
|
||||
a->dp = OPT_CAST XCALLOC (sizeof (mp_digit), MP_PREC);
|
||||
a->dp = OPT_CAST(mp_digit) XCALLOC (sizeof (mp_digit), MP_PREC);
|
||||
if (a->dp == NULL) {
|
||||
return MP_MEM;
|
||||
}
|
||||
@ -3142,6 +3190,65 @@ int mp_init_multi(mp_int *mp, ...)
|
||||
|
||||
/* End: bn_mp_init_multi.c */
|
||||
|
||||
/* Start: bn_mp_init_set.c */
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
|
||||
*/
|
||||
#include <tommath.h>
|
||||
|
||||
/* initialize and set a digit */
|
||||
int mp_init_set (mp_int * a, mp_digit b)
|
||||
{
|
||||
int err;
|
||||
if ((err = mp_init(a)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
mp_set(a, b);
|
||||
return err;
|
||||
}
|
||||
|
||||
/* End: bn_mp_init_set.c */
|
||||
|
||||
/* Start: bn_mp_init_set_int.c */
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
|
||||
*/
|
||||
#include <tommath.h>
|
||||
|
||||
/* initialize and set a digit */
|
||||
int mp_init_set_int (mp_int * a, unsigned long b)
|
||||
{
|
||||
int err;
|
||||
if ((err = mp_init(a)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
return mp_set_int(a, b);
|
||||
}
|
||||
|
||||
/* End: bn_mp_init_set_int.c */
|
||||
|
||||
/* Start: bn_mp_init_size.c */
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
@ -3166,7 +3273,7 @@ int mp_init_size (mp_int * a, int size)
|
||||
size += (MP_PREC * 2) - (size % MP_PREC);
|
||||
|
||||
/* alloc mem */
|
||||
a->dp = OPT_CAST XCALLOC (sizeof (mp_digit), size);
|
||||
a->dp = OPT_CAST(mp_digit) XCALLOC (sizeof (mp_digit), size);
|
||||
if (a->dp == NULL) {
|
||||
return MP_MEM;
|
||||
}
|
||||
@ -3357,6 +3464,113 @@ __ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
|
||||
|
||||
/* End: bn_mp_invmod.c */
|
||||
|
||||
/* Start: bn_mp_is_square.c */
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
|
||||
*/
|
||||
#include <tommath.h>
|
||||
|
||||
/* Check if remainders are possible squares - fast exclude non-squares */
|
||||
static const char rem_128[128] = {
|
||||
0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
|
||||
0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
|
||||
1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
|
||||
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
|
||||
0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
|
||||
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
|
||||
1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
|
||||
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1
|
||||
};
|
||||
|
||||
static const char rem_105[105] = {
|
||||
0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
|
||||
0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1,
|
||||
0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1,
|
||||
1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1,
|
||||
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1
|
||||
};
|
||||
|
||||
/* Store non-zero to ret if arg is square, and zero if not */
|
||||
int mp_is_square(mp_int *arg,int *ret)
|
||||
{
|
||||
int res;
|
||||
mp_digit c;
|
||||
mp_int t;
|
||||
unsigned long r;
|
||||
|
||||
/* Default to Non-square :) */
|
||||
*ret = MP_NO;
|
||||
|
||||
if (arg->sign == MP_NEG) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* digits used? (TSD) */
|
||||
if (arg->used == 0) {
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* First check mod 128 (suppose that DIGIT_BIT is at least 7) */
|
||||
if (rem_128[127 & DIGIT(arg,0)] == 1) {
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* Next check mod 105 (3*5*7) */
|
||||
if ((res = mp_mod_d(arg,105,&c)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
if (rem_105[c] == 1) {
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* product of primes less than 2^31 */
|
||||
if ((res = mp_init_set_int(&t,11L*13L*17L*19L*23L*29L*31L)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
if ((res = mp_mod(arg,&t,&t)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
r = mp_get_int(&t);
|
||||
