first batch of simplifications
This commit is contained in:
parent
b9977adfb8
commit
3cdcec43e6
3
mp_abs.c
3
mp_abs.c
@ -9,10 +9,9 @@
|
||||
*/
|
||||
mp_err mp_abs(const mp_int *a, mp_int *b)
|
||||
{
|
||||
mp_err err;
|
||||
|
||||
/* copy a to b */
|
||||
if (a != b) {
|
||||
mp_err err;
|
||||
if ((err = mp_copy(a, b)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
|
27
mp_add.c
27
mp_add.c
@ -6,33 +6,24 @@
|
||||
/* high level addition (handles signs) */
|
||||
mp_err mp_add(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
mp_sign sa, sb;
|
||||
mp_err err;
|
||||
|
||||
/* get sign of both inputs */
|
||||
sa = a->sign;
|
||||
sb = b->sign;
|
||||
|
||||
/* handle two cases, not four */
|
||||
if (sa == sb) {
|
||||
if (a->sign == b->sign) {
|
||||
/* both positive or both negative */
|
||||
/* add their magnitudes, copy the sign */
|
||||
c->sign = sa;
|
||||
err = s_mp_add(a, b, c);
|
||||
} else {
|
||||
c->sign = a->sign;
|
||||
return s_mp_add(a, b, c);
|
||||
}
|
||||
|
||||
/* one positive, the other negative */
|
||||
/* subtract the one with the greater magnitude from */
|
||||
/* the one of the lesser magnitude. The result gets */
|
||||
/* the sign of the one with the greater magnitude. */
|
||||
if (mp_cmp_mag(a, b) == MP_LT) {
|
||||
c->sign = sb;
|
||||
err = s_mp_sub(b, a, c);
|
||||
} else {
|
||||
c->sign = sa;
|
||||
err = s_mp_sub(a, b, c);
|
||||
MP_EXCH(const mp_int *, a, b);
|
||||
}
|
||||
}
|
||||
return err;
|
||||
|
||||
c->sign = a->sign;
|
||||
return s_mp_sub(a, b, c);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -7,12 +7,11 @@
|
||||
|
||||
void mp_clear_multi(mp_int *mp, ...)
|
||||
{
|
||||
mp_int *next_mp = mp;
|
||||
va_list args;
|
||||
va_start(args, mp);
|
||||
while (next_mp != NULL) {
|
||||
mp_clear(next_mp);
|
||||
next_mp = va_arg(args, mp_int *);
|
||||
while (mp != NULL) {
|
||||
mp_clear(mp);
|
||||
mp = va_arg(args, mp_int *);
|
||||
}
|
||||
va_end(args);
|
||||
}
|
||||
|
15
mp_cmp.c
15
mp_cmp.c
@ -8,19 +8,14 @@ mp_ord mp_cmp(const mp_int *a, const mp_int *b)
|
||||
{
|
||||
/* compare based on sign */
|
||||
if (a->sign != b->sign) {
|
||||
if (a->sign == MP_NEG) {
|
||||
return MP_LT;
|
||||
} else {
|
||||
return MP_GT;
|
||||
}
|
||||
return a->sign == MP_NEG ? MP_LT : MP_GT;
|
||||
}
|
||||
|
||||
/* compare digits */
|
||||
if (a->sign == MP_NEG) {
|
||||
/* if negative compare opposite direction */
|
||||
return mp_cmp_mag(b, a);
|
||||
} else {
|
||||
return mp_cmp_mag(a, b);
|
||||
if (a->sign == MP_NEG) {
|
||||
MP_EXCH(const mp_int *, a, b);
|
||||
}
|
||||
|
||||
return mp_cmp_mag(a, b);
|
||||
}
|
||||
#endif
|
||||
|
10
mp_cmp_d.c
10
mp_cmp_d.c
@ -17,12 +17,10 @@ mp_ord mp_cmp_d(const mp_int *a, mp_digit b)
|
||||
}
|
||||
|
||||
/* compare the only digit of a to b */
|
||||
if (a->dp[0] > b) {
|
||||
return MP_GT;
|
||||
} else if (a->dp[0] < b) {
|
||||
return MP_LT;
|
||||
} else {
|
||||
return MP_EQ;
|
||||
if (a->dp[0] != b) {
|
||||
return a->dp[0] > b ? MP_GT : MP_LT;
|
||||
}
|
||||
|
||||
return MP_EQ;
|
||||
}
|
||||
#endif
|
||||
|
26
mp_cmp_mag.c
26
mp_cmp_mag.c
@ -7,33 +7,19 @@
|
||||
mp_ord mp_cmp_mag(const mp_int *a, const mp_int *b)
|
||||
{
|
||||
int n;
|
||||
const mp_digit *tmpa, *tmpb;
|
||||
|
||||
/* compare based on # of non-zero digits */
|
||||
if (a->used > b->used) {
|
||||
return MP_GT;
|
||||
if (a->used != b->used) {
|
||||
return a->used > b->used ? MP_GT : MP_LT;
|
||||
}
|
||||
|
||||
if (a->used < b->used) {
|
||||
return MP_LT;
|
||||
}
|
||||
|
||||
/* alias for a */
|
||||
tmpa = a->dp + (a->used - 1);
|
||||
|
||||
/* alias for b */
|
||||
tmpb = b->dp + (a->used - 1);
|
||||
|
||||
/* compare based on digits */
|
||||
for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
|
||||
if (*tmpa > *tmpb) {
|
||||
return MP_GT;
|
||||
for (n = a->used; n --> 0;) {
|
||||
if (a->dp[n] != b->dp[n]) {
|
||||
return a->dp[n] > b->dp[n] ? MP_GT : MP_LT;
|
||||
}
|
||||
}
|
||||
|
||||
if (*tmpa < *tmpb) {
|
||||
return MP_LT;
|
||||
}
|
||||
}
|
||||
return MP_EQ;
|
||||
}
|
||||
#endif
|
||||
|
11
mp_cnt_lsb.c
11
mp_cnt_lsb.c
@ -3,7 +3,7 @@
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
static const int lnz[16] = {
|
||||
static const char lnz[16] = {
|
||||
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
|
||||
};
|
||||
|
||||
@ -11,7 +11,7 @@ static const int lnz[16] = {
|
||||
int mp_cnt_lsb(const mp_int *a)
|
||||
{
|
||||
int x;
|
||||
mp_digit q, qq;
|
||||
mp_digit q;
|
||||
|
||||
/* easy out */
|
||||
if (mp_iszero(a)) {
|
||||
