added libtommath-0.30

This commit is contained in:
Tom St Denis 2004-04-11 20:46:22 +00:00 committed by Steffen Jaeckel
parent 6c48a9b3a6
commit 350578d400
66 changed files with 7073 additions and 5858 deletions

6
bn.ilg
View File

@ -1,6 +1,6 @@
This is makeindex, version 2.14 [02-Oct-2002] (kpathsea + Thai support).
Scanning input file bn.idx....done (57 entries accepted, 0 rejected).
Sorting entries....done (342 comparisons).
Generating output file bn.ind....done (60 lines written, 0 warnings).
Scanning input file bn.idx....done (79 entries accepted, 0 rejected).
Sorting entries....done (511 comparisons).
Generating output file bn.ind....done (82 lines written, 0 warnings).
Output written in bn.ind.
Transcript written in bn.ilg.

100
bn.ind
View File

@ -1,60 +1,82 @@
\begin{theindex}
\item mp\_add, \hyperpage{23}
\item mp\_and, \hyperpage{23}
\item mp\_add, \hyperpage{25}
\item mp\_add\_d, \hyperpage{48}
\item mp\_and, \hyperpage{25}
\item mp\_clear, \hyperpage{7}
\item mp\_clear\_multi, \hyperpage{8}
\item mp\_cmp, \hyperpage{18}
\item mp\_cmp\_d, \hyperpage{20}
\item mp\_cmp\_mag, \hyperpage{17}
\item mp\_div, \hyperpage{29}
\item mp\_div\_2, \hyperpage{21}
\item mp\_div\_2d, \hyperpage{22}
\item MP\_EQ, \hyperpage{17}
\item mp\_cmp, \hyperpage{20}
\item mp\_cmp\_d, \hyperpage{21}
\item mp\_cmp\_mag, \hyperpage{19}
\item mp\_div, \hyperpage{26}
\item mp\_div\_2, \hyperpage{22}
\item mp\_div\_2d, \hyperpage{24}
\item mp\_div\_d, \hyperpage{48}
\item mp\_dr\_reduce, \hyperpage{36}
\item mp\_dr\_setup, \hyperpage{36}
\item MP\_EQ, \hyperpage{18}
\item mp\_error\_to\_string, \hyperpage{6}
\item mp\_expt\_d, \hyperpage{31}
\item mp\_exptmod, \hyperpage{31}
\item mp\_exteuclid, \hyperpage{39}
\item mp\_gcd, \hyperpage{39}
\item mp\_expt\_d, \hyperpage{39}
\item mp\_exptmod, \hyperpage{39}
\item mp\_exteuclid, \hyperpage{47}
\item mp\_gcd, \hyperpage{47}
\item mp\_get\_int, \hyperpage{16}
\item mp\_grow, \hyperpage{12}
\item MP\_GT, \hyperpage{17}
\item MP\_GT, \hyperpage{18}
\item mp\_init, \hyperpage{7}
\item mp\_init\_copy, \hyperpage{9}
\item mp\_init\_multi, \hyperpage{8}
\item mp\_init\_set, \hyperpage{17}
\item mp\_init\_set\_int, \hyperpage{17}
\item mp\_init\_size, \hyperpage{10}
\item mp\_int, \hyperpage{6}
\item mp\_invmod, \hyperpage{40}
\item mp\_jacobi, \hyperpage{40}
\item mp\_lcm, \hyperpage{39}
\item mp\_lshd, \hyperpage{23}
\item MP\_LT, \hyperpage{17}
\item mp\_invmod, \hyperpage{48}
\item mp\_jacobi, \hyperpage{48}
\item mp\_lcm, \hyperpage{47}
\item mp\_lshd, \hyperpage{24}
\item MP\_LT, \hyperpage{18}
\item MP\_MEM, \hyperpage{5}
\item mp\_mul, \hyperpage{25}
\item mp\_mul\_2, \hyperpage{21}
\item mp\_mul\_2d, \hyperpage{22}
\item mp\_n\_root, \hyperpage{31}
\item mp\_neg, \hyperpage{24}
\item mp\_mod, \hyperpage{31}
\item mp\_mod\_d, \hyperpage{48}
\item mp\_montgomery\_calc\_normalization, \hyperpage{34}
\item mp\_montgomery\_reduce, \hyperpage{33}
\item mp\_montgomery\_setup, \hyperpage{33}
\item mp\_mul, \hyperpage{27}
\item mp\_mul\_2, \hyperpage{22}
\item mp\_mul\_2d, \hyperpage{24}
\item mp\_mul\_d, \hyperpage{48}
\item mp\_n\_root, \hyperpage{40}
\item mp\_neg, \hyperpage{25}
\item MP\_NO, \hyperpage{5}
\item MP\_OKAY, \hyperpage{5}
\item mp\_or, \hyperpage{23}
\item mp\_prime\_fermat, \hyperpage{33}
\item mp\_prime\_is\_divisible, \hyperpage{33}
\item mp\_prime\_is\_prime, \hyperpage{34}
\item mp\_prime\_miller\_rabin, \hyperpage{33}
\item mp\_prime\_next\_prime, \hyperpage{34}
\item mp\_prime\_rabin\_miller\_trials, \hyperpage{34}
\item mp\_prime\_random, \hyperpage{35}
\item mp\_radix\_size, \hyperpage{37}
\item mp\_read\_radix, \hyperpage{37}
\item mp\_rshd, \hyperpage{23}
\item mp\_or, \hyperpage{25}
\item mp\_prime\_fermat, \hyperpage{41}
\item mp\_prime\_is\_divisible, \hyperpage{41}
\item mp\_prime\_is\_prime, \hyperpage{42}
\item mp\_prime\_miller\_rabin, \hyperpage{41}
\item mp\_prime\_next\_prime, \hyperpage{42}
\item mp\_prime\_rabin\_miller\_trials, \hyperpage{42}
\item mp\_prime\_random, \hyperpage{43}
\item mp\_prime\_random\_ex, \hyperpage{43}
\item mp\_radix\_size, \hyperpage{45}
\item mp\_read\_radix, \hyperpage{45}
\item mp\_read\_unsigned\_bin, \hyperpage{46}
\item mp\_reduce, \hyperpage{32}
\item mp\_reduce\_2k, \hyperpage{37}
\item mp\_reduce\_2k\_setup, \hyperpage{37}
\item mp\_reduce\_setup, \hyperpage{32}
\item mp\_rshd, \hyperpage{24}
\item mp\_set, \hyperpage{15}
\item mp\_set\_int, \hyperpage{16}
\item mp\_shrink, \hyperpage{11}
\item mp\_sqr, \hyperpage{25}
\item mp\_sub, \hyperpage{23}
\item mp\_toradix, \hyperpage{37}
\item mp\_sqr, \hyperpage{29}
\item mp\_sub, \hyperpage{25}
\item mp\_sub\_d, \hyperpage{48}
\item mp\_to\_unsigned\_bin, \hyperpage{46}
\item mp\_toradix, \hyperpage{45}
\item mp\_unsigned\_bin\_size, \hyperpage{46}
\item MP\_VAL, \hyperpage{5}
\item mp\_xor, \hyperpage{23}
\item mp\_xor, \hyperpage{25}
\item MP\_YES, \hyperpage{5}
\end{theindex}

BIN
bn.pdf

Binary file not shown.