/* Check for other prime modules, note it's not an ERROR but we must
|
||||
* free "t" so the easiest way is to goto ERR. We know that res
|
||||
* is already equal to MP_OKAY from the mp_mod call
|
||||
*/
|
||||
if ( (1L<<(r%11)) & 0x5C4L ) goto ERR;
|
||||
if ( (1L<<(r%13)) & 0x9E4L ) goto ERR;
|
||||
if ( (1L<<(r%17)) & 0x5CE8L ) goto ERR;
|
||||
if ( (1L<<(r%19)) & 0x4F50CL ) goto ERR;
|
||||
if ( (1L<<(r%23)) & 0x7ACCA0L ) goto ERR;
|
||||
if ( (1L<<(r%29)) & 0xC2EDD0CL ) goto ERR;
|
||||
if ( (1L<<(r%31)) & 0x6DE2B848L ) goto ERR;
|
||||
|
||||
/* Final check - is sqr(sqrt(arg)) == arg ? */
|
||||
if ((res = mp_sqrt(arg,&t)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_sqr(&t,&t)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
*ret = (mp_cmp_mag(&t,arg) == MP_EQ) ? MP_YES : MP_NO;
|
||||
ERR:mp_clear(&t);
|
||||
return res;
|
||||
}
|
||||
|
||||
/* End: bn_mp_is_square.c */
|
||||
|
||||
/* Start: bn_mp_jacobi.c */
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
@ -3506,8 +3720,7 @@ __A1:mp_clear (&a1);
|
||||
* Generally though the overhead of this method doesn't pay off
|
||||
* until a certain size (N ~ 80) is reached.
|
||||
*/
|
||||
int
|
||||
mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
|
||||
int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
|
||||
{
|
||||
mp_int x0, x1, y0, y1, t1, x0y0, x1y1;
|
||||
int B, err;
|
||||
@ -3519,7 +3732,7 @@ mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
|
||||
B = MIN (a->used, b->used);
|
||||
|
||||
/* now divide in two */
|
||||
B = B / 2;
|
||||
B = B >> 1;
|
||||
|
||||
/* init copy all the temps */
|
||||
if (mp_init_size (&x0, B) != MP_OKAY)
|
||||
@ -3653,8 +3866,7 @@ ERR:
|
||||
* is essentially the same algorithm but merely
|
||||
* tuned to perform recursive squarings.
|
||||
*/
|
||||
int
|
||||
mp_karatsuba_sqr (mp_int * a, mp_int * b)
|
||||
int mp_karatsuba_sqr (mp_int * a, mp_int * b)
|
||||
{
|
||||
mp_int x0, x1, t1, t2, x0x0, x1x1;
|
||||
int B, err;
|
||||
@ -3665,7 +3877,7 @@ mp_karatsuba_sqr (mp_int * a, mp_int * b)
|
||||
B = a->used;
|
||||
|
||||
/* now divide in two */
|
||||
B = B / 2;
|
||||
B = B >> 1;
|
||||
|
||||
/* init copy all the temps */
|
||||
if (mp_init_size (&x0, B) != MP_OKAY)
|
||||
@ -3896,7 +4108,6 @@ mp_mod (mp_int * a, mp_int * b, mp_int * c)
|
||||
mp_int t;
|
||||
int res;
|
||||
|
||||
|
||||
if ((res = mp_init (&t)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
@ -3906,7 +4117,7 @@ mp_mod (mp_int * a, mp_int * b, mp_int * c)
|
||||
return res;
|
||||
}
|
||||
|
||||
if (t.sign == MP_NEG) {
|
||||
if (t.sign != b->sign) {
|
||||
res = mp_add (b, &t, c);
|
||||
} else {
|
||||
res = MP_OKAY;
|
||||
@ -4711,7 +4922,7 @@ int mp_neg (mp_int * a, mp_int * b)
|
||||
if ((res = mp_copy (a, b)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
if (mp_iszero(b) != 1) {
|
||||
if (mp_iszero(b) != MP_YES) {
|
||||
b->sign = (a->sign == MP_ZPOS) ? MP_NEG : MP_ZPOS;
|
||||
}
|
||||
return MP_OKAY;
|
||||
@ -5225,7 +5436,7 @@ __ERR:
|
||||
|
||||
/* End: bn_mp_prime_next_prime.c */
|
||||
|
||||
/* Start: bn_mp_prime_random.c */
|
||||
/* Start: bn_mp_prime_random_ex.c */
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
@ -5242,57 +5453,101 @@ __ERR:
|
||||
*/
|
||||
#include <tommath.h>
|
||||
|
||||
/* makes a truly random prime of a given size (bytes),
|
||||
* call with bbs = 1 if you want it to be congruent to 3 mod 4
|
||||
/* makes a truly random prime of a given size (bits),
|
||||
*
|
||||
* Flags are as follows:
|
||||
*
|
||||
* LTM_PRIME_BBS - make prime congruent to 3 mod 4
|
||||
* LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
|
||||
* LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero
|
||||
* LTM_PRIME_2MSB_ON - make the 2nd highest bit one
|
||||
*
|
||||
* You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
|
||||
* have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
|
||||
* so it can be NULL
|
||||
*
|
||||
* The prime generated will be larger than 2^(8*size).
