added libtommath-0.34

This commit is contained in:
Tom St Denis 2005-02-12 08:40:15 +00:00 committed by Steffen Jaeckel
parent 4b7111d96e
commit 3d0fcaab0a
55 changed files with 5477 additions and 3867 deletions

BIN
bn.pdf

Binary file not shown.

29
bn.tex
View File

@ -49,7 +49,7 @@
\begin{document}
\frontmatter
\pagestyle{empty}
\title{LibTomMath User Manual \\ v0.33}
\title{LibTomMath User Manual \\ v0.34}
\author{Tom St Denis \\ tomstdenis@iahu.ca}
\maketitle
This text, the library and the accompanying textbook are all hereby placed in the public domain. This book has been
@ -263,12 +263,12 @@ are the pros and cons of LibTomMath by comparing it to the math routines from Gn
\begin{center}
\begin{tabular}{|l|c|c|l|}
\hline \textbf{Criteria} & \textbf{Pro} & \textbf{Con} & \textbf{Notes} \\
\hline Few lines of code per file & X & & GnuPG $ = 300.9$, LibTomMath $ = 76.04$ \\
\hline Few lines of code per file & X & & GnuPG $ = 300.9$, LibTomMath $ = 71.97$ \\
\hline Commented function prototypes & X && GnuPG function names are cryptic. \\
\hline Speed && X & LibTomMath is slower. \\
\hline Totally free & X & & GPL has unfavourable restrictions.\\
\hline Large function base & X & & GnuPG is barebones. \\
\hline Four modular reduction algorithms & X & & Faster modular exponentiation. \\
\hline Five modular reduction algorithms & X & & Faster modular exponentiation for a variety of moduli. \\
\hline Portable & X & & GnuPG requires configuration to build. \\
\hline
\end{tabular}
@ -284,9 +284,12 @@ would require when working with large integers.
So it may feel tempting to just rip the math code out of GnuPG (or GnuMP where it was taken from originally) in your
own application but I think there are reasons not to. While LibTomMath is slower than libraries such as GnuMP it is
not normally significantly slower. On x86 machines the difference is normally a factor of two when performing modular
exponentiations.
exponentiations. It depends largely on the processor, compiler and the moduli being used.
Essentially the only time you wouldn't use LibTomMath is when blazing speed is the primary concern.
Essentially the only time you wouldn't use LibTomMath is when blazing speed is the primary concern. However,
on the other side of the coin LibTomMath offers you a totally free (public domain) well structured math library
that is very flexible, complete and performs well in resource contrained environments. Fast RSA for example can
be performed with as little as 8KB of ram for data (again depending on build options).
\chapter{Getting Started with LibTomMath}
\section{Building Programs}
@ -809,7 +812,7 @@ mp\_int variables based on their digits only.
\index{mp\_cmp\_mag}
\begin{alltt}
int mp_cmp(mp_int * a, mp_int * b);
int mp_cmp_mag(mp_int * a, mp_int * b);
\end{alltt}
This will compare $a$ to $b$ placing $a$ to the left of $b$. This function cannot fail and will return one of the
three compare codes listed in figure \ref{fig:CMP}.
@ -1220,12 +1223,13 @@ int mp_sqr (mp_int * a, mp_int * b);
\end{alltt}
Will square $a$ and store it in $b$. Like the case of multiplication there are four different squaring
algorithms all which can be called from mp\_sqr(). It is ideal to use mp\_sqr over mp\_mul when squaring terms.
algorithms all which can be called from mp\_sqr(). It is ideal to use mp\_sqr over mp\_mul when squaring terms because
of the speed difference.
\section{Tuning Polynomial Basis Routines}
Both of the Toom-Cook and Karatsuba multiplication algorithms are faster than the traditional $O(n^2)$ approach that
the Comba and baseline algorithms use. At $O(n^{1.464973})$ and $O(n^{1.584962})$ running times respectfully they require
the Comba and baseline algorithms use. At $O(n^{1.464973})$ and $O(n^{1.584962})$ running times respectively they require
considerably less work. For example, a 10000-digit multiplication would take roughly 724,000 single precision
multiplications with Toom-Cook or 100,000,000 single precision multiplications with the standard Comba (a factor
of 138).
@ -1297,14 +1301,14 @@ of $b$. This algorithm accepts an input $a$ of any range and is not limited by
\section{Barrett Reduction}
Barrett reduction is a generic optimized reduction algorithm that requires pre--computation to achieve
a decent speedup over straight division. First a $mu$ value must be precomputed with the following function.
a decent speedup over straight division. First a $\mu$ value must be precomputed with the following function.
\index{mp\_reduce\_setup}
\begin{alltt}
int mp_reduce_setup(mp_int *a, mp_int *b);
\end{alltt}
Given a modulus in $b$ this produces the required $mu$ value in $a$. For any given modulus this only has to
Given a modulus in $b$ this produces the required $\mu$ value in $a$. For any given modulus this only has to
be computed once. Modular reduction can now be performed with the following.
\index{mp\_reduce}
@ -1312,7 +1316,7 @@ be computed once. Modular reduction can now be performed with the following.
int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
\end{alltt}
This will reduce $a$ in place modulo $b$ with the precomputed $mu$ value in $c$. $a$ must be in the range
This will reduce $a$ in place modulo $b$ with the precomputed $\mu$ value in $c$. $a$ must be in the range
$0 \le a < b^2$.
\begin{alltt}
@ -1578,7 +1582,8 @@ will return $-2$.
This algorithm uses the ``Newton Approximation'' method and will converge on the correct root fairly quickly. Since
the algorithm requires raising $a$ to the power of $b$ it is not ideal to attempt to find roots for large
values of $b$. If particularly large roots are required then a factor method could be used instead. For example,
$a^{1/16}$ is equivalent to $\left (a^{1/4} \right)^{1/4}$.
$a^{1/16}$ is equivalent to $\left (a^{1/4} \right)^{1/4}$ or simply
$\left ( \left ( \left ( a^{1/2} \right )^{1/2} \right )^{1/2} \right )^{1/2}$
\chapter{Prime Numbers}
\section{Trial Division}