568
bn.tex
View File

@ -49,7 +49,7 @@
\begin{document}
\frontmatter
\pagestyle{empty}
\title{LibTomMath User Manual \\ v0.28}
\title{LibTomMath User Manual \\ v0.30}
\author{Tom St Denis \\ tomstdenis@iahu.ca}
\maketitle
This text, the library and the accompanying textbook are all hereby placed in the public domain. This book has been
@ -87,7 +87,7 @@ release the textbook ``Implementing Multiple Precision Arithmetic'' has been pla
release as well. This textbook is meant to compliment the project by providing a more solid walkthrough of the development
algorithms used in the library.
Since both\footnote{Note that the MPI files under mtest/ are copyrighted by Michael Fromberger.} are in the
Since both\footnote{Note that the MPI files under mtest/ are copyrighted by Michael Fromberger. They are not required to use LibTomMath.} are in the
public domain everyone is entitled to do with them as they see fit.
\section{Building LibTomMath}
@ -114,7 +114,7 @@ nmake -f makefile.msvc
This will build the library and archive the object files in ``tommath.lib''. This has been tested with MSVC version 6.00
with service pack 5.
Tbere is limited support for making a ``DLL'' in windows via the ``makefile.cygwin\_dll'' makefile. It requires Cygwin
There is limited support for making a ``DLL'' in windows via the ``makefile.cygwin\_dll'' makefile. It requires Cygwin
to work with since it requires the auto-export/import functionality. The resulting DLL and imprt library ``libtomcrypt.dll.a''
can be used to link LibTomMath dynamically to any Windows program using Cygwin.
@ -385,7 +385,7 @@ To initialized and make a copy of an mp\_int the mp\_init\_copy() function has b
int mp_init_copy (mp_int * a, mp_int * b);
\end{alltt}
This function will initialize ``a'' and make it a copy of ``b'' if all goes well.
This function will initialize $a$ and make it a copy of $b$ if all goes well.
\begin{small} \begin{alltt}
int main(void)
@ -420,8 +420,8 @@ you override this behaviour.
int mp_init_size (mp_int * a, int size);
\end{alltt}
The ``size'' parameter must be greater than zero. If the function succeeds the mp\_int ``a'' will be initialized
to have ``size'' digits (which are all initially zero).
The $size$ parameter must be greater than zero. If the function succeeds the mp\_int $a$ will be initialized
to have $size$ digits (which are all initially zero).
\begin{small} \begin{alltt}
int main(void)
@ -453,7 +453,7 @@ digits can be removed to return memory to the heap with the mp\_shrink() functio
int mp_shrink (mp_int * a);
\end{alltt}
This will remove excess digits of the mp\_int ``a''. If the operation fails the mp\_int should be intact without the
This will remove excess digits of the mp\_int $a$. If the operation fails the mp\_int should be intact without the
excess digits being removed. Note that you can use a shrunk mp\_int in further computations, however, such operations
will require heap operations which can be slow. It is not ideal to shrink mp\_int variables that you will further
modify in the system (unless you are seriously low on memory).
@ -502,8 +502,8 @@ your desired size.
int mp_grow (mp_int * a, int size);
\end{alltt}
This will grow the array of digits of ``a'' to ``size''. If the \textit{alloc} parameter is already bigger than
``size'' the function will not do anything.
This will grow the array of digits of $a$ to $size$. If the \textit{alloc} parameter is already bigger than
$size$ the function will not do anything.
\begin{small} \begin{alltt}
int main(void)
@ -552,7 +552,7 @@ Setting a single digit can be accomplished with the following function.
void mp_set (mp_int * a, mp_digit b);
\end{alltt}
This will zero the contents of ``a'' and make it represent an integer equal to the value of ``b''. Note that this
This will zero the contents of $a$ and make it represent an integer equal to the value of $b$. Note that this
function has a return type of \textbf{void}. It cannot cause an error so it is safe to assume the function
succeeded.
@ -578,20 +578,29 @@ int main(void)
\}
\end{alltt} \end{small}
\subsection{Long Constant}
\subsection{Long Constants}
When you want to set a constant that is the size of an ISO C ``unsigned long'' and larger than a single
digit the following function is provided.
To set a constant that is the size of an ISO C ``unsigned long'' and larger than a single digit the following function
can be used.
\index{mp\_set\_int}
\begin{alltt}
int mp_set_int (mp_int * a, unsigned long b);
\end{alltt}
This will assign the value of the 32-bit variable ``b'' to the mp\_int ``a''. Unlike mp\_set() this function will always
This will assign the value of the 32-bit variable $b$ to the mp\_int $a$. Unlike mp\_set() this function will always
accept a 32-bit input regardless of the size of a single digit. However, since the value may span several digits
this function can fail if it runs out of heap memory.
To get the ``unsigned long'' copy of an mp\_int the following function can be used.
\index{mp\_get\_int}
\begin{alltt}
unsigned long mp_get_int (mp_int * a);
\end{alltt}
This will return the 32 least significant bits of the mp\_int $a$.
\begin{small} \begin{alltt}
int main(void)
\{
@ -610,6 +619,9 @@ int main(void)
mp_error_to_string(result));
return EXIT_FAILURE;
\}
printf("number == \%lu", mp_get_int(&number));
/* we're done with it. */
mp_clear(&number);
@ -617,6 +629,58 @@ int main(void)
\}
\end{alltt} \end{small}
This should output the following if the program succeeds.
\begin{alltt}
number == 654321
\end{alltt}
\subsection{Initialize and Setting Constants}
To both initialize and set small constants the following two functions are available.
\index{mp\_init\_set} \index{mp\_init\_set\_int}
\begin{alltt}
int mp_init_set (mp_int * a, mp_digit b);
int mp_init_set_int (mp_int * a, unsigned long b);
\end{alltt}
Both functions work like the previous counterparts except they first mp\_init $a$ before setting the values.
\begin{alltt}
int main(void)
\{
mp_int number1, number2;
int result;
/* initialize and set a single digit */
if ((result = mp_init_set(&number1, 100)) != MP_OKAY) \{
printf("Error setting number1: \%s",
mp_error_to_string(result));
return EXIT_FAILURE;
\}
/* initialize and set a long */
if ((result = mp_init_set_int(&number2, 1023)) != MP_OKAY) \{
printf("Error setting number2: \%s",
mp_error_to_string(result));
return EXIT_FAILURE;
\}
/* display */
printf("Number1, Number2 == \%lu, \%lu",
mp_get_int(&number1), mp_get_int(&number2));
/* clear */
mp_clear_multi(&number1, &number2, NULL);
return EXIT_SUCCESS;
\}
\end{alltt}
If this program succeeds it shall output.
\begin{alltt}
Number1, Number2 == 100, 1023
\end{alltt}
\section{Comparisons}
Comparisons in LibTomMath are always performed in a ``left to right'' fashion. There are three possible return codes
@ -650,7 +714,7 @@ mp\_int variables based on their digits only.
\begin{alltt}
int mp_cmp(mp_int * a, mp_int * b);
\end{alltt}
This will compare ``a'' to ``b'' placing ``a'' to the left of ``b''. This function cannot fail and will return one of the
This will compare $a$ to $b$ placing $a$ to the left of $b$. This function cannot fail and will return one of the
three compare codes listed in figure \ref{fig:CMP}.
\begin{small} \begin{alltt}
@ -707,7 +771,7 @@ To compare two mp\_int variables based on their signed value the mp\_cmp() funct
int mp_cmp(mp_int * a, mp_int * b);
\end{alltt}
This will compare ``a'' to the left of ``b''. It will first compare the signs of the two mp\_int variables. If they
This will compare $a$ to the left of $b$. It will first compare the signs of the two mp\_int variables. If they
differ it will return immediately based on their signs. If the signs are equal then it will compare the digits
individually. This function will return one of the compare conditions codes listed in figure \ref{fig:CMP}.
@ -763,7 +827,7 @@ To compare a single digit against an mp\_int the following function has been pro
int mp_cmp_d(mp_int * a, mp_digit b);
\end{alltt}
This will compare ``a'' to the left of ``b'' using a signed comparison. Note that it will always treat ``b'' as
This will compare $a$ to the left of $b$ using a signed comparison. Note that it will always treat $b$ as
positive. This function is rather handy when you have to compare against small values such as $1$ (which often
comes up in cryptography). The function cannot fail and will return one of the tree compare condition codes
listed in figure \ref{fig:CMP}.
@ -820,7 +884,7 @@ int mp_mul_2(mp_int * a, mp_int * b);
int mp_div_2(mp_int * a, mp_int * b);
\end{alltt}
The former will assign twice ``a'' to ``b'' while the latter will assign half ``a'' to ``b''. These functions are fast
The former will assign twice $a$ to $b$ while the latter will assign half $a$ to $b$. These functions are fast
since the shift counts and maskes are hardcoded into the routines.
\begin{small} \begin{alltt}
@ -883,8 +947,8 @@ Since $10 > 7$ and $5 < 7$. To multiply by a power of two the following functio
int mp_mul_2d(mp_int * a, int b, mp_int * c);
\end{alltt}
This will multiply ``a'' by $2^b$ and store the result in ``c''. If the value of $b$ is less than or equal to
zero the function will copy ``a'' to ``c'' without performing any further actions.
This will multiply $a$ by $2^b$ and store the result in ``c''. If the value of $b$ is less than or equal to
zero the function will copy $a$ to ``c'' without performing any further actions.
To divide by a power of two use the following.
@ -892,8 +956,8 @@ To divide by a power of two use the following.
\begin{alltt}
int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d);
\end{alltt}
Which will divide ``a'' by $2^b$, store the quotient in ``c'' and the remainder in ``d'. If $b \le 0$ then the
function simply copies ``a'' over to ``c'' and zeroes ``d''. The variable ``d'' may be passed as a \textbf{NULL}
Which will divide $a$ by $2^b$, store the quotient in ``c'' and the remainder in ``d'. If $b \le 0$ then the
function simply copies $a$ over to ``c'' and zeroes $d$. The variable $d$ may be passed as a \textbf{NULL}
value to signal that the remainder is not desired.
\subsection{Polynomial Basis Operations}
@ -911,14 +975,14 @@ following function provides this operation.
int mp_lshd (mp_int * a, int b);
\end{alltt}
This will multiply ``a'' in place by $x^b$ which is equivalent to shifting the digits left $b$ places and inserting zeroes
This will multiply $a$ in place by $x^b$ which is equivalent to shifting the digits left $b$ places and inserting zeroes
in the least significant digits. Similarly to divide by a power of $x$ the following function is provided.
\index{mp\_rshd}
\begin{alltt}
void mp_rshd (mp_int * a, int b)
\end{alltt}
This will divide ``a'' in place by $x^b$ and discard the remainder. This function cannot fail as it performs the operations
This will divide $a$ in place by $x^b$ and discard the remainder. This function cannot fail as it performs the operations
in place and no new digits are required to complete it.
\subsection{AND, OR and XOR Operations}
@ -948,7 +1012,6 @@ int mp_sub (mp_int * a, mp_int * b, mp_int * c)
Which perform $c = a \odot b$ where $\odot$ is one of signed addition or subtraction. The operations are fully sign
aware.
\section{Sign Manipulation}
\subsection{Negation}
\label{sec:NEG}
@ -959,7 +1022,7 @@ Simple integer negation can be performed with the following.
int mp_neg (mp_int * a, mp_int * b);
\end{alltt}
Which assigns $-b$ to $a$.
Which assigns $-a$ to $b$.
\subsection{Absolute}
Simple integer absolutes can be performed with the following.
@ -969,7 +1032,20 @@ Simple integer absolutes can be performed with the following.
int mp_abs (mp_int * a, mp_int * b);
\end{alltt}
Which assigns $\vert b \vert$ to $a$.
Which assigns $\vert a \vert$ to $b$.
\section{Integer Division and Remainder}
To perform a complete and general integer division with remainder use the following function.
\index{mp\_div}
\begin{alltt}
int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d);
\end{alltt}
This divides $a$ by $b$ and stores the quotient in $c$ and $d$. The signed quotient is computed such that
$bc + d = a$. Note that either of $c$ or $d$ can be set to \textbf{NULL} if their value is not required. If
$b$ is zero the function returns \textbf{MP\_VAL}.
\chapter{Multiplication and Squaring}
\section{Multiplication}
@ -986,6 +1062,57 @@ sized inputs. Then followed by the Comba and baseline multipliers.
Fortunately for the developer you don't really need to know this unless you really want to fine tune the system. mp\_mul()
will determine on its own\footnote{Some tweaking may be required.} what routine to use automatically when it is called.
\begin{alltt}
int main(void)
\{
mp_int number1, number2;
int result;
/* Initialize the numbers */
if ((result = mp_init_multi(&number1,
&number2, NULL)) != MP_OKAY) \{
printf("Error initializing the numbers. \%s",
mp_error_to_string(result));
return EXIT_FAILURE;
\}
/* set the terms */
if ((result = mp_set_int(&number, 257)) != MP_OKAY) \{
printf("Error setting number1. \%s",
mp_error_to_string(result));
return EXIT_FAILURE;
\}
if ((result = mp_set_int(&number2, 1023)) != MP_OKAY) \{
printf("Error setting number2. \%s",
mp_error_to_string(result));
return EXIT_FAILURE;
\}
/* multiply them */
if ((result = mp_mul(&number1, &number2,
&number1)) != MP_OKAY) \{
printf("Error multiplying terms. \%s",
mp_error_to_string(result));
return EXIT_FAILURE;
\}
/* display */
printf("number1 * number2 == \%lu", mp_get_int(&number1));
/* free terms and return */
mp_clear_multi(&number1, &number2, NULL);
return EXIT_SUCCESS;
\}
\end{alltt}
If this program succeeds it shall output the following.
\begin{alltt}
number1 * number2 == 262911
\end{alltt}
\section{Squaring}
Since squaring can be performed faster than multiplication it is performed it's own function instead of just using
mp\_mul().
@ -995,12 +1122,12 @@ mp\_mul().
int mp_sqr (mp_int * a, mp_int * b);
\end{alltt}
Will square ``a'' and store it in ``b''. Like the case of multiplication there are four different squaring
algorithms all which can be called from mp\_sqr().
Will square $a$ and store it in $b$. Like the case of multiplication there are four different squaring
algorithms all which can be called from mp\_sqr(). It is ideal to use mp\_sqr over mp\_mul when squaring terms.
\section{Tuning Polynomial Basis Routines}
Both Toom-Cook and Karatsuba multiplication algorithms are faster than the traditional $O(n^2)$ approach that
Both of the Toom-Cook and Karatsuba multiplication algorithms are faster than the traditional $O(n^2)$ approach that
the Comba and baseline algorithms use. At $O(n^{1.464973})$ and $O(n^{1.584962})$ running times respectfully they require
considerably less work. For example, a 10000-digit multiplication would take roughly 724,000 single precision
multiplications with Toom-Cook or 100,000,000 single precision multiplications with the standard Comba (a factor
@ -1044,30 +1171,286 @@ good Karatsuba squaring and multiplication points. Then it proceeds to find Too
tuning takes a very long time as the cutoff points are likely to be very high.
\chapter{Modular Reduction}
\section{Integer Division and Remainder}
To perform a complete and general integer division with remainder use the following function.
\index{mp\_div}
Modular reduction is process of taking the remainder of one quantity divided by another. Expressed
as (\ref{eqn:mod}) the modular reduction is equivalent to the remainder of $b$ divided by $c$.
\begin{equation}
a \equiv b \mbox{ (mod }c\mbox{)}
\label{eqn:mod}
\end{equation}
Of particular interest to cryptography are reductions where $b$ is limited to the range $0 \le b < c^2$ since particularly
fast reduction algorithms can be written for the limited range.
Note that one of the four optimized reduction algorithms are automatically chosen in the modular exponentiation
algorithm mp\_exptmod when an appropriate modulus is detected.
\section{Straight Division}
In order to effect an arbitrary modular reduction the following algorithm is provided.
\index{mp\_mod}
\begin{alltt}
int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d);
int mp_mod(mp_int *a, mp_int *b, mp_int *c);
\end{alltt}
This divides ``a'' by ``b'' and stores the quotient in ``c'' and ``d''. The signed quotient is computed such that
$bc + d = a$. Note that either of ``c'' or ``d'' can be set to \textbf{NULL} if their value is not required.
This reduces $a$ modulo $b$ and stores the result in $c$. The sign of $c$ shall agree with the sign
of $b$. This algorithm accepts an input $a$ of any range and is not limited by $0 \le a < b^2$.
\section{Barrett Reduction}
Barrett reduction is a generic optimized reduction algorithm that requires pre--computation to achieve
a decent speedup over straight division. First a $mu$ value must be precomputed with the following function.
\index{mp\_reduce\_setup}
\begin{alltt}
int mp_reduce_setup(mp_int *a, mp_int *b);
\end{alltt}
Given a modulus in $b$ this produces the required $mu$ value in $a$. For any given modulus this only has to
be computed once. Modular reduction can now be performed with the following.
\index{mp\_reduce}
\begin{alltt}
int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
\end{alltt}
This will reduce $a$ in place modulo $b$ with the precomputed $mu$ value in $c$. $a$ must be in the range
$0 \le a < b^2$.
\begin{alltt}
int main(void)
\{
mp_int a, b, c, mu;
int result;
/* initialize a,b to desired values, mp_init mu,
* c and set c to 1...we want to compute a^3 mod b
*/
/* get mu value */
if ((result = mp_reduce_setup(&mu, b)) != MP_OKAY) \{
printf("Error getting mu. \%s",
mp_error_to_string(result));
return EXIT_FAILURE;
\}
/* square a to get c = a^2 */
if ((result = mp_sqr(&a, &c)) != MP_OKAY) \{
printf("Error squaring. \%s",
mp_error_to_string(result));
return EXIT_FAILURE;
\}
/* now reduce `c' modulo b */
if ((result = mp_reduce(&c, &b, &mu)) != MP_OKAY) \{
printf("Error reducing. \%s",
mp_error_to_string(result));
return EXIT_FAILURE;
\}
/* multiply a to get c = a^3 */
if ((result = mp_mul(&a, &c, &c)) != MP_OKAY) \{
printf("Error reducing. \%s",
mp_error_to_string(result));
return EXIT_FAILURE;
\}
/* now reduce `c' modulo b */
if ((result = mp_reduce(&c, &b, &mu)) != MP_OKAY) \{
printf("Error reducing. \%s",
mp_error_to_string(result));
return EXIT_FAILURE;
\}
/* c now equals a^3 mod b */
return EXIT_SUCCESS;
\}
\end{alltt}
This program will calculate $a^3 \mbox{ mod }b$ if all the functions succeed.
\section{Montgomery Reduction}
Montgomery is a specialized reduction algorithm for any odd moduli. Like Barrett reduction a pre--computation
step is required. This is accomplished with the following.
\index{mp\_montgomery\_setup}
\begin{alltt}
int mp_montgomery_setup(mp_int *a, mp_digit *mp);
\end{alltt}
For the given odd moduli $a$ the precomputation value is placed in $mp$. The reduction is computed with the
following.
\index{mp\_montgomery\_reduce}
\begin{alltt}
int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
\end{alltt}
This reduces $a$ in place modulo $m$ with the pre--computed value $mp$. $a$ must be in the range
$0 \le a < b^2$.
Montgomery reduction is faster than Barrett reduction for moduli smaller than the ``comba'' limit. With the default
setup for instance, the limit is $127$ digits ($3556$--bits). Note that this function is not limited to
$127$ digits just that it falls back to a baseline algorithm after that point.
An important observation is that this reduction does not return $a \mbox{ mod }m$ but $aR^{-1} \mbox{ mod }m$
where $R = \beta^n$, $n$ is the n number of digits in $m$ and $\beta$ is radix used (default is $2^{28}$).
To quickly calculate $R$ the following function was provided.
\index{mp\_montgomery\_calc\_normalization}
\begin{alltt}
int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
\end{alltt}
Which calculates $a = R$ for the odd moduli $b$ without using multiplication or division.
The normal modus operandi for Montgomery reductions is to normalize the integers before entering the system. For
example, to calculate $a^3 \mbox { mod }b$ using Montgomery reduction the value of $a$ can be normalized by
multiplying it by $R$. Consider the following code snippet.
\begin{alltt}
int main(void)
\{
mp_int a, b, c, R;
mp_digit mp;
int result;
/* initialize a,b to desired values,
* mp_init R, c and set c to 1....
*/
/* get normalization */
if ((result = mp_montgomery_calc_normalization(&R, b)) != MP_OKAY) \{
printf("Error getting norm. \%s",
mp_error_to_string(result));
return EXIT_FAILURE;
\}
/* get mp value */
if ((result = mp_montgomery_setup(&c, &mp)) != MP_OKAY) \{
printf("Error setting up montgomery. \%s",
mp_error_to_string(result));
return EXIT_FAILURE;
\}
/* normalize `a' so now a is equal to aR */
if ((result = mp_mulmod(&a, &R, &b, &a)) != MP_OKAY) \{
printf("Error computing aR. \%s",
mp_error_to_string(result));
return EXIT_FAILURE;
\}
/* square a to get c = a^2R^2 */
if ((result = mp_sqr(&a, &c)) != MP_OKAY) \{
printf("Error squaring. \%s",
mp_error_to_string(result));
return EXIT_FAILURE;
\}
/* now reduce `c' back down to c = a^2R^2 * R^-1 == a^2R */
if ((result = mp_montgomery_reduce(&c, &b, mp)) != MP_OKAY) \{
printf("Error reducing. \%s",
mp_error_to_string(result));
return EXIT_FAILURE;
\}
/* multiply a to get c = a^3R^2 */
if ((result = mp_mul(&a, &c, &c)) != MP_OKAY) \{
printf("Error reducing. \%s",
mp_error_to_string(result));
return EXIT_FAILURE;
\}
/* now reduce `c' back down to c = a^3R^2 * R^-1 == a^3R */
if ((result = mp_montgomery_reduce(&c, &b, mp)) != MP_OKAY) \{
printf("Error reducing. \%s",
mp_error_to_string(result));
return EXIT_FAILURE;
\}
/* now reduce (again) `c' back down to c = a^3R * R^-1 == a^3 */
if ((result = mp_montgomery_reduce(&c, &b, mp)) != MP_OKAY) \{
printf("Error reducing. \%s",
mp_error_to_string(result));
return EXIT_FAILURE;
\}
/* c now equals a^3 mod b */
return EXIT_SUCCESS;
\}
\end{alltt}
This particular example does not look too efficient but it demonstrates the point of the algorithm. By
normalizing the inputs the reduced results are always of the form $aR$ for some variable $a$. This allows
a single final reduction to correct for the normalization and the fast reduction used within the algorithm.
For more details consider examining the file \textit{bn\_mp\_exptmod\_fast.c}.
\section{Restricted Dimminished Radix}
``Dimminished Radix'' reduction refers to reduction with respect to moduli that are ameniable to simple
digit shifting and small multiplications. In this case the ``restricted'' variant refers to moduli of the
form $\beta^k - p$ for some $k \ge 0$ and $0 < p < \beta$ where $\beta$ is the radix (default to $2^{28}$).
As in the case of Montgomery reduction there is a pre--computation phase required for a given modulus.
\index{mp\_dr\_setup}
\begin{alltt}
void mp_dr_setup(mp_int *a, mp_digit *d);
\end{alltt}
This computes the value required for the modulus $a$ and stores it in $d$. This function cannot fail
and does not return any error codes. After the pre--computation a reduction can be performed with the
following.
\index{mp\_dr\_reduce}
\begin{alltt}
int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
\end{alltt}
This reduces $a$ in place modulo $b$ with the pre--computed value $mp$. $b$ must be of a restricted
dimminished radix form and $a$ must be in the range $0 \le a < b^2$. Dimminished radix reductions are
much faster than both Barrett and Montgomery reductions as they have a much lower asymtotic running time.
Since the moduli are restricted this algorithm is not particularly useful for something like Rabin, RSA or
BBS cryptographic purposes. This reduction algorithm is useful for Diffie-Hellman and ECC where fixed
primes are acceptable.
Note that unlike Montgomery reduction there is no normalization process. The result of this function is
equal to the correct residue.
\section{Unrestricted Dimminshed Radix}
Unrestricted reductions work much like the restricted counterparts except in this case the moduli is of the
form $2^k - p$ for $0 < p < \beta$. In this sense the unrestricted reductions are more flexible as they
can be applied to a wider range of numbers.
\index{mp\_reduce\_2k\_setup}
\begin{alltt}
int mp_reduce_2k_setup(mp_int *a, mp_digit *d);
\end{alltt}
This will compute the required $d$ value for the given moduli $a$.
\index{mp\_reduce\_2k}
\begin{alltt}
int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d);
\end{alltt}
This will reduce $a$ in place modulo $n$ with the pre--computed value $d$. From my experience this routine is
slower than mp\_dr\_reduce but faster for most moduli sizes than the Montgomery reduction.
\chapter{Exponentiation}
\section{Single Digit Exponentiation}
\index{mp\_expt\_d}
\begin{alltt}
int mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
\end{alltt}
This computes $c = a^b$ using a simple binary left-to-write algorithm. It is faster than repeated multiplications for
all values of $b$ greater than three.
This computes $c = a^b$ using a simple binary left-to-right algorithm. It is faster than repeated multiplications by
$a$ for all values of $b$ greater than three.
\section{Modular Exponentiation}
\index{mp\_exptmod}
@ -1079,6 +1462,11 @@ will automatically detect the fastest modular reduction technique to use during
$X$ the operation is performed as $Y \equiv (G^{-1} \mbox{ mod }P)^{\vert X \vert} \mbox{ (mod }P\mbox{)}$ provided that
$gcd(G, P) = 1$.
This function is actually a shell around the two internal exponentiation functions. This routine will automatically
detect when Barrett, Montgomery, Restricted and Unrestricted Dimminished Radix based exponentiation can be used. Generally
moduli of the a ``restricted dimminished radix'' form lead to the fastest modular exponentiations. Followed by Montgomery
and the other two algorithms.
\section{Root Finding}
\index{mp\_n\_root}
\begin{alltt}
@ -1090,6 +1478,11 @@ numbers (less than 1000 bits) I'd avoid $b > 3$ situations. Will return a posit
a root with the sign of the input for odd roots. For example, performing $4^{1/2}$ will return $2$ whereas $(-8)^{1/3}$
will return $-2$.
This algorithm uses the ``Newton Approximation'' method and will converge on the correct root fairly quickly. Since
the algorithm requires raising $a$ to the power of $b$ it is not ideal to attempt to find roots for large
values of $b$. If particularly large roots are required then a factor method could be used instead. For example,
$a^{1/16}$ is equivalent to $\left (a^{1/4} \right)^{1/4}$.
\chapter{Prime Numbers}
\section{Trial Division}
\index{mp\_prime\_is\_divisible}
@ -1168,10 +1561,44 @@ typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);
\end{alltt}
Which is a function that must read $len$ bytes (and return the amount stored) into $dst$. The $dat$ variable is simply
copied from the original input. It can be used to pass RNG context data to the callback.
copied from the original input. It can be used to pass RNG context data to the callback. The function
mp\_prime\_random() is more suitable for generating primes which must be secret (as in the case of RSA) since there
is no skew on the least significant bits.
The function mp\_prime\_random() is more suitable for generating primes which must be secret (as in the case of RSA) since
there is no skew on the least significant bits.
\textit{Note:} As of v0.30 of the LibTomMath library this function has been deprecated. It is still available
but users are encouraged to use the new mp\_prime\_random\_ex() function instead.
\subsection{Extended Generation}
\index{mp\_prime\_random\_ex}
\begin{alltt}
int mp_prime_random_ex(mp_int *a, int t,
int size, int flags,
ltm_prime_callback cb, void *dat);
\end{alltt}
This will generate a prime in $a$ using $t$ tests of the primality testing algorithms. The variable $size$
specifies the bit length of the prime desired. The variable $flags$ specifies one of several options available
(see fig. \ref{fig:primeopts}) which can be OR'ed together. The callback parameters are used as in
mp\_prime\_random().
\begin{figure}[here]
\begin{center}
\begin{small}
\begin{tabular}{|r|l|}
\hline \textbf{Flag} & \textbf{Meaning} \\
\hline LTM\_PRIME\_BBS & Make the prime congruent to $3$ modulo $4$ \\
\hline LTM\_PRIME\_SAFE & Make a prime $p$ such that $(p - 1)/2$ is also prime. \\
& This option implies LTM\_PRIME\_BBS as well. \\
\hline LTM\_PRIME\_2MSB\_OFF & Makes sure that the bit adjacent to the most significant bit \\
& Is forced to zero. \\
\hline LTM\_PRIME\_2MSB\_ON & Makes sure that the bit adjacent to the most significant bit \\
& Is forced to one. \\
\hline
\end{tabular}
\end{small}
\end{center}
\caption{Primality Generation Options}
\label{fig:primeopts}
\end{figure}
\chapter{Input and Output}
\section{ASCII Conversions}
@ -1180,7 +1607,7 @@ there is no skew on the least significant bits.
\begin{alltt}
int mp_toradix (mp_int * a, char *str, int radix);
\end{alltt}
This still store ``a'' in ``str'' as a base-``radix'' string of ASCII chars. This function appends a NUL character
This still store $a$ in ``str'' as a base-``radix'' string of ASCII chars. This function appends a NUL character
to terminate the string. Valid values of ``radix'' line in the range $[2, 64]$. To determine the size (exact) required
by the conversion before storing any data use the following function.
@ -1196,12 +1623,46 @@ function returns an error code and ``size'' will be zero.
\begin{alltt}
int mp_read_radix (mp_int * a, char *str, int radix);
\end{alltt}
This will read the base-``radix'' NUL terminated string from ``str'' into ``a''. It will stop reading when it reads a
This will read the base-``radix'' NUL terminated string from ``str'' into $a$. It will stop reading when it reads a
character it does not recognize (which happens to include th NUL char... imagine that...). A single leading $-$ sign
can be used to denote a negative number.
\section{Binary Conversions}
\section{Stream Functions}
Converting an mp\_int to and from binary is another keen idea.
\index{mp\_unsigned\_bin\_size}
\begin{alltt}
int mp_unsigned_bin_size(mp_int *a);
\end{alltt}
This will return the number of bytes (octets) required to store the unsigned copy of the integer $a$.
\index{mp\_to\_unsigned\_bin}
\begin{alltt}
int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
\end{alltt}
This will store $a$ into the buffer $b$ in big--endian format. Fortunately this is exactly what DER (or is it ASN?)
requires. It does not store the sign of the integer.
\index{mp\_read\_unsigned\_bin}
\begin{alltt}
int mp_read_unsigned_bin(mp_int *a, unsigned char *b, int c);
\end{alltt}
This will read in an unsigned big--endian array of bytes (octets) from $b$ of length $c$ into $a$. The resulting
integer $a$ will always be positive.
For those who acknowledge the existence of negative numbers (heretic!) there are ``signed'' versions of the
previous functions.
\begin{alltt}
int mp_signed_bin_size(mp_int *a);
int mp_read_signed_bin(mp_int *a, unsigned char *b, int c);
int mp_to_signed_bin(mp_int *a, unsigned char *b);
\end{alltt}
They operate essentially the same as the unsigned copies except they prefix the data with zero or non--zero
byte depending on the sign. If the sign is zpos (e.g. not negative) the prefix is zero, otherwise the prefix
is non--zero.
\chapter{Algebraic Functions}
\section{Extended Euclidean Algorithm}
@ -1217,6 +1678,8 @@ This finds the triple U1/U2/U3 using the Extended Euclidean algorithm such that
a \cdot U1 + b \cdot U2 = U3
\end{equation}
Any of the U1/U2/U3 paramters can be set to \textbf{NULL} if they are not desired.
\section{Greatest Common Divisor}
\index{mp\_gcd}
\begin{alltt}
@ -1248,10 +1711,23 @@ int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
\end{alltt}
Computes the multiplicative inverse of $a$ modulo $b$ and stores the result in $c$ such that $ac \equiv 1 \mbox{ (mod }b\mbox{)}$.
\section{Single Digit Functions}
For those using small numbers (\textit{snicker snicker}) there are several ``helper'' functions
\index{mp\_add\_d} \index{mp\_sub\_d} \index{mp\_mul\_d} \index{mp\_div\_d} \index{mp\_mod\_d}
\begin{alltt}
int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
\end{alltt}
These work like the full mp\_int capable variants except the second parameter $b$ is a mp\_digit. These
functions fairly handy if you have to work with relatively small numbers since you will not have to allocate
an entire mp\_int to store a number like $1$ or $2$.
\input{bn.ind}
\end{document}