|
||||
*/
|
||||
|
||||
/* this sole function may hold the key to enslaving all mankind! */
|
||||
int mp_prime_random(mp_int *a, int t, int size, int bbs, ltm_prime_callback cb, void *dat)
|
||||
/* This is possibly the mother of all prime generation functions, muahahahahaha! */
|
||||
int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat)
|
||||
{
|
||||
unsigned char *tmp;
|
||||
int res, err;
|
||||
unsigned char *tmp, maskAND, maskOR_msb, maskOR_lsb;
|
||||
int res, err, bsize, maskOR_msb_offset;
|
||||
|
||||
/* sanity check the input */
|
||||
if (size <= 0) {
|
||||
if (size <= 1 || t <= 0) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* we need a buffer of size+1 bytes */
|
||||
tmp = XMALLOC(size+1);
|
||||
/* LTM_PRIME_SAFE implies LTM_PRIME_BBS */
|
||||
if (flags & LTM_PRIME_SAFE) {
|
||||
flags |= LTM_PRIME_BBS;
|
||||
}
|
||||
|
||||
/* calc the byte size */
|
||||
bsize = (size>>3)+(size&7?1:0);
|
||||
|
||||
/* we need a buffer of bsize bytes */
|
||||
tmp = OPT_CAST(unsigned char) XMALLOC(bsize);
|
||||
if (tmp == NULL) {
|
||||
return MP_MEM;
|
||||
}
|
||||
|
||||
/* fix MSB */
|
||||
tmp[0] = 1;
|
||||
/* calc the maskAND value for the MSbyte*/
|
||||
maskAND = 0xFF >> (8 - (size & 7));
|
||||
|
||||
/* calc the maskOR_msb */
|
||||
maskOR_msb = 0;
|
||||
maskOR_msb_offset = (size - 2) >> 3;
|
||||
if (flags & LTM_PRIME_2MSB_ON) {
|
||||
maskOR_msb |= 1 << ((size - 2) & 7);
|
||||
} else if (flags & LTM_PRIME_2MSB_OFF) {
|
||||
maskAND &= ~(1 << ((size - 2) & 7));
|
||||
}
|
||||
|
||||
/* get the maskOR_lsb */
|
||||
maskOR_lsb = 0;
|
||||
if (flags & LTM_PRIME_BBS) {
|
||||
maskOR_lsb |= 3;
|
||||
}
|
||||
|
||||
do {
|
||||
/* read the bytes */
|
||||
if (cb(tmp+1, size, dat) != size) {
|
||||
if (cb(tmp, bsize, dat) != bsize) {
|
||||
err = MP_VAL;
|
||||
goto error;
|
||||
}
|
||||
|
||||
/* fix the LSB */
|
||||
tmp[size] |= (bbs ? 3 : 1);
|
||||
/* work over the MSbyte */
|
||||
tmp[0] &= maskAND;
|
||||
tmp[0] |= 1 << ((size - 1) & 7);
|
||||
|
||||
/* mix in the maskORs */
|
||||
tmp[maskOR_msb_offset] |= maskOR_msb;
|
||||
tmp[bsize-1] |= maskOR_lsb;
|
||||
|
||||
/* read it in */
|
||||
if ((err = mp_read_unsigned_bin(a, tmp, size+1)) != MP_OKAY) {
|
||||
goto error;
|
||||
}
|
||||
if ((err = mp_read_unsigned_bin(a, tmp, bsize)) != MP_OKAY) { goto error; }
|
||||
|
||||
/* is it prime? */
|
||||
if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) {
|
||||
goto error;
|
||||
if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) { goto error; }
|
||||
|
||||
if (flags & LTM_PRIME_SAFE) {
|
||||
/* see if (a-1)/2 is prime */
|
||||
if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) { goto error; }
|
||||
if ((err = mp_div_2(a, a)) != MP_OKAY) { goto error; }
|
||||
|
||||
/* is it prime? */
|
||||
if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) { goto error; }
|
||||
}
|
||||
} while (res == MP_NO);
|
||||
|
||||
if (flags & LTM_PRIME_SAFE) {
|
||||
/* restore a to the original value */
|
||||
if ((err = mp_mul_2(a, a)) != MP_OKAY) { goto error; }
|
||||
if ((err = mp_add_d(a, 1, a)) != MP_OKAY) { goto error; }