@ -25,11 +25,12 @@ int mp_cnt_lsb(const mp_int *a)
|
||||
|
||||
/* now scan this digit until a 1 is found */
|
||||
if ((q & 1u) == 0u) {
|
||||
mp_digit p;
|
||||
do {
|
||||
qq = q & 15u;
|
||||
x += lnz[qq];
|
||||
p = q & 15u;
|
||||
x += lnz[p];
|
||||
q >>= 4;
|
||||
} while (qq == 0u);
|
||||
} while (p == 0u);
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
14
mp_copy.c
14
mp_copy.c
@ -7,8 +7,6 @@
|
||||
mp_err mp_copy(const mp_int *a, mp_int *b)
|
||||
{
|
||||
int n;
|
||||
mp_digit *tmpa, *tmpb;
|
||||
mp_err err;
|
||||
|
||||
/* if dst == src do nothing */
|
||||
if (a == b) {
|
||||
@ -17,27 +15,21 @@ mp_err mp_copy(const mp_int *a, mp_int *b)
|
||||
|
||||
/* grow dest */
|
||||
if (b->alloc < a->used) {
|
||||
mp_err err;
|
||||
if ((err = mp_grow(b, a->used)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
}
|
||||
|
||||
/* zero b and copy the parameters over */
|
||||
/* pointer aliases */
|
||||
|
||||
/* source */
|
||||
tmpa = a->dp;
|
||||
|
||||
/* destination */
|
||||
tmpb = b->dp;
|
||||
|
||||
/* copy all the digits */
|
||||
for (n = 0; n < a->used; n++) {
|
||||
*tmpb++ = *tmpa++;
|
||||
b->dp[n] = a->dp[n];
|
||||
}
|
||||
|
||||
/* clear high digits */
|
||||
MP_ZERO_DIGITS(tmpb, b->used - n);
|
||||
MP_ZERO_DIGITS(b->dp + a->used, b->used - a->used);
|
||||
|
||||
/* copy used count and sign */
|
||||
b->used = a->used;
|
||||
|
13
mp_div.c
13
mp_div.c
@ -15,14 +15,14 @@ mp_err mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d)
|
||||
/* if a < b then q = 0, r = a */
|
||||
if (mp_cmp_mag(a, b) == MP_LT) {
|
||||
if (d != NULL) {
|
||||
err = mp_copy(a, d);
|
||||
} else {
|
||||
err = MP_OKAY;
|
||||
if ((err = mp_copy(a, d)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
}
|
||||
if (c != NULL) {
|
||||
mp_zero(c);
|
||||
}
|
||||
return err;
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
if (MP_HAS(S_MP_DIV_RECURSIVE)
|
||||
@ -31,11 +31,12 @@ mp_err mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d)
|
||||
err = s_mp_div_recursive(a, b, c, d);
|
||||
} else if (MP_HAS(S_MP_DIV_SCHOOL)) {
|
||||
err = s_mp_div_school(a, b, c, d);
|
||||
} else {
|
||||
} else if (MP_HAS(S_MP_DIV_SMALL)) {
|
||||
err = s_mp_div_small(a, b, c, d);
|
||||
} else {
|
||||
err = MP_VAL;
|
||||
}
|
||||
|
||||
return err;
|
||||
}
|
||||
#endif
|
||||
|
||||
|
@ -7,7 +7,7 @@
|
||||
mp_err mp_div_3(const mp_int *a, mp_int *c, mp_digit *d)
|
||||
{
|
||||
mp_int q;
|
||||
mp_word w, t;
|
||||
mp_word w;
|
||||
mp_digit b;
|
||||
mp_err err;
|
||||
int ix;
|
||||
@ -22,7 +22,8 @@ mp_err mp_div_3(const mp_int *a, mp_int *c, mp_digit *d)
|
||||
q.used = a->used;
|
||||
q.sign = a->sign;
|
||||
w = 0;
|
||||
for (ix = a->used - 1; ix >= 0; ix--) {
|
||||
for (ix = a->used; ix --> 0;) {
|
||||
mp_word t;
|
||||
w = (w << (mp_word)MP_DIGIT_BIT) | (mp_word)a->dp[ix];
|
||||
|
||||
if (w >= 3u) {
|
||||
@ -57,7 +58,7 @@ mp_err mp_div_3(const mp_int *a, mp_int *c, mp_digit *d)
|
||||
}
|
||||
mp_clear(&q);
|
||||
|
||||
return err;
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -8,10 +8,6 @@
|
||||
*/
|
||||
void mp_exch(mp_int *a, mp_int *b)
|
||||
{
|
||||
mp_int t;
|
||||
|
||||
t = *a;
|
||||
*a = *b;
|
||||
*b = t;
|
||||
MP_EXCH(mp_int, *a, *b);
|
||||
}
|
||||
#endif
|
||||
|
@ -64,13 +64,15 @@ LBL_ERR:
|
||||
/* if the modulus is odd or dr != 0 use the montgomery method */
|
||||
if (MP_HAS(S_MP_EXPTMOD_FAST) && (mp_isodd(P) || (dr != 0))) {
|
||||
return s_mp_exptmod_fast(G, X, P, Y, dr);
|
||||
} else if (MP_HAS(S_MP_EXPTMOD)) {
|
||||
}
|
||||
|
||||
/* otherwise use the generic Barrett reduction technique */
|
||||
if (MP_HAS(S_MP_EXPTMOD)) {
|
||||
return s_mp_exptmod(G, X, P, Y, 0);
|
||||
} else {
|
||||
}
|
||||
|
||||
/* no exptmod for evens */
|
||||
return MP_VAL;
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -65,7 +65,6 @@ mp_err mp_exteuclid(const mp_int *a, const mp_int *b, mp_int *U1, mp_int *U2, mp
|
||||
mp_exch(U3, &u3);
|
||||
}
|
||||
|
||||
err = MP_OKAY;
|
||||
LBL_ERR:
|
||||
mp_clear_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL);
|
||||
return err;
|
||||
|
@ -32,7 +32,7 @@ mp_err mp_fread(mp_int *a, int radix, FILE *stream)
|
||||
mp_zero(a);
|
||||
|
||||
do {
|
||||
int y;
|
||||
uint8_t y;
|
||||
unsigned pos;
|
||||
ch = (radix <= 36) ? MP_TOUPPER(ch) : ch;
|
||||
pos = (unsigned)(ch - (int)'(');
|
||||
@ -40,7 +40,7 @@ mp_err mp_fread(mp_int *a, int radix, FILE *stream)
|
||||
break;
|
||||
}
|
||||
|
||||
y = (int)s_mp_rmap_reverse[pos];
|
||||
y = s_mp_rmap_reverse[pos];