View File

@ -21,8 +21,7 @@
* Based on slow invmod except this is optimized for the case where b is
* odd as per HAC Note 14.64 on pp. 610
*/
int
fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
int fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
{
mp_int x, y, u, v, B, D;
int res, neg;

View File

@ -23,8 +23,7 @@
*
* Based on Algorithm 14.32 on pp.601 of HAC.
*/
int
fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
{
int ix, res, olduse;
mp_word W[MP_WARRAY];

View File

@ -31,8 +31,7 @@
* Based on Algorithm 14.12 on pp.595 of HAC.
*
*/
int
fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
{
int olduse, res, pa, ix, iz;
mp_digit W[MP_WARRAY];
@ -81,7 +80,7 @@ fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
}
/* store final carry */
W[ix] = _W;
W[ix] = _W & MP_MASK;
/* setup dest */
olduse = c->used;

View File

@ -24,8 +24,7 @@
*
* Based on Algorithm 14.12 on pp.595 of HAC.
*/
int
fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
int fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
{
int olduse, res, pa, ix, iz;
mp_digit W[MP_WARRAY];
@ -72,7 +71,7 @@ fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
}
/* store final carry */
W[ix] = _W;
W[ix] = _W & MP_MASK;
/* setup dest */
olduse = c->used;

View File

@ -101,7 +101,7 @@ int fast_s_mp_sqr (mp_int * a, mp_int * b)
}
/* store it */
W[ix] = _W;
W[ix] = _W & MP_MASK;
/* make next carry */
W1 = _W >> ((mp_word)DIGIT_BIT);

View File

@ -65,21 +65,29 @@ int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
#endif
}
/* modified diminished radix reduction */
#if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C)
if (mp_reduce_is_2k_l(P) == MP_YES) {
return s_mp_exptmod(G, X, P, Y, 1);
}
#endif
#ifdef BN_MP_DR_IS_MODULUS_C
/* is it a DR modulus? */
dr = mp_dr_is_modulus(P);
#else
/* default to no */
dr = 0;
#endif
#ifdef BN_MP_REDUCE_IS_2K_C
/* if not, is it a uDR modulus? */
/* if not, is it a unrestricted DR modulus? */
if (dr == 0) {
dr = mp_reduce_is_2k(P) << 1;
}
#endif
/* if the modulus is odd or dr != 0 use the fast method */
/* if the modulus is odd or dr != 0 use the montgomery method */
#ifdef BN_MP_EXPTMOD_FAST_C
if (mp_isodd (P) == 1 || dr != 0) {
return mp_exptmod_fast (G, X, P, Y, dr);
@ -87,7 +95,7 @@ int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
#endif
#ifdef BN_S_MP_EXPTMOD_C
/* otherwise use the generic Barrett reduction technique */
return s_mp_exptmod (G, X, P, Y);
return s_mp_exptmod (G, X, P, Y, 0);
#else
/* no exptmod for evens */
return MP_VAL;

View File

@ -29,8 +29,7 @@
#define TAB_SIZE 256
#endif
int
mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
{
mp_int M[TAB_SIZE], res;
mp_digit buf, mp;

View File

@ -57,8 +57,9 @@ mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
}
/* store final carry [if any] */
/* store final carry [if any] and increment ix offset */
*tmpc++ = u;
++ix;
/* now zero digits above the top */
while (ix++ < olduse) {