|
||||
}
|
||||
|
||||
err = MP_OKAY;
|
||||
error:
|
||||
XFREE(tmp);
|
||||
@ -5301,7 +5556,7 @@ error:
|
||||
|
||||
|
||||
|
||||
/* End: bn_mp_prime_random.c */
|
||||
/* End: bn_mp_prime_random_ex.c */
|
||||
|
||||
/* Start: bn_mp_radix_size.c */
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
@ -5726,9 +5981,9 @@ CLEANUP:
|
||||
*/
|
||||
#include <tommath.h>
|
||||
|
||||
/* reduces a modulo n where n is of the form 2**p - k */
|
||||
/* reduces a modulo n where n is of the form 2**p - d */
|
||||
int
|
||||
mp_reduce_2k(mp_int *a, mp_int *n, mp_digit k)
|
||||
mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d)
|
||||
{
|
||||
mp_int q;
|
||||
int p, res;
|
||||
@ -5744,9 +5999,9 @@ top:
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
if (k != 1) {
|
||||
/* q = q * k */
|
||||
if ((res = mp_mul_d(&q, k, &q)) != MP_OKAY) {
|
||||
if (d != 1) {
|
||||
/* q = q * d */
|
||||
if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
}
|
||||
@ -6062,7 +6317,7 @@ int mp_shrink (mp_int * a)
|
||||
{
|
||||
mp_digit *tmp;
|
||||
if (a->alloc != a->used && a->used > 0) {
|
||||
if ((tmp = OPT_CAST XREALLOC (a->dp, sizeof (mp_digit) * a->used)) == NULL) {
|
||||
if ((tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * a->used)) == NULL) {
|
||||
return MP_MEM;
|
||||
}
|
||||
a->dp = tmp;
|
||||
@ -6182,6 +6437,85 @@ mp_sqrmod (mp_int * a, mp_int * b, mp_int * c)
|
||||
|
||||
/* End: bn_mp_sqrmod.c */
|
||||
|
||||
/* Start: bn_mp_sqrt.c */
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
|
||||
*/
|
||||
#include <tommath.h>
|
||||
|
||||
/* this function is less generic than mp_n_root, simpler and faster */
|
||||
int mp_sqrt(mp_int *arg, mp_int *ret)
|
||||
{
|
||||
int res;
|
||||
mp_int t1,t2;
|
||||
|
||||
/* must be positive */
|
||||
if (arg->sign == MP_NEG) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* easy out */
|
||||
if (mp_iszero(arg) == MP_YES) {
|
||||
mp_zero(ret);
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
if ((res = mp_init_copy(&t1, arg)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
if ((res = mp_init(&t2)) != MP_OKAY) {
|
||||
goto E2;
|
||||
}
|
||||
|
||||
/* First approx. (not very bad for large arg) */
|
||||
mp_rshd (&t1,t1.used/2);
|
||||
|
||||
/* t1 > 0 */
|
||||
if ((res = mp_div(arg,&t1,&t2,NULL)) != MP_OKAY) {
|
||||
goto E1;
|
||||
}
|
||||
if ((res = mp_add(&t1,&t2,&t1)) != MP_OKAY) {
|
||||
goto E1;
|
||||
}
|
||||
if ((res = mp_div_2(&t1,&t1)) != MP_OKAY) {
|
||||
goto E1;
|
||||
}
|
||||
/* And now t1 > sqrt(arg) */
|
||||
do {
|
||||
if ((res = mp_div(arg,&t1,&t2,NULL)) != MP_OKAY) {
|
||||
goto E1;
|
||||
}
|
||||
if ((res = mp_add(&t1,&t2,&t1)) != MP_OKAY) {
|
||||
goto E1;
|
||||
}
|
||||
if ((res = mp_div_2(&t1,&t1)) != MP_OKAY) {
|
||||
goto E1;
|
||||
}
|
||||
/* t1 >= sqrt(arg) >= t2 at this point */
|
||||
} while (mp_cmp_mag(&t1,&t2) == MP_GT);
|
||||
|
||||
mp_exch(&t1,ret);
|
||||
|
||||
E1: mp_clear(&t2);
|
||||
E2: mp_clear(&t1);
|
||||
return res;
|
||||
}
|
||||
|
||||
|
||||
/* End: bn_mp_sqrt.c */
|
||||
|
||||