|
||||
|
||||
if ((y == 0xff) || (y >= radix)) {
|
||||
break;
|
||||
@ -50,7 +50,7 @@ mp_err mp_fread(mp_int *a, int radix, FILE *stream)
|
||||
if ((err = mp_mul_d(a, (mp_digit)radix, a)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
if ((err = mp_add_d(a, (mp_digit)y, a)) != MP_OKAY) {
|
||||
if ((err = mp_add_d(a, y, a)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
} while ((ch = fgetc(stream)) != EOF);
|
||||
|
@ -14,11 +14,7 @@ mp_err mp_from_sbin(mp_int *a, const uint8_t *buf, size_t size)
|
||||
}
|
||||
|
||||
/* first byte is 0 for positive, non-zero for negative */
|
||||
if (buf[0] == (uint8_t)0) {
|
||||
a->sign = MP_ZPOS;
|
||||
} else {
|
||||
a->sign = MP_NEG;
|
||||
}
|
||||
a->sign = (buf[0] == (uint8_t)0) ? MP_ZPOS : MP_NEG;
|
||||
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
19
mp_fwrite.c
19
mp_fwrite.c
@ -8,31 +8,24 @@ mp_err mp_fwrite(const mp_int *a, int radix, FILE *stream)
|
||||
{
|
||||
char *buf;
|
||||
mp_err err;
|
||||
size_t len, written;
|
||||
size_t size, written;
|
||||
|
||||
/* TODO: this function is not in this PR */
|
||||
if ((err = mp_radix_size(a, radix, &len)) != MP_OKAY) {
|
||||
if ((err = mp_radix_size(a, radix, &size)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
|
||||
buf = (char *) MP_MALLOC(len);
|
||||
buf = (char *) MP_MALLOC(size);
|
||||
if (buf == NULL) {
|
||||
return MP_MEM;
|
||||
}
|
||||
|
||||
if ((err = mp_to_radix(a, buf, len, &written, radix)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
if ((err = mp_to_radix(a, buf, size, &written, radix)) == MP_OKAY) {
|
||||
if (fwrite(buf, written, 1uL, stream) != 1uL) {
|
||||
err = MP_ERR;
|
||||
goto LBL_ERR;
|
||||
}
|
||||
err = MP_OKAY;
|
||||
}
|
||||
|
||||
|
||||
LBL_ERR:
|
||||
MP_FREE_BUFFER(buf, len);
|
||||
MP_FREE_BUFFER(buf, size);
|
||||
return err;
|
||||
}
|
||||
#endif
|
||||
|
12
mp_grow.c
12
mp_grow.c
@ -6,9 +6,6 @@
|
||||
/* grow as required */
|
||||
mp_err mp_grow(mp_int *a, int size)
|
||||
{
|
||||
int i;
|
||||
mp_digit *tmp;
|
||||
|
||||
/* if the alloc size is smaller alloc more ram */
|
||||
if (a->alloc < size) {
|
||||
/* reallocate the array a->dp
|
||||
@ -17,21 +14,20 @@ mp_err mp_grow(mp_int *a, int size)
|
||||
* in case the operation failed we don't want
|
||||
* to overwrite the dp member of a.
|
||||
*/
|
||||
tmp = (mp_digit *) MP_REALLOC(a->dp,
|
||||
mp_digit *dp = (mp_digit *) MP_REALLOC(a->dp,
|
||||
(size_t)a->alloc * sizeof(mp_digit),
|
||||
(size_t)size * sizeof(mp_digit));
|
||||
if (tmp == NULL) {
|
||||
if (dp == NULL) {
|
||||
/* reallocation failed but "a" is still valid [can be freed] */
|
||||
return MP_MEM;
|
||||
}
|
||||
|
||||
/* reallocation succeeded so set a->dp */
|
||||
a->dp = tmp;
|
||||
a->dp = dp;
|
||||
|
||||
/* zero excess digits */
|
||||
i = a->alloc;
|
||||
MP_ZERO_DIGITS(a->dp + a->alloc, size - a->alloc);
|
||||
a->alloc = size;
|
||||
MP_ZERO_DIGITS(a->dp + i, a->alloc - i);
|
||||
}
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
@ -31,7 +31,7 @@ mp_err mp_is_square(const mp_int *arg, bool *ret)
|
||||
mp_err err;
|
||||
mp_digit c;
|
||||
mp_int t;
|
||||
unsigned long r;
|
||||
uint32_t r;
|
||||
|
||||
/* Default to Non-square :) */
|
||||
*ret = false;
|
||||
|
@ -23,7 +23,7 @@ mp_err mp_kronecker(const mp_int *a, const mp_int *p, int *c)
|
||||
mp_err err;
|
||||
int v, k;
|
||||
|
||||
static const int table[8] = {0, 1, 0, -1, 0, -1, 0, 1};
|
||||
static const char table[] = {0, 1, 0, -1, 0, -1, 0, 1};
|
||||
|
||||
if (mp_iszero(p)) {
|
||||
if ((a->used == 1) && (a->dp[0] == 1u)) {
|
||||
|
13
mp_lshd.c
13
mp_lshd.c
@ -7,8 +7,6 @@
|
||||
mp_err mp_lshd(mp_int *a, int b)
|
||||
{
|
||||
int x;
|
||||
mp_err err;
|
||||
mp_digit *top, *bottom;
|
||||
|
||||
/* if its less than zero return */
|
||||
if (b <= 0) {
|
||||
@ -21,6 +19,7 @@ mp_err mp_lshd(mp_int *a, int b)
|
||||
|
||||
/* grow to fit the new digits */
|
||||
if (a->alloc < (a->used + b)) {
|
||||
mp_err err;
|
||||
if ((err = mp_grow(a, a->used + b)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
@ -29,18 +28,12 @@ mp_err mp_lshd(mp_int *a, int b)
|
||||
/* increment the used by the shift amount then copy upwards */
|
||||
a->used += b;
|
||||
|
||||
/* top */
|
||||
top = a->dp + a->used - 1;
|
||||
|
||||
/* base */
|
||||
bottom = (a->dp + a->used - 1) - b;
|
||||
|
||||
/* much like mp_rshd this is implemented using a sliding window
|
||||
* except the window goes the otherway around. Copying from
|
||||
* the bottom to the top. see mp_rshd.c for more info.