View File

@ -31,8 +31,7 @@
* Based on Algorithm 14.16 on pp.597 of HAC.
*
*/
int
fast_s_mp_sqr (mp_int * a, mp_int * b)
int fast_s_mp_sqr (mp_int * a, mp_int * b)
{
int olduse, newused, res, ix, pa;
mp_word W2[MP_WARRAY], W[MP_WARRAY];

View File

@ -14,11 +14,15 @@
*/
#include <tommath.h>
static const int lnz[16] = {
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
};
/* Counts the number of lsbs which are zero before the first zero bit */
int mp_cnt_lsb(mp_int *a)
{
int x;
mp_digit q;
mp_digit q, qq;
/* easy out */
if (mp_iszero(a) == 1) {
@ -31,11 +35,13 @@ int mp_cnt_lsb(mp_int *a)
x *= DIGIT_BIT;
/* now scan this digit until a 1 is found */
while ((q & 1) == 0) {
q >>= 1;
x += 1;
if ((q & 1) == 0) {
do {
qq = q & 15;
x += lnz[qq];
q >>= 4;
} while (qq == 0);
}
return x;
}

View File

@ -23,7 +23,7 @@ int mp_fwrite(mp_int *a, int radix, FILE *stream)
return err;
}
buf = XMALLOC (len);
buf = OPT_CAST(char) XMALLOC (len);
if (buf == NULL) {
return MP_MEM;
}

39
bn_mp_get_int.c Normal file
View File

@ -0,0 +1,39 @@
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
*/
#include <tommath.h>
/* get the lower 32-bits of an mp_int */
unsigned long mp_get_int(mp_int * a)
{
int i;
unsigned long res;
if (a->used == 0) {
return 0;
}
/* get number of digits of the lsb we have to read */
i = MIN(a->used,(int)((sizeof(unsigned long)*CHAR_BIT+DIGIT_BIT-1)/DIGIT_BIT))-1;
/* get most significant digit of result */
res = DIGIT(a,i);
while (--i >= 0) {
res = (res << DIGIT_BIT) | DIGIT(a,i);
}
/* force result to 32-bits always so it is consistent on non 32-bit platforms */
return res & 0xFFFFFFFFUL;
}

View File

@ -31,7 +31,7 @@ int mp_grow (mp_int * a, int size)
* in case the operation failed we don't want
* to overwrite the dp member of a.
*/
tmp = OPT_CAST XREALLOC (a->dp, sizeof (mp_digit) * size);
tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * size);
if (tmp == NULL) {
/* reallocation failed but "a" is still valid [can be freed] */
return MP_MEM;

View File

@ -18,7 +18,7 @@
int mp_init (mp_int * a)
{
/* allocate memory required and clear it */
a->dp = OPT_CAST XCALLOC (sizeof (mp_digit), MP_PREC);
a->dp = OPT_CAST(mp_digit) XCALLOC (sizeof (mp_digit), MP_PREC);
if (a->dp == NULL) {
return MP_MEM;
}

26
bn_mp_init_set.c Normal file
View File

@ -0,0 +1,26 @@
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
*/
#include <tommath.h>
/* initialize and set a digit */
int mp_init_set (mp_int * a, mp_digit b)
{
int err;
if ((err = mp_init(a)) != MP_OKAY) {
return err;
}
mp_set(a, b);
return err;
}

25
bn_mp_init_set_int.c Normal file
View File

@ -0,0 +1,25 @@
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
*/
#include <tommath.h>
/* initialize and set a digit */
int mp_init_set_int (mp_int * a, unsigned long b)
{
int err;
if ((err = mp_init(a)) != MP_OKAY) {
return err;
}
return mp_set_int(a, b);
}

View File

@ -21,7 +21,7 @@ int mp_init_size (mp_int * a, int size)
size += (MP_PREC * 2) - (size % MP_PREC);
/* alloc mem */
a->dp = OPT_CAST XCALLOC (sizeof (mp_digit), size);
a->dp = OPT_CAST(mp_digit) XCALLOC (sizeof (mp_digit), size);
if (a->dp == NULL) {
return MP_MEM;
}

103
bn_mp_is_square.c Normal file
View File

@ -0,0 +1,103 @@
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
*/
#include <tommath.h>
/* Check if remainders are possible squares - fast exclude non-squares */
static const char rem_128[128] = {
0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1
};
static const char rem_105[105] = {
0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1,
1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1,
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1
};
/* Store non-zero to ret if arg is square, and zero if not */
int mp_is_square(mp_int *arg,int *ret)
{
int res;
mp_digit c;
mp_int t;
unsigned long r;
/* Default to Non-square :) */
*ret = MP_NO;
if (arg->sign == MP_NEG) {
return MP_VAL;
}
/* digits used? (TSD) */
if (arg->used == 0) {
return MP_OKAY;
}
/* First check mod 128 (suppose that DIGIT_BIT is at least 7) */
if (rem_128[127 & DIGIT(arg,0)] == 1) {
return MP_OKAY;
}
/* Next check mod 105 (3*5*7) */
if ((res = mp_mod_d(arg,105,&c)) != MP_OKAY) {
return res;
}
if (rem_105[c] == 1) {
return MP_OKAY;
}
/* product of primes less than 2^31 */
if ((res = mp_init_set_int(&t,11L*13L*17L*19L*23L*29L*31L)) != MP_OKAY) {
return res;
}
if ((res = mp_mod(arg,&t,&t)) != MP_OKAY) {
goto ERR;
}
r = mp_get_int(&t);
/* Check for other prime modules, note it's not an ERROR but we must
* free "t" so the easiest way is to goto ERR. We know that res
* is already equal to MP_OKAY from the mp_mod call
*/
if ( (1L<<(r%11)) & 0x5C4L ) goto ERR;
if ( (1L<<(r%13)) & 0x9E4L ) goto ERR;
if ( (1L<<(r%17)) & 0x5CE8L ) goto ERR;
if ( (1L<<(r%19)) & 0x4F50CL ) goto ERR;
if ( (1L<<(r%23)) & 0x7ACCA0L ) goto ERR;
if ( (1L<<(r%29)) & 0xC2EDD0CL ) goto ERR;
if ( (1L<<(r%31)) & 0x6DE2B848L ) goto ERR;
/* Final check - is sqr(sqrt(arg)) == arg ? */
if ((res = mp_sqrt(arg,&t)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_sqr(&t,&t)) != MP_OKAY) {
goto ERR;
}
*ret = (mp_cmp_mag(&t,arg) == MP_EQ) ? MP_YES : MP_NO;
ERR:mp_clear(&t);
return res;
}