/* Start: bn_mp_sub.c */
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
@ -6463,8 +6797,7 @@ mp_to_unsigned_bin (mp_int * a, unsigned char *b)
|
||||
#include <tommath.h>
|
||||
|
||||
/* multiplication using the Toom-Cook 3-way algorithm */
|
||||
int
|
||||
mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
|
||||
int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
|
||||
{
|
||||
mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2;
|
||||
int res, B;
|
||||
@ -7019,6 +7352,93 @@ int mp_toradix (mp_int * a, char *str, int radix)
|
||||
|
||||
/* End: bn_mp_toradix.c */
|
||||
|
||||
/* Start: bn_mp_toradix_n.c */
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
|
||||
*/
|
||||
#include <tommath.h>
|
||||
|
||||
/* stores a bignum as a ASCII string in a given radix (2..64)
|
||||
*
|
||||
* Stores upto maxlen-1 chars and always a NULL byte
|
||||
*/
|
||||
int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen)
|
||||
{
|
||||
int res, digs;
|
||||
mp_int t;
|
||||
mp_digit d;
|
||||
char *_s = str;
|
||||
|
||||
/* check range of the maxlen, radix */
|
||||
if (maxlen < 3 || radix < 2 || radix > 64) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* quick out if its zero */
|
||||
if (mp_iszero(a) == 1) {
|
||||
*str++ = '0';
|
||||
*str = '\0';
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
/* if it is negative output a - */
|
||||
if (t.sign == MP_NEG) {
|
||||
/* we have to reverse our digits later... but not the - sign!! */
|
||||
++_s;
|
||||
|
||||
/* store the flag and mark the number as positive */
|
||||
*str++ = '-';
|
||||
t.sign = MP_ZPOS;
|
||||
|
||||
/* subtract a char */
|
||||
--maxlen;
|
||||
}
|
||||
|
||||
digs = 0;
|
||||
while (mp_iszero (&t) == 0) {
|
||||
if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
|
||||
mp_clear (&t);
|
||||
return res;
|
||||
}
|
||||
*str++ = mp_s_rmap[d];
|
||||
++digs;
|
||||
|
||||
if (--maxlen == 1) {
|
||||
/* no more room */
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/* reverse the digits of the string. In this case _s points
|
||||
* to the first digit [exluding the sign] of the number]
|
||||
*/
|
||||
bn_reverse ((unsigned char *)_s, digs);
|
||||
|
||||
/* append a NULL so the string is properly terminated */
|
||||
*str = '\0';
|
||||
|
||||
mp_clear (&t);
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
|
||||
/* End: bn_mp_toradix_n.c */
|
||||
|
||||
/* Start: bn_mp_unsigned_bin_size.c */
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
|
62
tommath.h
@ -30,12 +30,12 @@
|
||||
extern "C" {
|
||||
|
||||
/* C++ compilers don't like assigning void * to mp_digit * */
|
||||
#define OPT_CAST (mp_digit *)
|
||||
#define OPT_CAST(x) (x *)
|
||||
|
||||
#else
|
||||
|
||||
/* C on the other hand doesn't care */
|
||||
#define OPT_CAST
|
||||
#define OPT_CAST(x)
|
||||
|
||||
#endif
|
||||
|
||||
@ -99,14 +99,14 @@ extern "C" {
|
||||
#define XFREE free
|
||||
#define XREALLOC realloc
|
||||
#define XCALLOC calloc
|
||||
#endif
|
||||
|
||||
#else
|
||||
/* prototypes for our heap functions */
|
||||
extern void *XMALLOC(size_t n);
|