|
||||
*/
|
||||
for (x = a->used - 1; x >= b; x--) {
|
||||
*top-- = *bottom--;
|
||||
for (x = a->used; x --> b;) {
|
||||
a->dp[x] = a->dp[x - b];
|
||||
}
|
||||
|
||||
/* zero the lower digits */
|
||||
|
@ -9,8 +9,11 @@ mp_err mp_mod_2d(const mp_int *a, int b, mp_int *c)
|
||||
int x;
|
||||
mp_err err;
|
||||
|
||||
/* if b is <= 0 then zero the int */
|
||||
if (b <= 0) {
|
||||
if (b < 0) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
if (b == 0) {
|
||||
mp_zero(c);
|
||||
return MP_OKAY;
|
||||
}
|
||||
@ -20,7 +23,6 @@ mp_err mp_mod_2d(const mp_int *a, int b, mp_int *c)
|
||||
return mp_copy(a, c);
|
||||
}
|
||||
|
||||
/* copy */
|
||||
if ((err = mp_copy(a, c)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
|
@ -26,7 +26,6 @@ mp_err mp_montgomery_calc_normalization(mp_int *a, const mp_int *b)
|
||||
bits = 1;
|
||||
}
|
||||
|
||||
|
||||
/* now compute C = A * B mod b */
|
||||
for (x = bits - 1; x < (int)MP_DIGIT_BIT; x++) {
|
||||
if ((err = mp_mul_2(a, a)) != MP_OKAY) {
|
||||
|
8
mp_neg.c
8
mp_neg.c
@ -6,18 +6,14 @@
|
||||
/* b = -a */
|
||||
mp_err mp_neg(const mp_int *a, mp_int *b)
|
||||
{
|
||||
mp_err err;
|
||||
if (a != b) {
|
||||
mp_err err;
|
||||
if ((err = mp_copy(a, b)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
}
|
||||
|
||||
if (!mp_iszero(b)) {
|
||||
b->sign = (a->sign == MP_ZPOS) ? MP_NEG : MP_ZPOS;
|
||||
} else {
|
||||
b->sign = MP_ZPOS;
|
||||
}
|
||||
b->sign = mp_iszero(b) || b->sign == MP_NEG ? MP_ZPOS : MP_NEG;
|
||||
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
@ -36,7 +36,8 @@ int mp_prime_rabin_miller_trials(int size)
|
||||
for (x = 0; x < (int)(sizeof(sizes)/(sizeof(sizes[0]))); x++) {
|
||||
if (sizes[x].k == size) {
|
||||
return sizes[x].t;
|
||||
} else if (sizes[x].k > size) {
|
||||
}
|
||||
if (sizes[x].k > size) {
|
||||
return (x == 0) ? sizes[0].t : sizes[x - 1].t;
|
||||
}
|
||||
}
|
||||
|
@ -31,13 +31,13 @@ mp_err mp_read_radix(mp_int *a, const char *str, int radix)
|
||||
* this allows numbers like 1AB and 1ab to represent the same value
|
||||
* [e.g. in hex]
|
||||
*/
|
||||
int y;
|
||||
uint8_t y;
|
||||
char ch = (radix <= 36) ? (char)MP_TOUPPER((int)*str) : *str;
|
||||
unsigned pos = (unsigned)(ch - '(');
|
||||
if (MP_RMAP_REVERSE_SIZE < pos) {
|
||||
break;
|
||||
}
|
||||
y = (int)s_mp_rmap_reverse[pos];
|
||||
y = s_mp_rmap_reverse[pos];
|
||||
|
||||
/* if the char was found in the map
|
||||
* and is less than the given radix add it
|
||||
@ -49,14 +49,14 @@ mp_err mp_read_radix(mp_int *a, const char *str, int radix)
|
||||
if ((err = mp_mul_d(a, (mp_digit)radix, a)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
if ((err = mp_add_d(a, (mp_digit)y, a)) != MP_OKAY) {
|
||||
if ((err = mp_add_d(a, y, a)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
++str;
|
||||
}
|
||||
|
||||
/* if an illegal character was found, fail. */
|
||||
if (!((*str == '\0') || (*str == '\r') || (*str == '\n'))) {
|
||||
if ((*str != '\0') && (*str != '\r') && (*str != '\n')) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
|
22
mp_reduce.c
22
mp_reduce.c
@ -24,19 +24,19 @@ mp_err mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu)
|
||||
/* according to HAC this optimization is ok */
|
||||
if ((mp_digit)um > ((mp_digit)1 << (MP_DIGIT_BIT - 1))) {
|
||||
if ((err = mp_mul(&q, mu, &q)) != MP_OKAY) {
|
||||
goto CLEANUP;
|
||||
goto LBL_ERR;
|
||||
}
|
||||
} else if (MP_HAS(S_MP_MUL_HIGH_DIGS)) {
|
||||
if ((err = s_mp_mul_high_digs(&q, mu, &q, um)) != MP_OKAY) {
|
||||
goto CLEANUP;
|
||||
goto LBL_ERR;
|
||||
}
|
||||
} else if (MP_HAS(S_MP_MUL_HIGH_DIGS_FAST)) {
|
||||
if ((err = s_mp_mul_high_digs_fast(&q, mu, &q, um)) != MP_OKAY) {
|
||||
goto CLEANUP;
|
||||
goto LBL_ERR;
|
||||
}
|
||||
} else {
|
||||
err = MP_VAL;
|
||||
goto CLEANUP;
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
/* q3 = q2 / b**(k+1) */
|
||||
@ -44,38 +44,38 @@ mp_err mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu)
|
||||
|
||||
/* x = x mod b**(k+1), quick (no division) */
|
||||
if ((err = mp_mod_2d(x, MP_DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