View File

@ -43,8 +43,7 @@
* Generally though the overhead of this method doesn't pay off
* until a certain size (N ~ 80) is reached.
*/
int
mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
{
mp_int x0, x1, y0, y1, t1, x0y0, x1y1;
int B, err;
@ -56,7 +55,7 @@ mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
B = MIN (a->used, b->used);
/* now divide in two */
B = B / 2;
B = B >> 1;
/* init copy all the temps */
if (mp_init_size (&x0, B) != MP_OKAY)

View File

@ -21,8 +21,7 @@
* is essentially the same algorithm but merely
* tuned to perform recursive squarings.
*/
int
mp_karatsuba_sqr (mp_int * a, mp_int * b)
int mp_karatsuba_sqr (mp_int * a, mp_int * b)
{
mp_int x0, x1, t1, t2, x0x0, x1x1;
int B, err;
@ -33,7 +32,7 @@ mp_karatsuba_sqr (mp_int * a, mp_int * b)
B = a->used;
/* now divide in two */
B = B / 2;
B = B >> 1;
/* init copy all the temps */
if (mp_init_size (&x0, B) != MP_OKAY)

View File

@ -21,7 +21,6 @@ mp_mod (mp_int * a, mp_int * b, mp_int * c)
mp_int t;
int res;
if ((res = mp_init (&t)) != MP_OKAY) {
return res;
}
@ -31,7 +30,7 @@ mp_mod (mp_int * a, mp_int * b, mp_int * c)
return res;
}
if (t.sign == MP_NEG) {
if (t.sign != b->sign) {
res = mp_add (b, &t, c);
} else {
res = MP_OKAY;

View File

@ -21,7 +21,7 @@ int mp_neg (mp_int * a, mp_int * b)
if ((res = mp_copy (a, b)) != MP_OKAY) {
return res;
}
if (mp_iszero(b) != 1) {
if (mp_iszero(b) != MP_YES) {
b->sign = (a->sign == MP_ZPOS) ? MP_NEG : MP_ZPOS;
}
return MP_OKAY;

View File

@ -1,74 +0,0 @@
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
*/
#include <tommath.h>
/* makes a truly random prime of a given size (bytes),
* call with bbs = 1 if you want it to be congruent to 3 mod 4
*
* You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
* have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
* so it can be NULL
*
* The prime generated will be larger than 2^(8*size).
*/
/* this sole function may hold the key to enslaving all mankind! */
int mp_prime_random(mp_int *a, int t, int size, int bbs, ltm_prime_callback cb, void *dat)
{
unsigned char *tmp;
int res, err;
/* sanity check the input */
if (size <= 0) {
return MP_VAL;
}
/* we need a buffer of size+1 bytes */
tmp = XMALLOC(size+1);
if (tmp == NULL) {
return MP_MEM;
}
/* fix MSB */
tmp[0] = 1;
do {
/* read the bytes */
if (cb(tmp+1, size, dat) != size) {
err = MP_VAL;
goto error;
}
/* fix the LSB */
tmp[size] |= (bbs ? 3 : 1);
/* read it in */
if ((err = mp_read_unsigned_bin(a, tmp, size+1)) != MP_OKAY) {
goto error;
}
/* is it prime? */
if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) {
goto error;
}
} while (res == MP_NO);
err = MP_OKAY;
error:
XFREE(tmp);
return err;
}

118
bn_mp_prime_random_ex.c Normal file
View File

@ -0,0 +1,118 @@
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
*/
#include <tommath.h>
/* makes a truly random prime of a given size (bits),
*
* Flags are as follows:
*
* LTM_PRIME_BBS - make prime congruent to 3 mod 4
* LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
* LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero
* LTM_PRIME_2MSB_ON - make the 2nd highest bit one
*
* You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
* have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
* so it can be NULL
*
*/
/* This is possibly the mother of all prime generation functions, muahahahahaha! */
int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat)
{
unsigned char *tmp, maskAND, maskOR_msb, maskOR_lsb;
int res, err, bsize, maskOR_msb_offset;
/* sanity check the input */
if (size <= 1 || t <= 0) {
return MP_VAL;
}
/* LTM_PRIME_SAFE implies LTM_PRIME_BBS */
if (flags & LTM_PRIME_SAFE) {
flags |= LTM_PRIME_BBS;
}
/* calc the byte size */
bsize = (size>>3)+(size&7?1:0);
/* we need a buffer of bsize bytes */
tmp = OPT_CAST(unsigned char) XMALLOC(bsize);
if (tmp == NULL) {
return MP_MEM;
}
/* calc the maskAND value for the MSbyte*/
maskAND = 0xFF >> (8 - (size & 7));
/* calc the maskOR_msb */
maskOR_msb = 0;
maskOR_msb_offset = (size - 2) >> 3;
if (flags & LTM_PRIME_2MSB_ON) {
maskOR_msb |= 1 << ((size - 2) & 7);
} else if (flags & LTM_PRIME_2MSB_OFF) {
maskAND &= ~(1 << ((size - 2) & 7));
}
/* get the maskOR_lsb */
maskOR_lsb = 0;
if (flags & LTM_PRIME_BBS) {
maskOR_lsb |= 3;
}
do {
/* read the bytes */
if (cb(tmp, bsize, dat) != bsize) {
err = MP_VAL;
goto error;
}
/* work over the MSbyte */
tmp[0] &= maskAND;
tmp[0] |= 1 << ((size - 1) & 7);
/* mix in the maskORs */
tmp[maskOR_msb_offset] |= maskOR_msb;
tmp[bsize-1] |= maskOR_lsb;
/* read it in */
if ((err = mp_read_unsigned_bin(a, tmp, bsize)) != MP_OKAY) { goto error; }
/* is it prime? */
if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) { goto error; }
if (flags & LTM_PRIME_SAFE) {
/* see if (a-1)/2 is prime */
if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) { goto error; }
if ((err = mp_div_2(a, a)) != MP_OKAY) { goto error; }
/* is it prime? */
if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) { goto error; }
}
} while (res == MP_NO);
if (flags & LTM_PRIME_SAFE) {
/* restore a to the original value */
if ((err = mp_mul_2(a, a)) != MP_OKAY) { goto error; }
if ((err = mp_add_d(a, 1, a)) != MP_OKAY) { goto error; }
}
err = MP_OKAY;
error:
XFREE(tmp);
return err;
}

View File

@ -14,9 +14,9 @@
*/
#include <tommath.h>
/* reduces a modulo n where n is of the form 2**p - k */
/* reduces a modulo n where n is of the form 2**p - d */
int
mp_reduce_2k(mp_int *a, mp_int *n, mp_digit k)
mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d)
{
mp_int q;
int p, res;
@ -32,9 +32,9 @@ top:
goto ERR;
}
if (k != 1) {
/* q = q * k */
if ((res = mp_mul_d(&q, k, &q)) != MP_OKAY) {
if (d != 1) {
/* q = q * d */
if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) {
goto ERR;
}
}

View File

@ -19,7 +19,7 @@ int mp_shrink (mp_int * a)
{
mp_digit *tmp;
if (a->alloc != a->used && a->used > 0) {
if ((tmp = OPT_CAST XREALLOC (a->dp, sizeof (mp_digit) * a->used)) == NULL) {
if ((tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * a->used)) == NULL) {
return MP_MEM;
}
a->dp = tmp;

75
bn_mp_sqrt.c Normal file
View File

@ -0,0 +1,75 @@
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
*/
#include <tommath.h>
/* this function is less generic than mp_n_root, simpler and faster */
int mp_sqrt(mp_int *arg, mp_int *ret)
{
int res;
mp_int t1,t2;
/* must be positive */
if (arg->sign == MP_NEG) {
return MP_VAL;
}
/* easy out */
if (mp_iszero(arg) == MP_YES) {
mp_zero(ret);
return MP_OKAY;
}
if ((res = mp_init_copy(&t1, arg)) != MP_OKAY) {
return res;
}
if ((res = mp_init(&t2)) != MP_OKAY) {
goto E2;
}
/* First approx. (not very bad for large arg) */
mp_rshd (&t1,t1.used/2);
/* t1 > 0 */
if ((res = mp_div(arg,&t1,&t2,NULL)) != MP_OKAY) {
goto E1;
}
if ((res = mp_add(&t1,&t2,&t1)) != MP_OKAY) {
goto E1;
}
if ((res = mp_div_2(&t1,&t1)) != MP_OKAY) {
goto E1;
}
/* And now t1 > sqrt(arg) */
do {
if ((res = mp_div(arg,&t1,&t2,NULL)) != MP_OKAY) {
goto E1;
}
if ((res = mp_add(&t1,&t2,&t1)) != MP_OKAY) {
goto E1;
}
if ((res = mp_div_2(&t1,&t1)) != MP_OKAY) {
goto E1;
}
/* t1 >= sqrt(arg) >= t2 at this point */
} while (mp_cmp_mag(&t1,&t2) == MP_GT);
mp_exch(&t1,ret);
E1: mp_clear(&t2);
E2: mp_clear(&t1);
return res;
}

View File

@ -15,8 +15,7 @@
#include <tommath.h>
/* multiplication using the Toom-Cook 3-way algorithm */
int
mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
{
mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2;
int res, B;

83
bn_mp_toradix_n.c Normal file
View File

@ -0,0 +1,83 @@
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
*/
#include <tommath.h>
/* stores a bignum as a ASCII string in a given radix (2..64)
*
* Stores upto maxlen-1 chars and always a NULL byte
*/
int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen)
{
int res, digs;
mp_int t;
mp_digit d;
char *_s = str;
/* check range of the maxlen, radix */
if (maxlen < 3 || radix < 2 || radix > 64) {
return MP_VAL;
}
/* quick out if its zero */
if (mp_iszero(a) == 1) {
*str++ = '0';
*str = '\0';
return MP_OKAY;
}
if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
return res;
}
/* if it is negative output a - */
if (t.sign == MP_NEG) {
/* we have to reverse our digits later... but not the - sign!! */
++_s;
/* store the flag and mark the number as positive */
*str++ = '-';
t.sign = MP_ZPOS;
/* subtract a char */
--maxlen;
}
digs = 0;
while (mp_iszero (&t) == 0) {
if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
mp_clear (&t);
return res;
}
*str++ = mp_s_rmap[d];
++digs;
if (--maxlen == 1) {
/* no more room */
break;
}
}
/* reverse the digits of the string. In this case _s points
* to the first digit [exluding the sign] of the number]
*/
bn_reverse ((unsigned char *)_s, digs);
/* append a NULL so the string is properly terminated */
*str = '\0';
mp_clear (&t);
return MP_OKAY;
}

View File

@ -1,3 +1,22 @@
April 11th, 2004
v0.30 -- Added "mp_toradix_n" which stores upto "n-1" least significant digits of an mp_int
-- Johan Lindh sent a patch so MSVC wouldn't whine about redefining malloc [in weird dll modes]
-- Henrik Goldman spotted a missing OPT_CAST in mp_fwrite()
-- Tuned tommath.h so that when MP_LOW_MEM is defined MP_PREC shall be reduced.
[I also allow MP_PREC to be externally defined now]
-- Sped up mp_cnt_lsb() by using a 4x4 table [e.g. 4x speedup]
-- Added mp_prime_random_ex() which is a more versatile prime generator accurate to
exact bit lengths (unlike the deprecated but still available mp_prime_random() which
is only accurate to byte lengths). See the new LTM_PRIME_* flags ;-)
-- Alex Polushin contributed an optimized mp_sqrt() as well as mp_get_int() and mp_is_square().
I've cleaned them all up to be a little more consistent [along with one bug fix] for this release.
-- Added mp_init_set and mp_init_set_int to initialize and set small constants with one function
call.
-- Removed /etclib directory [um LibTomPoly deprecates this].
-- Fixed mp_mod() so the sign of the result agrees with the sign of the modulus.
++ N.B. My semester is almost up so expect updates to the textbook to be posted to the libtomcrypt.org
website.
Jan 25th, 2004
v0.29 ++ Note: "Henrik" from the v0.28 changelog refers to Henrik Goldman ;-)
-- Added fix to mp_shrink to prevent a realloc when used == 0 [e.g. realloc zero bytes???]