||||
extern void *REALLOC(void *p, size_t n);
|
||||
extern void *XCALLOC(size_t n, size_t s);
|
||||
extern void XFREE(void *p);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
/* otherwise the bits per digit is calculated automatically from the size of a mp_digit */
|
||||
@ -134,6 +134,12 @@ extern "C" {
|
||||
#define MP_YES 1 /* yes response */
|
||||
#define MP_NO 0 /* no response */
|
||||
|
||||
/* Primality generation flags */
|
||||
#define LTM_PRIME_BBS 0x0001 /* BBS style prime */
|
||||
#define LTM_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */
|
||||
#define LTM_PRIME_2MSB_OFF 0x0004 /* force 2nd MSB to 0 */
|
||||
#define LTM_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */
|
||||
|
||||
typedef int mp_err;
|
||||
|
||||
/* you'll have to tune these... */
|
||||
@ -142,12 +148,18 @@ extern int KARATSUBA_MUL_CUTOFF,
|
||||
TOOM_MUL_CUTOFF,
|
||||
TOOM_SQR_CUTOFF;
|
||||
|
||||
/* various build options */
|
||||
#define MP_PREC 64 /* default digits of precision */
|
||||
|
||||
/* define this to use lower memory usage routines (exptmods mostly) */
|
||||
/* #define MP_LOW_MEM */
|
||||
|
||||
/* default precision */
|
||||
#ifndef MP_PREC
|
||||
#ifdef MP_LOW_MEM
|
||||
#define MP_PREC 64 /* default digits of precision */
|
||||
#else
|
||||
#define MP_PREC 8 /* default digits of precision */
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
|
||||
#define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1))
|
||||
|
||||
@ -207,6 +219,15 @@ void mp_set(mp_int *a, mp_digit b);
|
||||
/* set a 32-bit const */
|
||||
int mp_set_int(mp_int *a, unsigned long b);
|
||||
|
||||
/* get a 32-bit value */
|
||||
unsigned long mp_get_int(mp_int * a);
|
||||
|
||||
/* initialize and set a digit */
|
||||
int mp_init_set (mp_int * a, mp_digit b);
|
||||
|
||||
/* initialize and set 32-bit value */
|
||||
int mp_init_set_int (mp_int * a, unsigned long b);
|
||||
|
||||
/* copy, b = a */
|
||||
int mp_copy(mp_int *a, mp_int *b);
|
||||
|
||||
@ -350,8 +371,11 @@ int mp_lcm(mp_int *a, mp_int *b, mp_int *c);
|
||||
*/
|
||||
int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
|
||||
|
||||
/* shortcut for square root */
|
||||
#define mp_sqrt(a, b) mp_n_root(a, 2, b)
|
||||
/* special sqrt algo */
|
||||
int mp_sqrt(mp_int *arg, mp_int *ret);
|
||||
|
||||
/* is number a square? */
|
||||
int mp_is_square(mp_int *arg, int *ret);
|
||||
|
||||
/* computes the jacobi c = (a | n) (or Legendre if b is prime) */
|
||||
int mp_jacobi(mp_int *a, mp_int *n, int *c);
|
||||
@ -393,7 +417,7 @@ int mp_reduce_is_2k(mp_int *a);
|
||||
int mp_reduce_2k_setup(mp_int *a, mp_digit *d);
|
||||
|
||||
/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
|
||||
int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit k);
|
||||
int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d);
|
||||
|
||||
/* d = a**b (mod c) */
|
||||
int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
|
||||
@ -453,8 +477,23 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style);
|
||||
*
|
||||
* The prime generated will be larger than 2^(8*size).