|
||||
goto CLEANUP;
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
/* q = q * m mod b**(k+1), quick (no division) */
|
||||
if ((err = s_mp_mul_digs(&q, m, &q, um + 1)) != MP_OKAY) {
|
||||
goto CLEANUP;
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
/* x = x - q */
|
||||
if ((err = mp_sub(x, &q, x)) != MP_OKAY) {
|
||||
goto CLEANUP;
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
/* If x < 0, add b**(k+1) to it */
|
||||
if (mp_cmp_d(x, 0uL) == MP_LT) {
|
||||
mp_set(&q, 1uL);
|
||||
if ((err = mp_lshd(&q, um + 1)) != MP_OKAY) {
|
||||
goto CLEANUP;
|
||||
goto LBL_ERR;
|
||||
}
|
||||
if ((err = mp_add(x, &q, x)) != MP_OKAY) {
|
||||
goto CLEANUP;
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
/* Back off if it's too big */
|
||||
while (mp_cmp(x, m) != MP_LT) {
|
||||
if ((err = s_mp_sub(x, m, x)) != MP_OKAY) {
|
||||
goto CLEANUP;
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
CLEANUP:
|
||||
LBL_ERR:
|
||||
mp_clear(&q);
|
||||
|
||||
return err;
|
||||
|
@ -6,17 +6,13 @@
|
||||
/* determines if mp_reduce_2k can be used */
|
||||
bool mp_reduce_is_2k(const mp_int *a)
|
||||
{
|
||||
int ix, iy, iw;
|
||||
mp_digit iz;
|
||||
|
||||
if (a->used == 0) {
|
||||
return false;
|
||||
} else if (a->used == 1) {
|
||||
return true;
|
||||
} else if (a->used > 1) {
|
||||
iy = mp_count_bits(a);
|
||||
iz = 1;
|
||||
iw = 1;
|
||||
int ix, iy = mp_count_bits(a), iw = 1;
|
||||
mp_digit iz = 1;
|
||||
|
||||
/* Test every bit from the second digit up, must be 1 */
|
||||
for (ix = MP_DIGIT_BIT; ix < iy; ix++) {
|
||||
|
@ -6,14 +6,13 @@
|
||||
/* determines if reduce_2k_l can be used */
|
||||
bool mp_reduce_is_2k_l(const mp_int *a)
|
||||
{
|
||||
int ix, iy;
|
||||
|
||||
if (a->used == 0) {
|
||||
return false;
|
||||
} else if (a->used == 1) {
|
||||
return true;
|
||||
} else if (a->used > 1) {
|
||||
/* if more than half of the digits are -1 we're sold */
|
||||
int ix, iy;
|
||||
for (iy = ix = 0; ix < a->used; ix++) {
|
||||
if (a->dp[ix] == MP_DIGIT_MAX) {
|
||||
++iy;
|
||||
|
16
mp_rshd.c
16
mp_rshd.c
@ -7,7 +7,6 @@
|
||||
void mp_rshd(mp_int *a, int b)
|
||||
{
|
||||
int x;
|
||||
mp_digit *bottom, *top;
|
||||
|
||||
/* if b <= 0 then ignore it */
|
||||
if (b <= 0) {
|
||||
@ -20,15 +19,8 @@ void mp_rshd(mp_int *a, int b)
|
||||
return;
|
||||
}
|
||||
|
||||
/* shift the digits down */
|
||||
|
||||
/* bottom */
|
||||
bottom = a->dp;
|
||||
|
||||
/* top [offset into digits] */
|
||||
top = a->dp + b;
|
||||
|
||||
/* this is implemented as a sliding window where
|
||||
/* shift the digits down.
|
||||
* this is implemented as a sliding window where
|
||||
* the window is b-digits long and digits from
|
||||
* the top of the window are copied to the bottom
|
||||
*
|
||||
@ -39,11 +31,11 @@ void mp_rshd(mp_int *a, int b)
|
||||
\-------------------/ ---->
|
||||
*/
|
||||
for (x = 0; x < (a->used - b); x++) {
|
||||
*bottom++ = *top++;
|
||||
a->dp[x] = a->dp[x + b];
|
||||
}
|
||||
|
||||
/* zero the top digits */
|
||||
MP_ZERO_DIGITS(bottom, a->used - x);
|
||||
MP_ZERO_DIGITS(a->dp + a->used - b, b);
|
||||
|
||||
/* remove excess digits */
|
||||
a->used -= b;
|
||||
|
3
mp_set.c
3
mp_set.c
@ -6,9 +6,10 @@
|
||||
/* set to a digit */
|
||||
void mp_set(mp_int *a, mp_digit b)
|
||||
{
|
||||
int oldused = a->used;
|
||||
a->dp[0] = b & MP_MASK;
|
||||
a->sign = MP_ZPOS;
|
||||
a->used = (a->dp[0] != 0u) ? 1 : 0;
|
||||
MP_ZERO_DIGITS(a->dp + a->used, a->alloc - a->used);
|
||||
MP_ZERO_DIGITS(a->dp + a->used, oldused - a->used);
|
||||
}
|
||||
#endif
|
||||
|
@ -6,15 +6,15 @@
|
||||
/* shrink a bignum */
|
||||
mp_err mp_shrink(mp_int *a)
|
||||
{
|
||||
mp_digit *tmp;
|
||||
int alloc = MP_MAX(MP_MIN_PREC, a->used);
|
||||
if (a->alloc != alloc) {
|
||||
if ((tmp = (mp_digit *) MP_REALLOC(a->dp,
|
||||
mp_digit *dp = (mp_digit *) MP_REALLOC(a->dp,
|
||||
(size_t)a->alloc * sizeof(mp_digit),
|
||||
(size_t)alloc * sizeof(mp_digit))) == NULL) {
|
||||
(size_t)alloc * sizeof(mp_digit));
|
||||
if (dp == NULL) {
|
||||
return MP_MEM;
|
||||
}
|
||||
a->dp = tmp;
|
||||