View File

@ -1,5 +1,7 @@
#include <time.h>
#define TESTING
#ifdef IOWNANATHLON
#include <unistd.h>
#define SLEEP sleep(4)
@ -11,8 +13,45 @@
#ifdef TIMER
ulong64 _tt;
void reset(void) { _tt = clock(); }
ulong64 rdtsc(void) { return clock() - _tt; }
#if defined(__i386__) || defined(_M_IX86) || defined(_M_AMD64)
/* RDTSC from Scott Duplichan */
static ulong64 TIMFUNC (void)
{
#if defined __GNUC__
#ifdef __i386__
ulong64 a;
__asm__ __volatile__ ("rdtsc ":"=A" (a));
return a;
#else /* gcc-IA64 version */
unsigned long result;
__asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
while (__builtin_expect ((int) result == -1, 0))
__asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
return result;
#endif
// Microsoft and Intel Windows compilers
#elif defined _M_IX86
__asm rdtsc
#elif defined _M_AMD64
return __rdtsc ();
#elif defined _M_IA64
#if defined __INTEL_COMPILER
#include <ia64intrin.h>
#endif
return __getReg (3116);
#else
#error need rdtsc function for this build
#endif
}
#else
#define TIMFUNC clock
#endif
ulong64 rdtsc(void) { return TIMFUNC() - _tt; }
void reset(void) { _tt = TIMFUNC(); }
#endif
void ndraw(mp_int *a, char *name)
@ -42,6 +81,13 @@ int lbit(void)
}
}
int myrng(unsigned char *dst, int len, void *dat)
{
int x;
for (x = 0; x < len; x++) dst[x] = rand() & 0xFF;
return len;
}
#define DO2(x) x; x;
#define DO4(x) DO2(x); DO2(x);
@ -53,13 +99,12 @@ int main(void)
{
mp_int a, b, c, d, e, f;
unsigned long expt_n, add_n, sub_n, mul_n, div_n, sqr_n, mul2d_n, div2d_n, gcd_n, lcm_n, inv_n,
div2_n, mul2_n, add_d_n, sub_d_n;
div2_n, mul2_n, add_d_n, sub_d_n, t;
unsigned rr;
int cnt, ix, old_kara_m, old_kara_s;
int i, n, err, cnt, ix, old_kara_m, old_kara_s;
#ifdef TIMER
int n;
ulong64 tt;
ulong64 tt, CLK_PER_SEC;
FILE *log, *logb, *logc;
#endif
@ -72,6 +117,127 @@ int main(void)
srand(time(NULL));
#ifdef TESTING
// test mp_get_int
printf("Testing: mp_get_int\n");
for(i=0;i<1000;++i) {
t = (unsigned long)rand()*rand()+1;
mp_set_int(&a,t);
if (t!=mp_get_int(&a)) {
printf("mp_get_int() bad result!\n");
return 1;
}
}
mp_set_int(&a,0);
if (mp_get_int(&a)!=0)
{ printf("mp_get_int() bad result!\n");
return 1;
}
mp_set_int(&a,0xffffffff);
if (mp_get_int(&a)!=0xffffffff)
{ printf("mp_get_int() bad result!\n");
return 1;
}
// test mp_sqrt
printf("Testing: mp_sqrt\n");
for (i=0;i<10000;++i) {
printf("%6d\r", i); fflush(stdout);
n = (rand()&15)+1;
mp_rand(&a,n);
if (mp_sqrt(&a,&b) != MP_OKAY)
{ printf("mp_sqrt() error!\n");
return 1;
}
mp_n_root(&a,2,&a);
if (mp_cmp_mag(&b,&a) != MP_EQ)
{ printf("mp_sqrt() bad result!\n");
return 1;
}
}
printf("\nTesting: mp_is_square\n");
for (i=0;i<100000;++i) {
printf("%6d\r", i); fflush(stdout);
/* test mp_is_square false negatives */
n = (rand()&7)+1;
mp_rand(&a,n);
mp_sqr(&a,&a);
if (mp_is_square(&a,&n)!=MP_OKAY) {
printf("fn:mp_is_square() error!\n");
return 1;
}
if (n==0) {
printf("fn:mp_is_square() bad result!\n");
return 1;
}
/* test for false positives */
mp_add_d(&a, 1, &a);
if (mp_is_square(&a,&n)!=MP_OKAY) {
printf("fp:mp_is_square() error!\n");
return 1;
}
if (n==1) {
printf("fp:mp_is_square() bad result!\n");
return 1;
}
}
printf("\n\n");
#endif
#ifdef TESTING
/* test for size */
for (ix = 16; ix < 512; ix++) {
printf("Testing (not safe-prime): %9d bits \r", ix); fflush(stdout);
err = mp_prime_random_ex(&a, 8, ix, (rand()&1)?LTM_PRIME_2MSB_OFF:LTM_PRIME_2MSB_ON, myrng, NULL);
if (err != MP_OKAY) {
printf("failed with err code %d\n", err);
return EXIT_FAILURE;
}
if (mp_count_bits(&a) != ix) {
printf("Prime is %d not %d bits!!!\n", mp_count_bits(&a), ix);
return EXIT_FAILURE;
}
}
for (ix = 16; ix < 512; ix++) {
printf("Testing ( safe-prime): %9d bits \r", ix); fflush(stdout);
err = mp_prime_random_ex(&a, 8, ix, ((rand()&1)?LTM_PRIME_2MSB_OFF:LTM_PRIME_2MSB_ON)|LTM_PRIME_SAFE, myrng, NULL);
if (err != MP_OKAY) {
printf("failed with err code %d\n", err);
return EXIT_FAILURE;
}
if (mp_count_bits(&a) != ix) {
printf("Prime is %d not %d bits!!!\n", mp_count_bits(&a), ix);
return EXIT_FAILURE;
}
/* let's see if it's really a safe prime */
mp_sub_d(&a, 1, &a);
mp_div_2(&a, &a);
mp_prime_is_prime(&a, 8, &cnt);
if (cnt != MP_YES) {
printf("sub is not prime!\n");
return EXIT_FAILURE;
}
}
printf("\n\n");
#endif
#ifdef TESTING
mp_read_radix(&a, "123456", 10);
mp_toradix_n(&a, buf, 10, 3);
printf("a == %s\n", buf);
mp_toradix_n(&a, buf, 10, 4);
printf("a == %s\n", buf);
mp_toradix_n(&a, buf, 10, 30);
printf("a == %s\n", buf);
#endif
#if 0
for (;;) {
fgets(buf, sizeof(buf), stdin);
@ -97,12 +263,13 @@ int main(void)
}
#endif
#if 0
#ifdef TESTING
/* test mp_cnt_lsb */
printf("testing mp_cnt_lsb...\n");
mp_set(&a, 1);
for (ix = 0; ix < 128; ix++) {
for (ix = 0; ix < 1024; ix++) {
if (mp_cnt_lsb(&a) != ix) {
printf("Failed at %d\n", ix);
printf("Failed at %d, %d\n", ix, mp_cnt_lsb(&a));
return 0;
}
mp_mul_2(&a, &a);
@ -110,7 +277,8 @@ int main(void)
#endif
/* test mp_reduce_2k */
#if 0
#ifdef TESTING
printf("Testing mp_reduce_2k...\n");
for (cnt = 3; cnt <= 384; ++cnt) {
mp_digit tmp;
mp_2expt(&a, cnt);
@ -137,7 +305,8 @@ int main(void)
/* test mp_div_3 */
#if 0
#ifdef TESTING
printf("Testing mp_div_3...\n");
mp_set(&d, 3);
for (cnt = 0; cnt < 1000000; ) {
mp_digit r1, r2;
@ -155,7 +324,8 @@ int main(void)
#endif
/* test the DR reduction */
#if 0
#ifdef TESTING
printf("testing mp_dr_reduce...\n");
for (cnt = 2; cnt < 128; cnt++) {
printf("%d digit modulus\n", cnt);
mp_grow(&a, cnt);
@ -190,7 +360,13 @@ int main(void)
#ifdef TIMER
/* temp. turn off TOOM */
TOOM_MUL_CUTOFF = TOOM_SQR_CUTOFF = 100000;
printf("CLOCKS_PER_SEC == %lu\n", CLOCKS_PER_SEC);
reset();
sleep(1);
CLK_PER_SEC = rdtsc();
printf("CLK_PER_SEC == %lu\n", CLK_PER_SEC);
log = fopen("logs/add.log", "w");
for (cnt = 8; cnt <= 128; cnt += 8) {
@ -202,10 +378,10 @@ int main(void)
do {
DO(mp_add(&a,&b,&c));
rr += 16;
} while (rdtsc() < (CLOCKS_PER_SEC * 2));
} while (rdtsc() < (CLK_PER_SEC * 2));
tt = rdtsc();
printf("Adding\t\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLOCKS_PER_SEC)/tt, tt);
fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, (((ulong64)rr)*CLOCKS_PER_SEC)/tt);
printf("Adding\t\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt, tt);
fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, (((ulong64)rr)*CLK_PER_SEC)/tt); fflush(log);
}
fclose(log);
@ -219,10 +395,10 @@ int main(void)
do {
DO(mp_sub(&a,&b,&c));
rr += 16;
} while (rdtsc() < (CLOCKS_PER_SEC * 2));
} while (rdtsc() < (CLK_PER_SEC * 2));
tt = rdtsc();
printf("Subtracting\t\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLOCKS_PER_SEC)/tt, tt);
fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, (((ulong64)rr)*CLOCKS_PER_SEC)/tt);
printf("Subtracting\t\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt, tt);
fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, (((ulong64)rr)*CLK_PER_SEC)/tt); fflush(log);
}
fclose(log);
@ -237,7 +413,7 @@ mult_test:
KARATSUBA_SQR_CUTOFF = (ix==0)?9999:old_kara_s;
log = fopen((ix==0)?"logs/mult.log":"logs/mult_kara.log", "w");
for (cnt = 32; cnt <= 288; cnt += 16) {
for (cnt = 32; cnt <= 288; cnt += 8) {
SLEEP;
mp_rand(&a, cnt);
mp_rand(&b, cnt);
@ -246,15 +422,15 @@ mult_test:
do {
DO(mp_mul(&a, &b, &c));
rr += 16;
} while (rdtsc() < (CLOCKS_PER_SEC * 2));
} while (rdtsc() < (CLK_PER_SEC * 2));
tt = rdtsc();
printf("Multiplying\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLOCKS_PER_SEC)/tt, tt);
fprintf(log, "%d %9llu\n", mp_count_bits(&a), (((ulong64)rr)*CLOCKS_PER_SEC)/tt);
printf("Multiplying\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt, tt);
fprintf(log, "%d %9llu\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt); fflush(log);
}
fclose(log);
log = fopen((ix==0)?"logs/sqr.log":"logs/sqr_kara.log", "w");
for (cnt = 32; cnt <= 288; cnt += 16) {
for (cnt = 32; cnt <= 288; cnt += 8) {
SLEEP;
mp_rand(&a, cnt);
reset();
@ -262,14 +438,15 @@ mult_test:
do {
DO(mp_sqr(&a, &b));
rr += 16;
} while (rdtsc() < (CLOCKS_PER_SEC * 2));
} while (rdtsc() < (CLK_PER_SEC * 2));
tt = rdtsc();
printf("Squaring\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLOCKS_PER_SEC)/tt, tt);
fprintf(log, "%d %9llu\n", mp_count_bits(&a), (((ulong64)rr)*CLOCKS_PER_SEC)/tt);
printf("Squaring\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt, tt);
fprintf(log, "%d %9llu\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt); fflush(log);
}
fclose(log);
}
expt_test:
{
char *primes[] = {
/* 2K moduli mersenne primes */
@ -299,14 +476,12 @@ mult_test:
"1214855636816562637502584060163403830270705000634713483015101384881871978446801224798536155406895823305035467591632531067547890948695117172076954220727075688048751022421198712032848890056357845974246560748347918630050853933697792254955890439720297560693579400297062396904306270145886830719309296352765295712183040773146419022875165382778007040109957609739589875590885701126197906063620133954893216612678838507540777138437797705602453719559017633986486649523611975865005712371194067612263330335590526176087004421363598470302731349138773205901447704682181517904064735636518462452242791676541725292378925568296858010151852326316777511935037531017413910506921922450666933202278489024521263798482237150056835746454842662048692127173834433089016107854491097456725016327709663199738238442164843147132789153725513257167915555162094970853584447993125488607696008169807374736711297007473812256272245489405898470297178738029484459690836250560495461579533254473316340608217876781986188705928270735695752830825527963838355419762516246028680280988020401914551825487349990306976304093109384451438813251211051597392127491464898797406789175453067960072008590614886532333015881171367104445044718144312416815712216611576221546455968770801413440778423979",
NULL
};
expt_test:
log = fopen("logs/expt.log", "w");
logb = fopen("logs/expt_dr.log", "w");
logc = fopen("logs/expt_2k.log", "w");
for (n = 0; primes[n]; n++) {
SLEEP;
mp_read_radix(&a, primes[n], 10);
printf("Different (%d)!!!\n", mp_count_bits(&a));
mp_zero(&b);
for (rr = 0; rr < mp_count_bits(&a); rr++) {
mp_mul_2(&b, &b);
@ -321,7 +496,7 @@ expt_test:
do {
DO(mp_exptmod(&c, &b, &a, &d));
rr += 16;
} while (rdtsc() < (CLOCKS_PER_SEC * 2));
} while (rdtsc() < (CLK_PER_SEC * 2));
tt = rdtsc();
mp_sub_d(&a, 1, &e);
mp_sub(&e, &b, &b);
@ -332,8 +507,8 @@ expt_test:
draw(&d);
exit(0);
}
printf("Exponentiating\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLOCKS_PER_SEC)/tt, tt);
fprintf((n < 6) ? logc : (n < 13) ? logb : log, "%d %9llu\n", mp_count_bits(&a), (((ulong64)rr)*CLOCKS_PER_SEC)/tt);
printf("Exponentiating\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt, tt);
fprintf((n < 6) ? logc : (n < 13) ? logb : log, "%d %9llu\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt);
}
}
fclose(log);
@ -356,15 +531,15 @@ expt_test:
do {
DO(mp_invmod(&b, &a, &c));
rr += 16;
} while (rdtsc() < (CLOCKS_PER_SEC * 2));
} while (rdtsc() < (CLK_PER_SEC * 2));
tt = rdtsc();
mp_mulmod(&b, &c, &a, &d);
if (mp_cmp_d(&d, 1) != MP_EQ) {
printf("Failed to invert\n");
return 0;
}
printf("Inverting mod\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLOCKS_PER_SEC)/tt, tt);
fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, (((ulong64)rr)*CLOCKS_PER_SEC)/tt);
printf("Inverting mod\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt, tt);
fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, (((ulong64)rr)*CLK_PER_SEC)/tt);
}
fclose(log);

View File

@ -1,302 +0,0 @@
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is library that provides for multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* This file "poly.c" provides GF(p^k) functionality on top of the
* libtommath library.
*
* The library is designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://libtommath.iahu.ca
*/
#include "poly.h"
#undef MIN
#define MIN(x,y) ((x)<(y)?(x):(y))
#undef MAX
#define MAX(x,y) ((x)>(y)?(x):(y))
static void s_free(mp_poly *a)
{
int k;
for (k = 0; k < a->alloc; k++) {
mp_clear(&(a->co[k]));
}
}
static int s_setup(mp_poly *a, int low, int high)
{
int res, k, j;
for (k = low; k < high; k++) {
if ((res = mp_init(&(a->co[k]))) != MP_OKAY) {
for (j = low; j < k; j++) {
mp_clear(&(a->co[j]));
}
return MP_MEM;
}
}
return MP_OKAY;
}
int mp_poly_init(mp_poly *a, mp_int *cha)
{
return mp_poly_init_size(a, cha, MP_POLY_PREC);
}
/* init a poly of a given (size) degree */
int mp_poly_init_size(mp_poly *a, mp_int *cha, int size)
{
int res;
/* allocate array of mp_ints for coefficients */
a->co = malloc(size * sizeof(mp_int));
if (a->co == NULL) {
return MP_MEM;
}
a->used = 0;
a->alloc = size;
/* now init the range */
if ((res = s_setup(a, 0, size)) != MP_OKAY) {
free(a->co);
return res;
}
/* copy characteristic */
if ((res = mp_init_copy(&(a->cha), cha)) != MP_OKAY) {
s_free(a);
free(a->co);
return res;
}
/* return ok at this point */
return MP_OKAY;
}
/* grow the size of a poly */
static int mp_poly_grow(mp_poly *a, int size)
{
int res;
if (size > a->alloc) {
/* resize the array of coefficients */
a->co = realloc(a->co, sizeof(mp_int) * size);
if (a->co == NULL) {
return MP_MEM;
}
/* now setup the coefficients */
if ((res = s_setup(a, a->alloc, a->alloc + size)) != MP_OKAY) {
return res;
}
a->alloc += size;
}
return MP_OKAY;
}
/* copy, b = a */
int mp_poly_copy(mp_poly *a, mp_poly *b)
{
int res, k;
/* resize b */
if ((res = mp_poly_grow(b, a->used)) != MP_OKAY) {
return res;
}
/* now copy the used part */
b->used = a->used;
/* now the cha */
if ((res = mp_copy(&(a->cha), &(b->cha))) != MP_OKAY) {
return res;
}
/* now all the coefficients */
for (k = 0; k < b->used; k++) {
if ((res = mp_copy(&(a->co[k]), &(b->co[k]))) != MP_OKAY) {
return res;
}
}
/* now zero the top */
for (k = b->used; k < b->alloc; k++) {
mp_zero(&(b->co[k]));
}
return MP_OKAY;
}
/* init from a copy, a = b */
int mp_poly_init_copy(mp_poly *a, mp_poly *b)
{
int res;
if ((res = mp_poly_init(a, &(b->cha))) != MP_OKAY) {
return res;
}
return mp_poly_copy(b, a);
}
/* free a poly from ram */
void mp_poly_clear(mp_poly *a)
{
s_free(a);
mp_clear(&(a->cha));
free(a->co);
a->co = NULL;
a->used = a->alloc = 0;
}
/* exchange two polys */
void mp_poly_exch(mp_poly *a, mp_poly *b)
{
mp_poly t;
t = *a; *a = *b; *b = t;
}
/* clamp the # of used digits */
static void mp_poly_clamp(mp_poly *a)
{
while (a->used > 0 && mp_cmp_d(&(a->co[a->used]), 0) == MP_EQ) --(a->used);
}
/* add two polynomials, c(x) = a(x) + b(x) */
int mp_poly_add(mp_poly *a, mp_poly *b, mp_poly *c)
{
mp_poly t, *x, *y;
int res, k;
/* ensure char's are the same */
if (mp_cmp(&(a->cha), &(b->cha)) != MP_EQ) {
return MP_VAL;
}
/* now figure out the sizes such that x is the
largest degree poly and y is less or equal in degree
*/
if (a->used > b->used) {
x = a;
y = b;
} else {
x = b;
y = a;
}
/* now init the result to be a copy of the largest */
if ((res = mp_poly_init_copy(&t, x)) != MP_OKAY) {
return res;
}
/* now add the coeffcients of the smaller one */
for (k = 0; k < y->used; k++) {
if ((res = mp_addmod(&(a->co[k]), &(b->co[k]), &(a->cha), &(t.co[k]))) != MP_OKAY) {
goto __T;
}
}
mp_poly_clamp(&t);
mp_poly_exch(&t, c);
res = MP_OKAY;
__T: mp_poly_clear(&t);
return res;
}
/* subtracts two polynomials, c(x) = a(x) - b(x) */
int mp_poly_sub(mp_poly *a, mp_poly *b, mp_poly *c)
{
mp_poly t, *x, *y;
int res, k;
/* ensure char's are the same */
if (mp_cmp(&(a->cha), &(b->cha)) != MP_EQ) {
return MP_VAL;
}
/* now figure out the sizes such that x is the
largest degree poly and y is less or equal in degree
*/
if (a->used > b->used) {
x = a;
y = b;
} else {
x = b;
y = a;
}
/* now init the result to be a copy of the largest */
if ((res = mp_poly_init_copy(&t, x)) != MP_OKAY) {
return res;
}
/* now add the coeffcients of the smaller one */
for (k = 0; k < y->used; k++) {
if ((res = mp_submod(&(a->co[k]), &(b->co[k]), &(a->cha), &(t.co[k]))) != MP_OKAY) {
goto __T;
}
}
mp_poly_clamp(&t);
mp_poly_exch(&t, c);
res = MP_OKAY;
__T: mp_poly_clear(&t);
return res;
}
/* multiplies two polynomials, c(x) = a(x) * b(x) */
int mp_poly_mul(mp_poly *a, mp_poly *b, mp_poly *c)
{
mp_poly t;
mp_int tt;
int res, pa, pb, ix, iy;
/* ensure char's are the same */
if (mp_cmp(&(a->cha), &(b->cha)) != MP_EQ) {
return MP_VAL;
}
/* degrees of a and b */
pa = a->used;
pb = b->used;
/* now init the temp polynomial to be of degree pa+pb */
if ((res = mp_poly_init_size(&t, &(a->cha), pa+pb)) != MP_OKAY) {
return res;
}
/* now init our temp int */
if ((res = mp_init(&tt)) != MP_OKAY) {
goto __T;
}
/* now loop through all the digits */
for (ix = 0; ix < pa; ix++) {
for (iy = 0; iy < pb; iy++) {
if ((res = mp_mul(&(a->co[ix]), &(b->co[iy]), &tt)) != MP_OKAY) {
goto __TT;
}
if ((res = mp_addmod(&tt, &(t.co[ix+iy]), &(a->cha), &(t.co[ix+iy]))) != MP_OKAY) {
goto __TT;
}
}
}
mp_poly_clamp(&t);
mp_poly_exch(&t, c);
res = MP_OKAY;
__TT: mp_clear(&tt);
__T: mp_poly_clear(&t);
return res;
}