|
||||
*/
|
||||
int mp_prime_random(mp_int *a, int t, int size, int bbs, ltm_prime_callback cb, void *dat);
|
||||
#define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat)
|
||||
|
||||
/* makes a truly random prime of a given size (bits),
|
||||
*
|
||||
* Flags are as follows:
|
||||
*
|
||||
* LTM_PRIME_BBS - make prime congruent to 3 mod 4
|
||||
* LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
|
||||
* LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero
|
||||
* LTM_PRIME_2MSB_ON - make the 2nd highest bit one
|
||||
*
|
||||
* You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
|
||||
* have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
|
||||
* so it can be NULL
|
||||
*
|
||||
*/
|
||||
int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat);
|
||||
|
||||
/* ---> radix conversion <--- */
|
||||
int mp_count_bits(mp_int *a);
|
||||
@ -469,6 +508,7 @@ int mp_to_signed_bin(mp_int *a, unsigned char *b);
|
||||
|
||||
int mp_read_radix(mp_int *a, char *str, int radix);
|
||||
int mp_toradix(mp_int *a, char *str, int radix);
|
||||
int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen);
|
||||
int mp_radix_size(mp_int *a, int radix, int *size);
|
||||
|
||||
int mp_fread(mp_int *a, int radix, FILE *stream);
|
||||
|
BIN
tommath.pdf
23
tommath.src
@ -49,7 +49,7 @@
|
||||
\begin{document}
|
||||
\frontmatter
|
||||
\pagestyle{empty}
|
||||
\title{Implementing Multiple Precision Arithmetic \\ ~ \\ Holiday Draft Edition }
|
||||
\title{Implementing Multiple Precision Arithmetic \\ ~ \\ Draft Edition }
|
||||
\author{\mbox{
|
||||
%\begin{small}
|
||||
\begin{tabular}{c}
|
||||
@ -66,7 +66,7 @@ QUALCOMM Australia \\
|
||||
}
|
||||
}
|
||||
\maketitle
|
||||
This text has been placed in the public domain. This text corresponds to the v0.28 release of the
|
||||
This text has been placed in the public domain. This text corresponds to the v0.30 release of the
|
||||
LibTomMath project.
|
||||
|
||||
\begin{alltt}
|
||||
@ -85,7 +85,7 @@ This text is formatted to the international B5 paper size of 176mm wide by 250mm
|
||||
|
||||
\tableofcontents
|
||||
\listoffigures
|
||||
\chapter*{Prefaces to the Holiday Draft Edition}
|
||||
\chapter*{Prefaces to the Draft Edition}
|
||||
I started this text in April 2003 to complement my LibTomMath library. That is, explain how to implement the functions
|
||||
contained in LibTomMath. The goal is to have a textbook that any Computer Science student can use when implementing their
|
||||
own multiple precision arithmetic. The plan I wanted to follow was flesh out all the
|
||||
@ -100,7 +100,7 @@ to read it. I had Jean-Luc Cooke print copies for me and I brought them to Cryp
|
||||
managed to grab a certain level of attention having people from around the world ask me for copies of the text was certain
|
||||
rewarding.
|
||||
|
||||
Now we are in December 2003. By this time I had pictured that I would have at least finished my second draft of the text.
|
||||
Now we are past December 2003. By this time I had pictured that I would have at least finished my second draft of the text.
|
||||
Currently I am far off from this goal. I've done partial re-writes of chapters one, two and three but they are not even
|
||||
finished yet. I haven't given up on the project, only had some setbacks. First O'Reilly declined to publish the text then
|
||||
Addison-Wesley and Greg is tried another which I don't know the name of. However, at this point I want to focus my energy
|
||||
@ -146,9 +146,6 @@ plan is to edit one chapter every two weeks starting January 4th. It seems insa
|
||||
should provide ample time. By Crypto'04 I plan to have a 2nd draft of the text polished and ready to hand out to as many
|
||||
people who will take it.
|
||||
|
||||
Finally, again, I'd like to thank my parents Vern and Katie St Denis for giving me a place to stay, food, clothes and
|
||||
word of encouragement whenever I seemed to need it. Thanks!