a->dp = dp;
|
||||
a->alloc = alloc;
|
||||
}
|
||||
return MP_OKAY;
|
||||
|
@ -6,17 +6,16 @@
|
||||
/* shift right by a certain bit count with sign extension */
|
||||
mp_err mp_signed_rsh(const mp_int *a, int b, mp_int *c)
|
||||
{
|
||||
mp_err res;
|
||||
mp_err err;
|
||||
if (a->sign == MP_ZPOS) {
|
||||
return mp_div_2d(a, b, c, NULL);
|
||||
}
|
||||
|
||||
res = mp_add_d(a, 1uL, c);
|
||||
if (res != MP_OKAY) {
|
||||
return res;
|
||||
if ((err = mp_add_d(a, 1uL, c)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
|
||||
res = mp_div_2d(c, b, c, NULL);
|
||||
return (res == MP_OKAY) ? mp_sub_d(c, 1uL, c) : res;
|
||||
err = mp_div_2d(c, b, c, NULL);
|
||||
return (err == MP_OKAY) ? mp_sub_d(c, 1uL, c) : err;
|
||||
}
|
||||
#endif
|
||||
|
18
mp_sqrt.c
18
mp_sqrt.c
@ -25,7 +25,7 @@ mp_err mp_sqrt(const mp_int *arg, mp_int *ret)
|
||||
}
|
||||
|
||||
if ((err = mp_init(&t2)) != MP_OKAY) {
|
||||
goto E2;
|
||||
goto LBL_ERR2;
|
||||
}
|
||||
|
||||
/* First approx. (not very bad for large arg) */
|
||||
@ -33,33 +33,33 @@ mp_err mp_sqrt(const mp_int *arg, mp_int *ret)
|
||||
|
||||
/* t1 > 0 */
|
||||
if ((err = mp_div(arg, &t1, &t2, NULL)) != MP_OKAY) {
|
||||
goto E1;
|
||||
goto LBL_ERR1;
|
||||
}
|
||||
if ((err = mp_add(&t1, &t2, &t1)) != MP_OKAY) {
|
||||
goto E1;
|
||||
goto LBL_ERR1;
|
||||
}
|
||||
if ((err = mp_div_2(&t1, &t1)) != MP_OKAY) {
|
||||
goto E1;
|
||||
goto LBL_ERR1;
|
||||
}
|
||||
/* And now t1 > sqrt(arg) */
|
||||
do {
|
||||
if ((err = mp_div(arg, &t1, &t2, NULL)) != MP_OKAY) {
|
||||
goto E1;
|
||||
goto LBL_ERR1;
|
||||
}
|
||||
if ((err = mp_add(&t1, &t2, &t1)) != MP_OKAY) {
|
||||
goto E1;
|
||||
goto LBL_ERR1;
|
||||
}
|
||||
if ((err = mp_div_2(&t1, &t1)) != MP_OKAY) {
|
||||
goto E1;
|
||||
goto LBL_ERR1;
|
||||
}
|
||||
/* t1 >= sqrt(arg) >= t2 at this point */
|
||||
} while (mp_cmp_mag(&t1, &t2) == MP_GT);
|
||||
|
||||
mp_exch(&t1, ret);
|
||||
|
||||
E1:
|
||||
LBL_ERR1:
|
||||
mp_clear(&t2);
|
||||
E2:
|
||||
LBL_ERR2:
|
||||
mp_clear(&t1);
|
||||
return err;
|
||||
}
|
||||
|
@ -33,28 +33,28 @@ mp_err mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret)
|
||||
* compute directly: err = n^(prime+1)/4 mod prime
|
||||
* Handbook of Applied Cryptography algorithm 3.36
|
||||
*/
|
||||
if ((err = mp_mod_d(prime, 4uL, &i)) != MP_OKAY) goto cleanup;
|
||||
if ((err = mp_mod_d(prime, 4uL, &i)) != MP_OKAY) goto LBL_END;
|
||||
if (i == 3u) {
|
||||
if ((err = mp_add_d(prime, 1uL, &t1)) != MP_OKAY) goto cleanup;
|
||||
if ((err = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup;
|
||||
if ((err = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup;
|
||||
if ((err = mp_exptmod(n, &t1, prime, ret)) != MP_OKAY) goto cleanup;
|
||||
if ((err = mp_add_d(prime, 1uL, &t1)) != MP_OKAY) goto LBL_END;
|
||||
if ((err = mp_div_2(&t1, &t1)) != MP_OKAY) goto LBL_END;
|
||||
if ((err = mp_div_2(&t1, &t1)) != MP_OKAY) goto LBL_END;
|
||||
if ((err = mp_exptmod(n, &t1, prime, ret)) != MP_OKAY) goto LBL_END;
|
||||
err = MP_OKAY;
|
||||
goto cleanup;
|
||||
goto LBL_END;
|
||||
}
|
||||
|
||||
/* NOW: Tonelli-Shanks algorithm */
|
||||
|
||||
/* factor out powers of 2 from prime-1, defining Q and S as: prime-1 = Q*2^S */
|
||||
if ((err = mp_copy(prime, &Q)) != MP_OKAY) goto cleanup;
|
||||
if ((err = mp_sub_d(&Q, 1uL, &Q)) != MP_OKAY) goto cleanup;
|
||||
if ((err = mp_copy(prime, &Q)) != MP_OKAY) goto LBL_END;
|
||||
if ((err = mp_sub_d(&Q, 1uL, &Q)) != MP_OKAY) goto LBL_END;
|
||||
/* Q = prime - 1 */
|
||||
mp_zero(&S);
|
||||
/* S = 0 */
|
||||
while (mp_iseven(&Q)) {
|
||||
if ((err = mp_div_2(&Q, &Q)) != MP_OKAY) goto cleanup;
|
||||
if ((err = mp_div_2(&Q, &Q)) != MP_OKAY) goto LBL_END;
|
||||
/* Q = Q / 2 */
|
||||
if ((err = mp_add_d(&S, 1uL, &S)) != MP_OKAY) goto cleanup;
|
||||
if ((err = mp_add_d(&S, 1uL, &S)) != MP_OKAY) goto LBL_END;
|
||||
/* S = S + 1 */
|
||||
}
|
||||
|
||||
@ -62,55 +62,55 @@ mp_err mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret)
|
||||
mp_set(&Z, 2uL);
|
||||
/* Z = 2 */
|
||||
for (;;) {
|
||||
if ((err = mp_kronecker(&Z, prime, &legendre)) != MP_OKAY) goto cleanup;