View File

@ -1,73 +0,0 @@
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is library that provides for multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* This file "poly.h" provides GF(p^k) functionality on top of the
* libtommath library.
*
* The library is designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://libtommath.iahu.ca
*/
#ifndef POLY_H_
#define POLY_H_
#include "bn.h"
/* a mp_poly is basically a derived "class" of a mp_int
* it uses the same technique of growing arrays via
* used/alloc parameters except the base unit or "digit"
* is in fact a mp_int. These hold the coefficients
* of the polynomial
*/
typedef struct {
int used, /* coefficients used */
alloc; /* coefficients allocated (and initialized) */
mp_int *co, /* coefficients */
cha; /* characteristic */
} mp_poly;
#define MP_POLY_PREC 16 /* default coefficients allocated */
/* init a poly */
int mp_poly_init(mp_poly *a, mp_int *cha);
/* init a poly of a given (size) degree */
int mp_poly_init_size(mp_poly *a, mp_int *cha, int size);
/* copy, b = a */
int mp_poly_copy(mp_poly *a, mp_poly *b);
/* init from a copy, a = b */
int mp_poly_init_copy(mp_poly *a, mp_poly *b);
/* free a poly from ram */
void mp_poly_clear(mp_poly *a);
/* exchange two polys */
void mp_poly_exch(mp_poly *a, mp_poly *b);
/* ---> Basic Arithmetic <--- */
/* add two polynomials, c(x) = a(x) + b(x) */
int mp_poly_add(mp_poly *a, mp_poly *b, mp_poly *c);
/* subtracts two polynomials, c(x) = a(x) - b(x) */
int mp_poly_sub(mp_poly *a, mp_poly *b, mp_poly *c);
/* multiplies two polynomials, c(x) = a(x) * b(x) */
int mp_poly_mul(mp_poly *a, mp_poly *b, mp_poly *c);
#endif

View File

@ -1,16 +1,16 @@
224 8622881
448 7241417
672 5844712
896 4938016
1120 4256543
1344 3728000
1568 3328263
1792 3012161
2016 2743688
2240 2512095
2464 2234464
2688 1960139
2912 2013395
3136 1879636
3360 1756301
3584 1680982
224 20297071
448 15151383
672 13088682
896 11111587
1120 9240621
1344 8221878
1568 7227434
1792 6718051
2016 6042524
2240 5685200
2464 5240465
2688 4818032
2912 4412794
3136 4155883
3360 3927078
3584 3722138

Binary file not shown.

Before

Width:  |  Height:  |  Size: 6.6 KiB

After

Width:  |  Height:  |  Size: 6.9 KiB

View File

@ -0,0 +1,7 @@
513 745
769 282
1025 130
2049 20
2561 11
3073 6
4097 2

Binary file not shown.

Before

Width:  |  Height:  |  Size: 7.2 KiB

After

Width:  |  Height:  |  Size: 7.3 KiB

View File

@ -0,0 +1,6 @@
521 783
607 585
1279 138
2203 39
3217 15
4253 6

View File

@ -0,0 +1,7 @@
532 1296
784 551
1036 283
1540 109
2072 52
3080 18
4116 7

View File

@ -1,4 +1,4 @@
set terminal png color
set terminal png
set size 1.75
set ylabel "Operations per Second"
set xlabel "Operand size (bits)"

View File

@ -1,32 +1,32 @@
112 14936
224 7208
336 6864
448 5000
560 3648
672 1832
784 1480
896 1232
1008 1010
1120 1360
1232 728
1344 632
1456 544
1568 800
1680 704
1792 396
1904 584
2016 528
2128 483
2240 448
2352 250
2464 378
2576 350
2688 198
2800 300
2912 170
3024 265
3136 150
3248 142
3360 134
3472 126
3584 118
112 17364
224 8643
336 8867
448 6228
560 4737
672 2259
784 2899
896 1497
1008 1238
1120 1010
1232 870
1344 1265
1456 1102
1568 981
1680 539
1792 484
1904 722
2016 392
2128 604
2240 551
2352 511
2464 469
2576 263
2688 247
2800 227
2912 354
3024 336
3136 312
3248 296
3360 166
3472 155
3584 248

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.6 KiB

After

Width:  |  Height:  |  Size: 5.6 KiB

View File

@ -1,17 +1,33 @@
896 348504
1344 165040
1792 98696
2240 65400
2688 46672
3136 34968
3584 27144
4032 21648
4480 17672
4928 14768
5376 12416
5824 10696
6272 9184
6720 8064
7168 1896
7616 1680
8064 1504
920 374785
1142 242737
1371 176704
1596 134341
1816 105537
2044 85089
2268 70051
2490 58671
2716 49851
2937 42881
3162 37288
3387 32697
3608 28915
3836 25759
4057 23088
4284 20800
4508 18827
4730 17164
4956 15689
5180 14397
5398 13260
5628 12249
5852 11346
6071 10537
6298 9812
6522 9161
6742 8572
6971 8038
7195 2915
7419 2744
7644 2587
7866 2444
8090 2311

Binary file not shown.

Before

Width:  |  Height:  |  Size: 8.0 KiB

After

Width:  |  Height:  |  Size: 7.9 KiB

View File

@ -1,17 +1,33 @@
896 301784
1344 141568
1792 84592
2240 55864
2688 39576
3136 30088
3584 24032
4032 19760
4480 16536
4928 13376
5376 11880
5824 10256
6272 9160
6720 8208
7168 7384
7616 6664
8064 6112
924 374171
1147 243163
1371 177111
1596 134465
1819 105619
2044 85145
2266 70086
2488 58717
2715 49869
2939 42894
3164 37389
3387 33510
3610 29993
3836 27205
4060 24751
4281 22576
4508 20670
4732 19019
4954 17527
5180 16217
5404 15044
5624 14003
5849 13051
6076 12067
6300 11438
6524 10772
6748 10298
6972 9715
7195 9330
7416 8836
7644 8465
7864 8042
8091 7735

View File

@ -1,17 +1,33 @@
911 167013
1359 83796
1807 50308
2254 33637
2703 24067
3151 17997
3599 5751
4047 4561
4490 3714
4943 3067
5391 2597
5839 2204
6286 1909
6735 1637
7183 1461
7631 1302
8078 1158
922 471095
1147 337137
1366 254327
1596 199732
1819 161225
2044 132852
2268 111493
2490 94864
2715 81745
2940 71187
3162 62575
3387 55418
3612 14540
3836 12944
4060 11627
4281 10546
4508 9502
4730 8688
4954 7937
5180 7273
5402 6701
5627 6189
5850 5733
6076 5310
6300 4933
6522 4631
6748 4313
6971 4064
7196 3801
7420 3576
7642 3388
7868 3191
8092 3020

View File

@ -1,17 +1,33 @@
910 165312
1358 84355
1806 50316
2255 33661
2702 24027
3151 18068
3599 14721
4046 12101
4493 10112
4942 8591
5390 7364
5839 6398
6285 5607
6735 4952
7182 4625
7631 4193
8079 3810
922 470930
1148 337217
1372 254433
1596 199827
1820 161204
2043 132871
2267 111522
2488 94932
2714 81814
2939 71231
3164 62616
3385 55467
3611 44426
3836 40695
4060 37391
4283 34371
4508 31779
4732 29499
4956 27426
5177 25598
5403 23944
5628 22416
5851 21052
6076 19781
6299 18588
6523 17539
6746 16618
6972 15705
7196 13582
7420 13004
7643 12496
7868 11963
8092 11497

View File

@ -1,16 +1,16 @@
224 10295756
448 7577910
672 6279588
896 5345182
1120 4646989
1344 4101759
1568 3685447
1792 3337497
2016 3051095
2240 2811900
2464 2605371
2688 2420561
2912 2273174
3136 2134662
3360 2014354
3584 1901723
224 16370431
448 13327848
672 11009401
896 9125342
1120 7930419
1344 7114040
1568 6506998
1792 5899346
2016 5435327
2240 5038931
2464 4696364
2688 4425678
2912 4134476
3136 3913280
3360 3692536
3584 3505219

View File

@ -1,7 +1,7 @@
#Makefile for GCC
#
#Tom St Denis
CFLAGS += -I./ -Wall -W -Wshadow
CFLAGS += -I./ -Wall -W -Wshadow -Wsign-compare
#for speed
CFLAGS += -O3 -funroll-loops
@ -12,7 +12,7 @@ CFLAGS += -O3 -funroll-loops
#x86 optimizations [should be valid for any GCC install though]
CFLAGS += -fomit-frame-pointer
VERSION=0.29
VERSION=0.30
default: libtommath.a
@ -50,7 +50,9 @@ bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_div_3.o bn_s_mp_exptmod.o \
bn_mp_reduce_2k.o bn_mp_reduce_is_2k.o bn_mp_reduce_2k_setup.o \
bn_mp_radix_smap.o bn_mp_read_radix.o bn_mp_toradix.o bn_mp_radix_size.o \
bn_mp_fread.o bn_mp_fwrite.o bn_mp_cnt_lsb.o bn_error.o \
bn_mp_init_multi.o bn_mp_clear_multi.o bn_mp_prime_random.o bn_prime_sizes_tab.o bn_mp_exteuclid.o
bn_mp_init_multi.o bn_mp_clear_multi.o bn_prime_sizes_tab.o bn_mp_exteuclid.o bn_mp_toradix_n.o \
bn_mp_prime_random_ex.o bn_mp_get_int.o bn_mp_sqrt.o bn_mp_is_square.o bn_mp_init_set.o \
bn_mp_init_set_int.o
libtommath.a: $(OBJECTS)
$(AR) $(ARFLAGS) libtommath.a $(OBJECTS)
@ -64,6 +66,8 @@ install: libtommath.a
test: libtommath.a demo/demo.o
$(CC) demo/demo.o libtommath.a -o test
mtest: test
cd mtest ; $(CC) $(CFLAGS) mtest.c -o mtest -s
timing: libtommath.a
@ -75,6 +79,7 @@ docdvi: tommath.src
echo "hello" > tommath.ind
perl booker.pl
latex tommath > /dev/null
latex tommath > /dev/null
makeindex tommath
latex tommath > /dev/null
@ -83,15 +88,9 @@ poster: poster.tex
pdflatex poster
rm -f poster.aux poster.log
# makes the LTM book PS/PDF file, requires tetex, cleans up the LaTeX temp files
docs:
cd pics ; make pdfes
echo "hello" > tommath.ind
perl booker.pl PDF
latex tommath > /dev/null
makeindex tommath
latex tommath > /dev/null
pdflatex tommath
# makes the LTM book PDF file, requires tetex, cleans up the LaTeX temp files
docs: docdvi
dvipdf tommath
rm -f tommath.log tommath.aux tommath.dvi tommath.idx tommath.toc tommath.lof tommath.ind tommath.ilg
cd pics ; make clean
@ -99,6 +98,7 @@ docs:
mandvi: bn.tex
echo "hello" > bn.ind
latex bn > /dev/null
latex bn > /dev/null
makeindex bn
latex bn > /dev/null

View File

@ -29,12 +29,13 @@ bn_mp_toom_mul.obj bn_mp_toom_sqr.obj bn_mp_div_3.obj bn_s_mp_exptmod.obj \
bn_mp_reduce_2k.obj bn_mp_reduce_is_2k.obj bn_mp_reduce_2k_setup.obj \
bn_mp_radix_smap.obj bn_mp_read_radix.obj bn_mp_toradix.obj bn_mp_radix_size.obj \
bn_mp_fread.obj bn_mp_fwrite.obj bn_mp_cnt_lsb.obj bn_error.obj \
bn_mp_init_multi.obj bn_mp_clear_multi.obj bn_mp_prime_random.obj bn_prime_sizes_tab.obj bn_mp_exteuclid.obj
bn_mp_init_multi.obj bn_mp_clear_multi.obj bn_prime_sizes_tab.obj bn_mp_exteuclid.obj bn_mp_toradix_n.obj \
bn_mp_prime_random_ex.obj bn_mp_get_int.obj bn_mp_sqrt.obj bn_mp_is_square.obj
TARGET = libtommath.lib
$(TARGET): $(OBJECTS)
.c.objbj:
.c.objbjbjbj:
$(CC) $(CFLAGS) $<
$(LIB) $(TARGET) -+$@