|
||||
|
||||
\begin{flushright} Tom St Denis \end{flushright}
|
||||
|
||||
\newpage
|
||||
@ -485,7 +482,7 @@ exponentiation and Montgomery reduction have been provided to make the library m
|
||||
Even with the nearly optimal and specialized algorithms that have been included the Application Programing Interface
|
||||
(\textit{API}) has been kept as simple as possible. Often generic place holder routines will make use of specialized
|
||||
algorithms automatically without the developer's specific attention. One such example is the generic multiplication
|
||||
algorithm \textbf{mp\_mul()} which will automatically use Karatsuba, Toom-Cook, Comba or baseline multiplication
|
||||
algorithm \textbf{mp\_mul()} which will automatically use Toom--Cook, Karatsuba, Comba or baseline multiplication
|
||||
based on the magnitude of the inputs and the configuration of the library.
|
||||
|
||||
Making LibTomMath as efficient as possible is not the only goal of the LibTomMath project. Ideally the library should
|
||||
@ -510,12 +507,12 @@ segments of code littered throughout the source. This clean and uncluttered app
|
||||
developer can more readily discern the true intent of a given section of source code without trying to keep track of
|
||||
what conditional code will be used.
|
||||
|
||||
The code base of LibTomMath is also well organized. Each function is in its own separate source code file
|
||||
which allows the reader to find a given function very quickly. On average there are about $76$ lines of code per source
|
||||
The code base of LibTomMath is well organized. Each function is in its own separate source code file
|
||||
which allows the reader to find a given function very quickly. On average there are $76$ lines of code per source
|
||||
file which makes the source very easily to follow. By comparison MPI and LIP are single file projects making code tracing
|
||||
very hard. GMP has many conditional code segments which also hinder tracing.
|
||||
|
||||
When compiled with GCC for the x86 processor and optimized for speed the entire library is approximately $66$KiB\footnote{The notation ``KiB'' means $2^{10}$ octets, similarly ``MiB'' means $2^{20}$ octets.}
|
||||
When compiled with GCC for the x86 processor and optimized for speed the entire library is approximately $100$KiB\footnote{The notation ``KiB'' means $2^{10}$ octets, similarly ``MiB'' means $2^{20}$ octets.}
|
||||
which is fairly small compared to GMP (over $250$KiB). LibTomMath is slightly larger than MPI (which compiles to about
|
||||
$50$KiB) but LibTomMath is also much faster and more complete than MPI.
|
||||
|
||||
@ -2736,7 +2733,7 @@ general purpose multiplication. Given two polynomial basis representations $f(x
|
||||
light algebra \cite{KARAP} that the following polynomial is equivalent to multiplication of the two integers the polynomials represent.
|
||||
|
||||
\begin{equation}
|
||||
f(x) \cdot g(x) = acx^2 + ((a - b)(c - d) + ac + bd)x + bd
|
||||
f(x) \cdot g(x) = acx^2 + ((a - b)(c - d) - (ac + bd))x + bd
|
||||
\end{equation}
|
||||
|
||||
Using the observation that $ac$ and $bd$ could be re-used only three half sized multiplications would be required to produce the product. Applying
|
||||
@ -3196,7 +3193,7 @@ Upon closer inspection this equation only requires the calculation of three half
|
||||
Karatsuba multiplication, this algorithm can be applied recursively on the input and will achieve an asymptotic running time of
|
||||
$O \left ( n^{lg(3)} \right )$.
|
||||
|
||||
You might ask yourself, if the asymptotic time of Karatsuba squaring and multiplication is the same, why not simply use the multiplication algorithm
|
||||
If the asymptotic times of Karatsuba squaring and multiplication are the same, why not simply use the multiplication algorithm
|
||||
instead? The answer to this arises from the cutoff point for squaring. As in multiplication there exists a cutoff point, at which the
|
||||
time required for a Comba based squaring and a Karatsuba based squaring meet. Due to the overhead inherent in the Karatsuba method, the cutoff
|
||||
point is fairly high. For example, on an AMD Athlon XP processor with $\beta = 2^{28}$, the cutoff point is around 127 digits.
|
||||
|