|
||||
if ((err = mp_kronecker(&Z, prime, &legendre)) != MP_OKAY) goto LBL_END;
|
||||
if (legendre == -1) break;
|
||||
if ((err = mp_add_d(&Z, 1uL, &Z)) != MP_OKAY) goto cleanup;
|
||||
if ((err = mp_add_d(&Z, 1uL, &Z)) != MP_OKAY) goto LBL_END;
|
||||
/* Z = Z + 1 */
|
||||
}
|
||||
|
||||
if ((err = mp_exptmod(&Z, &Q, prime, &C)) != MP_OKAY) goto cleanup;
|
||||
if ((err = mp_exptmod(&Z, &Q, prime, &C)) != MP_OKAY) goto LBL_END;
|
||||
/* C = Z ^ Q mod prime */
|
||||
if ((err = mp_add_d(&Q, 1uL, &t1)) != MP_OKAY) goto cleanup;
|
||||
if ((err = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup;
|
||||
if ((err = mp_add_d(&Q, 1uL, &t1)) != MP_OKAY) goto LBL_END;
|
||||
if ((err = mp_div_2(&t1, &t1)) != MP_OKAY) goto LBL_END;
|
||||
/* t1 = (Q + 1) / 2 */
|
||||
if ((err = mp_exptmod(n, &t1, prime, &R)) != MP_OKAY) goto cleanup;
|
||||
if ((err = mp_exptmod(n, &t1, prime, &R)) != MP_OKAY) goto LBL_END;
|
||||
/* R = n ^ ((Q + 1) / 2) mod prime */
|
||||
if ((err = mp_exptmod(n, &Q, prime, &T)) != MP_OKAY) goto cleanup;
|
||||
if ((err = mp_exptmod(n, &Q, prime, &T)) != MP_OKAY) goto LBL_END;
|
||||
/* T = n ^ Q mod prime */
|
||||
if ((err = mp_copy(&S, &M)) != MP_OKAY) goto cleanup;
|
||||
if ((err = mp_copy(&S, &M)) != MP_OKAY) goto LBL_END;
|
||||
/* M = S */
|
||||
mp_set(&two, 2uL);
|
||||
|
||||
for (;;) {
|
||||
if ((err = mp_copy(&T, &t1)) != MP_OKAY) goto cleanup;
|
||||
if ((err = mp_copy(&T, &t1)) != MP_OKAY) goto LBL_END;
|
||||
i = 0;
|
||||
for (;;) {
|
||||
if (mp_cmp_d(&t1, 1uL) == MP_EQ) break;
|
||||
if ((err = mp_exptmod(&t1, &two, prime, &t1)) != MP_OKAY) goto cleanup;
|
||||
if ((err = mp_exptmod(&t1, &two, prime, &t1)) != MP_OKAY) goto LBL_END;
|
||||
i++;
|
||||
}
|
||||
if (i == 0u) {
|
||||
if ((err = mp_copy(&R, ret)) != MP_OKAY) goto cleanup;
|
||||
if ((err = mp_copy(&R, ret)) != MP_OKAY) goto LBL_END;
|
||||
err = MP_OKAY;
|
||||
goto cleanup;
|
||||
goto LBL_END;
|
||||
}
|
||||
if ((err = mp_sub_d(&M, i, &t1)) != MP_OKAY) goto cleanup;
|
||||
if ((err = mp_sub_d(&t1, 1uL, &t1)) != MP_OKAY) goto cleanup;
|
||||
if ((err = mp_exptmod(&two, &t1, prime, &t1)) != MP_OKAY) goto cleanup;
|
||||
if ((err = mp_sub_d(&M, i, &t1)) != MP_OKAY) goto LBL_END;
|
||||
if ((err = mp_sub_d(&t1, 1uL, &t1)) != MP_OKAY) goto LBL_END;
|
||||
if ((err = mp_exptmod(&two, &t1, prime, &t1)) != MP_OKAY) goto LBL_END;
|
||||
/* t1 = 2 ^ (M - i - 1) */
|
||||
if ((err = mp_exptmod(&C, &t1, prime, &t1)) != MP_OKAY) goto cleanup;
|
||||
if ((err = mp_exptmod(&C, &t1, prime, &t1)) != MP_OKAY) goto LBL_END;
|
||||
/* t1 = C ^ (2 ^ (M - i - 1)) mod prime */
|
||||
if ((err = mp_sqrmod(&t1, prime, &C)) != MP_OKAY) goto cleanup;
|
||||
if ((err = mp_sqrmod(&t1, prime, &C)) != MP_OKAY) goto LBL_END;
|
||||
/* C = (t1 * t1) mod prime */
|
||||
if ((err = mp_mulmod(&R, &t1, prime, &R)) != MP_OKAY) goto cleanup;
|
||||
if ((err = mp_mulmod(&R, &t1, prime, &R)) != MP_OKAY) goto LBL_END;
|
||||
/* R = (R * t1) mod prime */
|
||||
if ((err = mp_mulmod(&T, &C, prime, &T)) != MP_OKAY) goto cleanup;
|
||||
if ((err = mp_mulmod(&T, &C, prime, &T)) != MP_OKAY) goto LBL_END;
|
||||
/* T = (T * C) mod prime */
|
||||
mp_set(&M, i);
|
||||
/* M = i */
|
||||
}
|
||||
|
||||
cleanup:
|
||||
LBL_END:
|
||||
mp_clear_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL);
|
||||
return err;
|
||||
}
|
||||
|
32
mp_sub.c
32
mp_sub.c
@ -6,35 +6,31 @@
|
||||
/* high level subtraction (handles signs) */
|
||||
mp_err mp_sub(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
mp_sign sa = a->sign, sb = b->sign;
|
||||
mp_err err;
|
||||
|
||||
if (sa != sb) {
|
||||
if (a->sign != b->sign) {
|
||||
/* subtract a negative from a positive, OR */
|
||||
/* subtract a positive from a negative. */
|
||||
/* In either case, ADD their magnitudes, */
|
||||
/* and use the sign of the first number. */
|
||||
c->sign = sa;
|
||||
err = s_mp_add(a, b, c);
|
||||
} else {
|
||||
c->sign = a->sign;
|
||||
return s_mp_add(a, b, c);
|
||||
}
|
||||
|
||||
/* subtract a positive from a positive, OR */
|
||||
/* subtract a negative from a negative. */
|