View File

@ -34,7 +34,8 @@ bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_div_3.o bn_s_mp_exptmod.o \
bn_mp_reduce_2k.o bn_mp_reduce_is_2k.o bn_mp_reduce_2k_setup.o \
bn_mp_radix_smap.o bn_mp_read_radix.o bn_mp_toradix.o bn_mp_radix_size.o \
bn_mp_fread.o bn_mp_fwrite.o bn_mp_cnt_lsb.o bn_error.o \
bn_mp_init_multi.o bn_mp_clear_multi.o bn_mp_prime_random.o bn_prime_sizes_tab.o bn_mp_exteuclid.o
bn_mp_init_multi.o bn_mp_clear_multi.o bn_prime_sizes_tab.o bn_mp_exteuclid.o bn_mp_toradix_n.o \
bn_mp_prime_random_ex.o bn_mp_get_int.o bn_mp_sqrt.o bn_mp_is_square.o
# make a Windows DLL via Cygwin
windll: $(OBJECTS)

View File

@ -28,7 +28,8 @@ bn_mp_toom_mul.obj bn_mp_toom_sqr.obj bn_mp_div_3.obj bn_s_mp_exptmod.obj \
bn_mp_reduce_2k.obj bn_mp_reduce_is_2k.obj bn_mp_reduce_2k_setup.obj \
bn_mp_radix_smap.obj bn_mp_read_radix.obj bn_mp_toradix.obj bn_mp_radix_size.obj \
bn_mp_fread.obj bn_mp_fwrite.obj bn_mp_cnt_lsb.obj bn_error.obj \
bn_mp_init_multi.obj bn_mp_clear_multi.obj bn_mp_prime_random.obj bn_prime_sizes_tab.obj bn_mp_exteuclid.obj
bn_mp_init_multi.obj bn_mp_clear_multi.obj bn_prime_sizes_tab.obj bn_mp_exteuclid.obj bn_mp_toradix_n.obj \
bn_mp_prime_random_ex.obj bn_mp_get_int.obj bn_mp_sqrt.obj bn_mp_is_square.obj
library: $(OBJECTS)
lib /out:tommath.lib $(OBJECTS)

View File

@ -110,7 +110,7 @@ int main(void)
t1 = clock();
for (;;) {
if (clock() - t1 > CLOCKS_PER_SEC) {
sleep(1);
sleep(2);
t1 = clock();
}

View File

@ -1,35 +0,0 @@
# makes the images... yeah
default: pses
design_process.ps: design_process.tif
tiff2ps -s -e design_process.tif > design_process.ps
sliding_window.ps: sliding_window.tif
tiff2ps -e sliding_window.tif > sliding_window.ps
expt_state.ps: expt_state.tif
tiff2ps -e expt_state.tif > expt_state.ps
primality.ps: primality.tif
tiff2ps -e primality.tif > primality.ps
design_process.pdf: design_process.ps
epstopdf design_process.ps
sliding_window.pdf: sliding_window.ps
epstopdf sliding_window.ps
expt_state.pdf: expt_state.ps
epstopdf expt_state.ps
primality.pdf: primality.ps
epstopdf primality.ps
pses: sliding_window.ps expt_state.ps primality.ps design_process.ps
pdfes: sliding_window.pdf expt_state.pdf primality.pdf design_process.pdf
clean:
rm -rf *.ps *.pdf .xvpics

Binary file not shown.

View File

@ -631,8 +631,7 @@ fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
* Based on Algorithm 14.16 on pp.597 of HAC.
*
*/
int
fast_s_mp_sqr (mp_int * a, mp_int * b)
int fast_s_mp_sqr (mp_int * a, mp_int * b)
{
int olduse, newused, res, ix, pa;
mp_word W2[MP_WARRAY], W[MP_WARRAY];
@ -1345,11 +1344,15 @@ int mp_cmp_mag (mp_int * a, mp_int * b)
*/
#include <tommath.h>
static const int lnz[16] = {
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
};
/* Counts the number of lsbs which are zero before the first zero bit */
int mp_cnt_lsb(mp_int *a)
{
int x;
mp_digit q;
mp_digit q, qq;
/* easy out */
if (mp_iszero(a) == 1) {
@ -1362,11 +1365,13 @@ int mp_cnt_lsb(mp_int *a)
x *= DIGIT_BIT;
/* now scan this digit until a 1 is found */
while ((q & 1) == 0) {
q >>= 1;
x += 1;
if ((q & 1) == 0) {
do {
qq = q & 15;
x += lnz[qq];
q >>= 4;
} while (qq == 0);
}
return x;
}
@ -2828,7 +2833,7 @@ int mp_fwrite(mp_int *a, int radix, FILE *stream)
return err;
}
buf = XMALLOC (len);
buf = OPT_CAST(char) XMALLOC (len);
if (buf == NULL) {
return MP_MEM;
}
@ -2963,6 +2968,49 @@ __U:mp_clear (&v);
/* End: bn_mp_gcd.c */
/* Start: bn_mp_get_int.c */
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
*/
#include <tommath.h>
/* get the lower 32-bits of an mp_int */
unsigned long mp_get_int(mp_int * a)
{
int i;
unsigned long res;
if (a->used == 0) {
return 0;
}
/* get number of digits of the lsb we have to read */
i = MIN(a->used,(int)((sizeof(unsigned long)*CHAR_BIT+DIGIT_BIT-1)/DIGIT_BIT))-1;
/* get most significant digit of result */
res = DIGIT(a,i);
while (--i >= 0) {
res = (res << DIGIT_BIT) | DIGIT(a,i);
}
/* force result to 32-bits always so it is consistent on non 32-bit platforms */
return res & 0xFFFFFFFFUL;
}
/* End: bn_mp_get_int.c */
/* Start: bn_mp_grow.c */
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@ -2997,7 +3045,7 @@ int mp_grow (mp_int * a, int size)
* in case the operation failed we don't want
* to overwrite the dp member of a.
*/
tmp = OPT_CAST XREALLOC (a->dp, sizeof (mp_digit) * size);
tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * size);
if (tmp == NULL) {
/* reallocation failed but "a" is still valid [can be freed] */
return MP_MEM;
@ -3039,7 +3087,7 @@ int mp_grow (mp_int * a, int size)
int mp_init (mp_int * a)
{
/* allocate memory required and clear it */
a->dp = OPT_CAST XCALLOC (sizeof (mp_digit), MP_PREC);
a->dp = OPT_CAST(mp_digit) XCALLOC (sizeof (mp_digit), MP_PREC);
if (a->dp == NULL) {
return MP_MEM;
}
@ -3142,6 +3190,65 @@ int mp_init_multi(mp_int *mp, ...)
/* End: bn_mp_init_multi.c */
/* Start: bn_mp_init_set.c */
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
*/
#include <tommath.h>
/* initialize and set a digit */
int mp_init_set (mp_int * a, mp_digit b)
{
int err;
if ((err = mp_init(a)) != MP_OKAY) {
return err;
}
mp_set(a, b);
return err;
}
/* End: bn_mp_init_set.c */
/* Start: bn_mp_init_set_int.c */
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
*/
#include <tommath.h>
/* initialize and set a digit */
int mp_init_set_int (mp_int * a, unsigned long b)
{
int err;
if ((err = mp_init(a)) != MP_OKAY) {
return err;
}
return mp_set_int(a, b);
}
/* End: bn_mp_init_set_int.c */
/* Start: bn_mp_init_size.c */
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@ -3166,7 +3273,7 @@ int mp_init_size (mp_int * a, int size)
size += (MP_PREC * 2) - (size % MP_PREC);
/* alloc mem */
a->dp = OPT_CAST XCALLOC (sizeof (mp_digit), size);
a->dp = OPT_CAST(mp_digit) XCALLOC (sizeof (mp_digit), size);
if (a->dp == NULL) {
return MP_MEM;
}
@ -3357,6 +3464,113 @@ __ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
/* End: bn_mp_invmod.c */
/* Start: bn_mp_is_square.c */
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
*/
#include <tommath.h>
/* Check if remainders are possible squares - fast exclude non-squares */
static const char rem_128[128] = {
0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1
};
static const char rem_105[105] = {
0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1,
1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1,
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1
};
/* Store non-zero to ret if arg is square, and zero if not */
int mp_is_square(mp_int *arg,int *ret)
{
int res;
mp_digit c;
mp_int t;
unsigned long r;
/* Default to Non-square :) */
*ret = MP_NO;
if (arg->sign == MP_NEG) {
return MP_VAL;
}
/* digits used? (TSD) */
if (arg->used == 0) {
return MP_OKAY;
}
/* First check mod 128 (suppose that DIGIT_BIT is at least 7) */
if (rem_128[127 & DIGIT(arg,0)] == 1) {
return MP_OKAY;
}
/* Next check mod 105 (3*5*7) */
if ((res = mp_mod_d(arg,105,&c)) != MP_OKAY) {
return res;
}
if (rem_105[c] == 1) {
return MP_OKAY;
}
/* product of primes less than 2^31 */
if ((res = mp_init_set_int(&t,11L*13L*17L*19L*23L*29L*31L)) != MP_OKAY) {
return res;
}
if ((res = mp_mod(arg,&t,&t)) != MP_OKAY) {
goto ERR;
}
r = mp_get_int(&t);
/* Check for other prime modules, note it's not an ERROR but we must
* free "t" so the easiest way is to goto ERR. We know that res
* is already equal to MP_OKAY from the mp_mod call
*/
if ( (1L<<(r%11)) & 0x5C4L ) goto ERR;
if ( (1L<<(r%13)) & 0x9E4L ) goto ERR;
if ( (1L<<(r%17)) & 0x5CE8L ) goto ERR;
if ( (1L<<(r%19)) & 0x4F50CL ) goto ERR;
if ( (1L<<(r%23)) & 0x7ACCA0L ) goto ERR;
if ( (1L<<(r%29)) & 0xC2EDD0CL ) goto ERR;
if ( (1L<<(r%31)) & 0x6DE2B848L ) goto ERR;
/* Final check - is sqr(sqrt(arg)) == arg ? */
if ((res = mp_sqrt(arg,&t)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_sqr(&t,&t)) != MP_OKAY) {
goto ERR;
}
*ret = (mp_cmp_mag(&t,arg) == MP_EQ) ? MP_YES : MP_NO;
ERR:mp_clear(&t);
return res;
}
/* End: bn_mp_is_square.c */
/* Start: bn_mp_jacobi.c */
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@ -3506,8 +3720,7 @@ __A1:mp_clear (&a1);
* Generally though the overhead of this method doesn't pay off
* until a certain size (N ~ 80) is reached.
*/
int
mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
{
mp_int x0, x1, y0, y1, t1, x0y0, x1y1;
int B, err;
@ -3519,7 +3732,7 @@ mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
B = MIN (a->used, b->used);
/* now divide in two */
B = B / 2;
B = B >> 1;
/* init copy all the temps */
if (mp_init_size (&x0, B) != MP_OKAY)
@ -3653,8 +3866,7 @@ ERR:
* is essentially the same algorithm but merely
* tuned to perform recursive squarings.
*/
int
mp_karatsuba_sqr (mp_int * a, mp_int * b)
int mp_karatsuba_sqr (mp_int * a, mp_int * b)
{
mp_int x0, x1, t1, t2, x0x0, x1x1;
int B, err;
@ -3665,7 +3877,7 @@ mp_karatsuba_sqr (mp_int * a, mp_int * b)
B = a->used;
/* now divide in two */
B = B / 2;
B = B >> 1;
/* init copy all the temps */
if (mp_init_size (&x0, B) != MP_OKAY)
@ -3896,7 +4108,6 @@ mp_mod (mp_int * a, mp_int * b, mp_int * c)
mp_int t;
int res;
if ((res = mp_init (&t)) != MP_OKAY) {
return res;
}
@ -3906,7 +4117,7 @@ mp_mod (mp_int * a, mp_int * b, mp_int * c)
return res;
}
if (t.sign == MP_NEG) {
if (t.sign != b->sign) {
res = mp_add (b, &t, c);
} else {
res = MP_OKAY;
@ -4711,7 +4922,7 @@ int mp_neg (mp_int * a, mp_int * b)
if ((res = mp_copy (a, b)) != MP_OKAY) {
return res;
}
if (mp_iszero(b) != 1) {
if (mp_iszero(b) != MP_YES) {
b->sign = (a->sign == MP_ZPOS) ? MP_NEG : MP_ZPOS;
}
return MP_OKAY;
@ -5225,7 +5436,7 @@ __ERR:
/* End: bn_mp_prime_next_prime.c */
/* Start: bn_mp_prime_random.c */
/* Start: bn_mp_prime_random_ex.c */
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
@ -5242,57 +5453,101 @@ __ERR:
*/
#include <tommath.h>
/* makes a truly random prime of a given size (bytes),
* call with bbs = 1 if you want it to be congruent to 3 mod 4
/* makes a truly random prime of a given size (bits),
*
* Flags are as follows:
*
* LTM_PRIME_BBS - make prime congruent to 3 mod 4
* LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
* LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero
* LTM_PRIME_2MSB_ON - make the 2nd highest bit one
*
* You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
* have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
* so it can be NULL
*
* The prime generated will be larger than 2^(8*size).
*/
/* this sole function may hold the key to enslaving all mankind! */
int mp_prime_random(mp_int *a, int t, int size, int bbs, ltm_prime_callback cb, void *dat)
/* This is possibly the mother of all prime generation functions, muahahahahaha! */
int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat)
{
unsigned char *tmp;
int res, err;
unsigned char *tmp, maskAND, maskOR_msb, maskOR_lsb;
int res, err, bsize, maskOR_msb_offset;
/* sanity check the input */
if (size <= 0) {
if (size <= 1 || t <= 0) {
return MP_VAL;
}
/* we need a buffer of size+1 bytes */
tmp = XMALLOC(size+1);
/* LTM_PRIME_SAFE implies LTM_PRIME_BBS */
if (flags & LTM_PRIME_SAFE) {
flags |= LTM_PRIME_BBS;
}
/* calc the byte size */
bsize = (size>>3)+(size&7?1:0);
/* we need a buffer of bsize bytes */
tmp = OPT_CAST(unsigned char) XMALLOC(bsize);
if (tmp == NULL) {
return MP_MEM;
}
/* fix MSB */
tmp[0] = 1;
/* calc the maskAND value for the MSbyte*/
maskAND = 0xFF >> (8 - (size & 7));
/* calc the maskOR_msb */
maskOR_msb = 0;
maskOR_msb_offset = (size - 2) >> 3;
if (flags & LTM_PRIME_2MSB_ON) {
maskOR_msb |= 1 << ((size - 2) & 7);
} else if (flags & LTM_PRIME_2MSB_OFF) {
maskAND &= ~(1 << ((size - 2) & 7));
}
/* get the maskOR_lsb */
maskOR_lsb = 0;
if (flags & LTM_PRIME_BBS) {
maskOR_lsb |= 3;
}
do {
/* read the bytes */
if (cb(tmp+1, size, dat) != size) {
if (cb(tmp, bsize, dat) != bsize) {
err = MP_VAL;
goto error;
}
/* fix the LSB */
tmp[size] |= (bbs ? 3 : 1);
/* work over the MSbyte */
tmp[0] &= maskAND;
tmp[0] |= 1 << ((size - 1) & 7);
/* mix in the maskORs */
tmp[maskOR_msb_offset] |= maskOR_msb;
tmp[bsize-1] |= maskOR_lsb;
/* read it in */
if ((err = mp_read_unsigned_bin(a, tmp, size+1)) != MP_OKAY) {
goto error;
}
if ((err = mp_read_unsigned_bin(a, tmp, bsize)) != MP_OKAY) { goto error; }
/* is it prime? */
if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) {
goto error;
if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) { goto error; }
if (flags & LTM_PRIME_SAFE) {
/* see if (a-1)/2 is prime */
if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) { goto error; }
if ((err = mp_div_2(a, a)) != MP_OKAY) { goto error; }
/* is it prime? */
if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) { goto error; }
}
} while (res == MP_NO);
if (flags & LTM_PRIME_SAFE) {
/* restore a to the original value */
if ((err = mp_mul_2(a, a)) != MP_OKAY) { goto error; }
if ((err = mp_add_d(a, 1, a)) != MP_OKAY) { goto error; }
}
err = MP_OKAY;
error:
XFREE(tmp);
@ -5301,7 +5556,7 @@ error:
/* End: bn_mp_prime_random.c */
/* End: bn_mp_prime_random_ex.c */
/* Start: bn_mp_radix_size.c */
/* LibTomMath, multiple-precision integer library -- Tom St Denis
@ -5726,9 +5981,9 @@ CLEANUP:
*/
#include <tommath.h>
/* reduces a modulo n where n is of the form 2**p - k */
/* reduces a modulo n where n is of the form 2**p - d */
int
mp_reduce_2k(mp_int *a, mp_int *n, mp_digit k)
mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d)
{
mp_int q;
int p, res;
@ -5744,9 +5999,9 @@ top:
goto ERR;
}
if (k != 1) {
/* q = q * k */
if ((res = mp_mul_d(&q, k, &q)) != MP_OKAY) {
if (d != 1) {
/* q = q * d */
if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) {
goto ERR;
}
}
@ -6062,7 +6317,7 @@ int mp_shrink (mp_int * a)
{
mp_digit *tmp;
if (a->alloc != a->used && a->used > 0) {
if ((tmp = OPT_CAST XREALLOC (a->dp, sizeof (mp_digit) * a->used)) == NULL) {
if ((tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * a->used)) == NULL) {
return MP_MEM;
}
a->dp = tmp;
@ -6182,6 +6437,85 @@ mp_sqrmod (mp_int * a, mp_int * b, mp_int * c)
/* End: bn_mp_sqrmod.c */
/* Start: bn_mp_sqrt.c */
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
*/
#include <tommath.h>
/* this function is less generic than mp_n_root, simpler and faster */
int mp_sqrt(mp_int *arg, mp_int *ret)
{
int res;
mp_int t1,t2;
/* must be positive */
if (arg->sign == MP_NEG) {
return MP_VAL;
}
/* easy out */
if (mp_iszero(arg) == MP_YES) {
mp_zero(ret);
return MP_OKAY;
}
if ((res = mp_init_copy(&t1, arg)) != MP_OKAY) {
return res;
}
if ((res = mp_init(&t2)) != MP_OKAY) {
goto E2;
}
/* First approx. (not very bad for large arg) */
mp_rshd (&t1,t1.used/2);
/* t1 > 0 */
if ((res = mp_div(arg,&t1,&t2,NULL)) != MP_OKAY) {
goto E1;
}
if ((res = mp_add(&t1,&t2,&t1)) != MP_OKAY) {
goto E1;
}
if ((res = mp_div_2(&t1,&t1)) != MP_OKAY) {
goto E1;
}
/* And now t1 > sqrt(arg) */
do {
if ((res = mp_div(arg,&t1,&t2,NULL)) != MP_OKAY) {
goto E1;
}
if ((res = mp_add(&t1,&t2,&t1)) != MP_OKAY) {
goto E1;
}
if ((res = mp_div_2(&t1,&t1)) != MP_OKAY) {
goto E1;
}
/* t1 >= sqrt(arg) >= t2 at this point */
} while (mp_cmp_mag(&t1,&t2) == MP_GT);
mp_exch(&t1,ret);
E1: mp_clear(&t2);
E2: mp_clear(&t1);
return res;
}
/* End: bn_mp_sqrt.c */
/* Start: bn_mp_sub.c */
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@ -6463,8 +6797,7 @@ mp_to_unsigned_bin (mp_int * a, unsigned char *b)
#include <tommath.h>
/* multiplication using the Toom-Cook 3-way algorithm */
int
mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
{
mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2;
int res, B;
@ -7019,6 +7352,93 @@ int mp_toradix (mp_int * a, char *str, int radix)
/* End: bn_mp_toradix.c */
/* Start: bn_mp_toradix_n.c */
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
*/
#include <tommath.h>
/* stores a bignum as a ASCII string in a given radix (2..64)
*
* Stores upto maxlen-1 chars and always a NULL byte
*/
int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen)
{
int res, digs;
mp_int t;
mp_digit d;
char *_s = str;
/* check range of the maxlen, radix */
if (maxlen < 3 || radix < 2 || radix > 64) {
return MP_VAL;
}
/* quick out if its zero */
if (mp_iszero(a) == 1) {
*str++ = '0';
*str = '\0';
return MP_OKAY;
}
if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
return res;
}
/* if it is negative output a - */
if (t.sign == MP_NEG) {
/* we have to reverse our digits later... but not the - sign!! */
++_s;
/* store the flag and mark the number as positive */
*str++ = '-';
t.sign = MP_ZPOS;
/* subtract a char */
--maxlen;
}
digs = 0;
while (mp_iszero (&t) == 0) {
if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
mp_clear (&t);
return res;
}
*str++ = mp_s_rmap[d];
++digs;
if (--maxlen == 1) {
/* no more room */
break;
}
}
/* reverse the digits of the string. In this case _s points
* to the first digit [exluding the sign] of the number]
*/
bn_reverse ((unsigned char *)_s, digs);
/* append a NULL so the string is properly terminated */
*str = '\0';
mp_clear (&t);
return MP_OKAY;
}
/* End: bn_mp_toradix_n.c */
/* Start: bn_mp_unsigned_bin_size.c */
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*

View File

@ -30,12 +30,12 @@
extern "C" {
/* C++ compilers don't like assigning void * to mp_digit * */
#define OPT_CAST (mp_digit *)
#define OPT_CAST(x) (x *)
#else
/* C on the other hand doesn't care */
#define OPT_CAST
#define OPT_CAST(x)
#endif
@ -99,14 +99,14 @@ extern "C" {
#define XFREE free
#define XREALLOC realloc
#define XCALLOC calloc
#endif
#else
/* prototypes for our heap functions */
extern void *XMALLOC(size_t n);
extern void *REALLOC(void *p, size_t n);
extern void *XCALLOC(size_t n, size_t s);
extern void XFREE(void *p);
#endif
#endif
/* otherwise the bits per digit is calculated automatically from the size of a mp_digit */
@ -134,6 +134,12 @@ extern "C" {
#define MP_YES 1 /* yes response */
#define MP_NO 0 /* no response */
/* Primality generation flags */
#define LTM_PRIME_BBS 0x0001 /* BBS style prime */
#define LTM_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */
#define LTM_PRIME_2MSB_OFF 0x0004 /* force 2nd MSB to 0 */
#define LTM_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */
typedef int mp_err;
/* you'll have to tune these... */
@ -142,12 +148,18 @@ extern int KARATSUBA_MUL_CUTOFF,
TOOM_MUL_CUTOFF,
TOOM_SQR_CUTOFF;
/* various build options */
#define MP_PREC 64 /* default digits of precision */
/* define this to use lower memory usage routines (exptmods mostly) */
/* #define MP_LOW_MEM */
/* default precision */
#ifndef MP_PREC
#ifdef MP_LOW_MEM
#define MP_PREC 64 /* default digits of precision */
#else
#define MP_PREC 8 /* default digits of precision */
#endif
#endif
/* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
#define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1))
@ -207,6 +219,15 @@ void mp_set(mp_int *a, mp_digit b);
/* set a 32-bit const */
int mp_set_int(mp_int *a, unsigned long b);
/* get a 32-bit value */
unsigned long mp_get_int(mp_int * a);
/* initialize and set a digit */
int mp_init_set (mp_int * a, mp_digit b);
/* initialize and set 32-bit value */
int mp_init_set_int (mp_int * a, unsigned long b);
/* copy, b = a */
int mp_copy(mp_int *a, mp_int *b);
@ -350,8 +371,11 @@ int mp_lcm(mp_int *a, mp_int *b, mp_int *c);
*/
int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
/* shortcut for square root */
#define mp_sqrt(a, b) mp_n_root(a, 2, b)
/* special sqrt algo */
int mp_sqrt(mp_int *arg, mp_int *ret);
/* is number a square? */
int mp_is_square(mp_int *arg, int *ret);
/* computes the jacobi c = (a | n) (or Legendre if b is prime) */
int mp_jacobi(mp_int *a, mp_int *n, int *c);
@ -393,7 +417,7 @@ int mp_reduce_is_2k(mp_int *a);
int mp_reduce_2k_setup(mp_int *a, mp_digit *d);
/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit k);
int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d);
/* d = a**b (mod c) */
int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
@ -453,8 +477,23 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style);
*
* The prime generated will be larger than 2^(8*size).
*/
int mp_prime_random(mp_int *a, int t, int size, int bbs, ltm_prime_callback cb, void *dat);
#define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat)
/* makes a truly random prime of a given size (bits),
*
* Flags are as follows:
*
* LTM_PRIME_BBS - make prime congruent to 3 mod 4
* LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
* LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero
* LTM_PRIME_2MSB_ON - make the 2nd highest bit one
*
* You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
* have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
* so it can be NULL
*
*/
int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat);
/* ---> radix conversion <--- */
int mp_count_bits(mp_int *a);
@ -469,6 +508,7 @@ int mp_to_signed_bin(mp_int *a, unsigned char *b);
int mp_read_radix(mp_int *a, char *str, int radix);
int mp_toradix(mp_int *a, char *str, int radix);
int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen);
int mp_radix_size(mp_int *a, int radix, int *size);
int mp_fread(mp_int *a, int radix, FILE *stream);

Binary file not shown.

View File

@ -49,7 +49,7 @@
\begin{document}
\frontmatter
\pagestyle{empty}
\title{Implementing Multiple Precision Arithmetic \\ ~ \\ Holiday Draft Edition }
\title{Implementing Multiple Precision Arithmetic \\ ~ \\ Draft Edition }
\author{\mbox{
%\begin{small}
\begin{tabular}{c}
@ -66,7 +66,7 @@ QUALCOMM Australia \\
}
}
\maketitle
This text has been placed in the public domain. This text corresponds to the v0.28 release of the
This text has been placed in the public domain. This text corresponds to the v0.30 release of the
LibTomMath project.
\begin{alltt}
@ -85,7 +85,7 @@ This text is formatted to the international B5 paper size of 176mm wide by 250mm
\tableofcontents
\listoffigures
\chapter*{Prefaces to the Holiday Draft Edition}
\chapter*{Prefaces to the Draft Edition}
I started this text in April 2003 to complement my LibTomMath library. That is, explain how to implement the functions
contained in LibTomMath. The goal is to have a textbook that any Computer Science student can use when implementing their
own multiple precision arithmetic. The plan I wanted to follow was flesh out all the
@ -100,7 +100,7 @@ to read it. I had Jean-Luc Cooke print copies for me and I brought them to Cryp
managed to grab a certain level of attention having people from around the world ask me for copies of the text was certain
rewarding.
Now we are in December 2003. By this time I had pictured that I would have at least finished my second draft of the text.
Now we are past December 2003. By this time I had pictured that I would have at least finished my second draft of the text.
Currently I am far off from this goal. I've done partial re-writes of chapters one, two and three but they are not even
finished yet. I haven't given up on the project, only had some setbacks. First O'Reilly declined to publish the text then
Addison-Wesley and Greg is tried another which I don't know the name of. However, at this point I want to focus my energy
@ -146,9 +146,6 @@ plan is to edit one chapter every two weeks starting January 4th. It seems insa
should provide ample time. By Crypto'04 I plan to have a 2nd draft of the text polished and ready to hand out to as many
people who will take it.
Finally, again, I'd like to thank my parents Vern and Katie St Denis for giving me a place to stay, food, clothes and
word of encouragement whenever I seemed to need it. Thanks!
\begin{flushright} Tom St Denis \end{flushright}
\newpage
@ -485,7 +482,7 @@ exponentiation and Montgomery reduction have been provided to make the library m
Even with the nearly optimal and specialized algorithms that have been included the Application Programing Interface
(\textit{API}) has been kept as simple as possible. Often generic place holder routines will make use of specialized
algorithms automatically without the developer's specific attention. One such example is the generic multiplication
algorithm \textbf{mp\_mul()} which will automatically use Karatsuba, Toom-Cook, Comba or baseline multiplication
algorithm \textbf{mp\_mul()} which will automatically use Toom--Cook, Karatsuba, Comba or baseline multiplication
based on the magnitude of the inputs and the configuration of the library.
Making LibTomMath as efficient as possible is not the only goal of the LibTomMath project. Ideally the library should
@ -510,12 +507,12 @@ segments of code littered throughout the source. This clean and uncluttered app
developer can more readily discern the true intent of a given section of source code without trying to keep track of
what conditional code will be used.
The code base of LibTomMath is also well organized. Each function is in its own separate source code file
which allows the reader to find a given function very quickly. On average there are about $76$ lines of code per source
The code base of LibTomMath is well organized. Each function is in its own separate source code file
which allows the reader to find a given function very quickly. On average there are $76$ lines of code per source
file which makes the source very easily to follow. By comparison MPI and LIP are single file projects making code tracing
very hard. GMP has many conditional code segments which also hinder tracing.
When compiled with GCC for the x86 processor and optimized for speed the entire library is approximately $66$KiB\footnote{The notation ``KiB'' means $2^{10}$ octets, similarly ``MiB'' means $2^{20}$ octets.}
When compiled with GCC for the x86 processor and optimized for speed the entire library is approximately $100$KiB\footnote{The notation ``KiB'' means $2^{10}$ octets, similarly ``MiB'' means $2^{20}$ octets.}
which is fairly small compared to GMP (over $250$KiB). LibTomMath is slightly larger than MPI (which compiles to about
$50$KiB) but LibTomMath is also much faster and more complete than MPI.
@ -2736,7 +2733,7 @@ general purpose multiplication. Given two polynomial basis representations $f(x
light algebra \cite{KARAP} that the following polynomial is equivalent to multiplication of the two integers the polynomials represent.
\begin{equation}
f(x) \cdot g(x) = acx^2 + ((a - b)(c - d) + ac + bd)x + bd
f(x) \cdot g(x) = acx^2 + ((a - b)(c - d) - (ac + bd))x + bd
\end{equation}
Using the observation that $ac$ and $bd$ could be re-used only three half sized multiplications would be required to produce the product. Applying
@ -3196,7 +3193,7 @@ Upon closer inspection this equation only requires the calculation of three half
Karatsuba multiplication, this algorithm can be applied recursively on the input and will achieve an asymptotic running time of
$O \left ( n^{lg(3)} \right )$.
You might ask yourself, if the asymptotic time of Karatsuba squaring and multiplication is the same, why not simply use the multiplication algorithm
If the asymptotic times of Karatsuba squaring and multiplication are the same, why not simply use the multiplication algorithm
instead? The answer to this arises from the cutoff point for squaring. As in multiplication there exists a cutoff point, at which the
time required for a Comba based squaring and a Karatsuba based squaring meet. Due to the overhead inherent in the Karatsuba method, the cutoff
point is fairly high. For example, on an AMD Athlon XP processor with $\beta = 2^{28}$, the cutoff point is around 127 digits.

File diff suppressed because it is too large Load Diff