||||
/* First, take the difference between their */
|
||||
/* magnitudes, then... */
|
||||
if (mp_cmp_mag(a, b) != MP_LT) {
|
||||
/* Copy the sign from the first */
|
||||
c->sign = sa;
|
||||
/* The first has a larger or equal magnitude */
|
||||
err = s_mp_sub(a, b, c);
|
||||
} else {
|
||||
if (mp_cmp_mag(a, b) == MP_LT) {
|
||||
/* The second has a larger magnitude */
|
||||
/* The result has the *opposite* sign from */
|
||||
/* the first number. */
|
||||
c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;
|
||||
/* The second has a larger magnitude */
|
||||
err = s_mp_sub(b, a, c);
|
||||
c->sign = (a->sign == MP_ZPOS) ? MP_NEG : MP_ZPOS;
|
||||
MP_EXCH(const mp_int *, a, b);
|
||||
} else {
|
||||
/* The first has a larger or equal magnitude */
|
||||
/* Copy the sign from the first */
|
||||
c->sign = a->sign;
|
||||
}
|
||||
}
|
||||
return err;
|
||||
return s_mp_sub(a, b, c);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -4,17 +4,11 @@
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* reverse an array, used for radix code */
|
||||
static void s_mp_reverse(uint8_t *s, size_t len)
|
||||
static void s_mp_reverse(char *s, size_t len)
|
||||
{
|
||||
size_t ix, iy;
|
||||
uint8_t t;
|
||||
|
||||
ix = 0u;
|
||||
iy = len - 1u;
|
||||
size_t ix = 0, iy = len - 1u;
|
||||
while (ix < iy) {
|
||||
t = s[ix];
|
||||
s[ix] = s[iy];
|
||||
s[iy] = t;
|
||||
MP_EXCH(char, s[ix], s[iy]);
|
||||
++ix;
|
||||
--iy;
|
||||
}
|
||||
@ -83,7 +77,7 @@ mp_err mp_to_radix(const mp_int *a, char *str, size_t maxlen, size_t *written, i
|
||||
/* reverse the digits of the string. In this case _s points
|
||||
* to the first digit [exluding the sign] of the number
|
||||
*/
|
||||
s_mp_reverse((uint8_t *)_s, digs);
|
||||
s_mp_reverse(_s, digs);
|
||||
|
||||
/* append a NULL so the string is properly terminated */
|
||||
*str = '\0';
|
||||
|
@ -7,7 +7,7 @@
|
||||
void mp_zero(mp_int *a)
|
||||
{
|
||||
a->sign = MP_ZPOS;
|
||||
MP_ZERO_DIGITS(a->dp, a->used);
|
||||
a->used = 0;
|
||||
MP_ZERO_DIGITS(a->dp, a->alloc);
|
||||
}
|
||||
#endif
|
||||
|
@ -17,10 +17,9 @@
|
||||
static mp_err s_mp_recursion(const mp_int *a, const mp_int *b, mp_int *q, mp_int *r)
|
||||
{
|
||||
mp_err err;
|
||||
int m, k;
|
||||
mp_int A1, A2, B1, B0, Q1, Q0, R1, R0, t;
|
||||
int m = a->used - b->used, k = m/2;
|
||||
|
||||
m = a->used - b->used;
|
||||
if (m < MP_KARATSUBA_MUL_CUTOFF) {
|
||||
return s_mp_div_school(a, b, q, r);
|
||||
}
|
||||
@ -29,9 +28,6 @@ static mp_err s_mp_recursion(const mp_int *a, const mp_int *b, mp_int *q, mp_int
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
/* k = floor(m/2) */
|
||||
k = m/2;
|
||||
|
||||
/* B1 = b / beta^k, B0 = b % beta^k*/
|
||||
if ((err = mp_div_2d(b, k * MP_DIGIT_BIT, &B1, &B0)) != MP_OKAY) goto LBL_ERR;
|
||||
|
||||
|
@ -140,8 +140,6 @@ mp_err s_mp_div_school(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d)
|
||||
mp_exch(&x, d);
|
||||
}
|
||||
|
||||
err = MP_OKAY;
|
||||
|
||||
LBL_Y:
|
||||
mp_clear(&y);
|
||||
LBL_X:
|
||||
|
@ -148,6 +148,8 @@ extern void MP_FREE(void *mem, size_t size);
|
||||
|
||||
#define MP_TOUPPER(c) ((((c) >= 'a') && ((c) <= 'z')) ? (((c) + 'A') - 'a') : (c))
|
||||
|
||||
#define MP_EXCH(t, a, b) do { t _c = a; a = b; b = _c; } while (0)
|
||||
|
||||
/* Static assertion */
|
||||
#define MP_STATIC_ASSERT(msg, cond) typedef char mp_static_assert_##msg[(cond) ? 1 : -1];
|
||||
|
||||
@ -267,9 +269,9 @@ extern MP_PRIVATE const mp_digit s_mp_prime_tab[];
|
||||
#define MP_GET_MAG(name, type) \
|
||||
type name(const mp_int* a) \
|
||||
{ \
|
||||
unsigned i = MP_MIN((unsigned)a->used, (unsigned)((MP_SIZEOF_BITS(type) + MP_DIGIT_BIT - 1) / MP_DIGIT_BIT)); \
|
||||
int i = MP_MIN(a->used, (int)((MP_SIZEOF_BITS(type) + MP_DIGIT_BIT - 1) / MP_DIGIT_BIT)); \
|
||||
type res = 0u; \
|
||||
while (i --> 0u) { \
|
||||
while (i --> 0) { \
|
||||
res <<= ((MP_SIZEOF_BITS(type) <= MP_DIGIT_BIT) ? 0 : MP_DIGIT_BIT); \
|
||||
res |= (type)a->dp[i]; \
|
||||
if (MP_SIZEOF_BITS(type) <= MP_DIGIT_BIT) { break; } \
|
||||
|
Loading…
Reference in New Issue
Block a user