View File

@ -60,7 +60,7 @@ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback
/* calc the maskOR_msb */
maskOR_msb = 0;
maskOR_msb_offset = (size - 2) >> 3;
maskOR_msb_offset = ((size & 7) == 1) ? 1 : 0;
if (flags & LTM_PRIME_2MSB_ON) {
maskOR_msb |= 1 << ((size - 2) & 7);
} else if (flags & LTM_PRIME_2MSB_OFF) {
@ -68,7 +68,7 @@ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback
}
/* get the maskOR_lsb */
maskOR_lsb = 0;
maskOR_lsb = 1;
if (flags & LTM_PRIME_BBS) {
maskOR_lsb |= 3;
}

View File

@ -16,7 +16,7 @@
*/
/* read a string [ASCII] in a given radix */
int mp_read_radix (mp_int * a, char *str, int radix)
int mp_read_radix (mp_int * a, const char *str, int radix)
{
int y, res, neg;
char ch;

View File

@ -19,8 +19,7 @@
* precomputed via mp_reduce_setup.
* From HAC pp.604 Algorithm 14.42
*/
int
mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
int mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
{
mp_int q;
int res, um = m->used;

View File

@ -16,8 +16,7 @@
*/
/* reduces a modulo n where n is of the form 2**p - d */
int
mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d)
int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d)
{
mp_int q;
int p, res;

58
bn_mp_reduce_2k_l.c Normal file
View File

@ -0,0 +1,58 @@
#include <tommath.h>
#ifdef BN_MP_REDUCE_2K_L_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
*/
/* reduces a modulo n where n is of the form 2**p - d
This differs from reduce_2k since "d" can be larger
than a single digit.
*/
int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d)
{
mp_int q;
int p, res;
if ((res = mp_init(&q)) != MP_OKAY) {
return res;
}
p = mp_count_bits(n);
top:
/* q = a/2**p, a = a mod 2**p */
if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
goto ERR;
}
/* q = q * d */
if ((res = mp_mul(&q, d, &q)) != MP_OKAY) {
goto ERR;
}
/* a = a + q */
if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
goto ERR;
}
if (mp_cmp_mag(a, n) != MP_LT) {
s_mp_sub(a, n, a);
goto top;
}
ERR:
mp_clear(&q);
return res;
}
#endif

View File

@ -16,8 +16,7 @@
*/
/* determines the setup value */
int
mp_reduce_2k_setup(mp_int *a, mp_digit *d)
int mp_reduce_2k_setup(mp_int *a, mp_digit *d)
{
int res, p;
mp_int tmp;

40
bn_mp_reduce_2k_setup_l.c Normal file
View File

@ -0,0 +1,40 @@
#include <tommath.h>
#ifdef BN_MP_REDUCE_2K_SETUP_L_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
*/
/* determines the setup value */
int mp_reduce_2k_setup_l(mp_int *a, mp_int *d)
{
int res;
mp_int tmp;
if ((res = mp_init(&tmp)) != MP_OKAY) {
return res;
}
if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) {
goto ERR;
}
if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) {
goto ERR;
}
ERR:
mp_clear(&tmp);
return res;
}
#endif

View File

@ -22,9 +22,9 @@ int mp_reduce_is_2k(mp_int *a)
mp_digit iz;
if (a->used == 0) {
return 0;
return MP_NO;
} else if (a->used == 1) {
return 1;
return MP_YES;
} else if (a->used > 1) {
iy = mp_count_bits(a);
iz = 1;
@ -33,7 +33,7 @@ int mp_reduce_is_2k(mp_int *a)
/* Test every bit from the second digit up, must be 1 */
for (ix = DIGIT_BIT; ix < iy; ix++) {
if ((a->dp[iw] & iz) == 0) {
return 0;
return MP_NO;
}
iz <<= 1;
if (iz > (mp_digit)MP_MASK) {
@ -42,7 +42,7 @@ int mp_reduce_is_2k(mp_int *a)
}
}
}
return 1;
return MP_YES;
}
#endif

40
bn_mp_reduce_is_2k_l.c Normal file
View File

@ -0,0 +1,40 @@
#include <tommath.h>
#ifdef BN_MP_REDUCE_IS_2K_L_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
*/
/* determines if reduce_2k_l can be used */
int mp_reduce_is_2k_l(mp_int *a)
{
int ix, iy;
if (a->used == 0) {
return MP_NO;
} else if (a->used == 1) {
return MP_YES;
} else if (a->used > 1) {
/* if more than half of the digits are -1 we're sold */
for (iy = ix = 0; ix < a->used; ix++) {
if (a->dp[ix] == MP_MASK) {
++iy;
}
}
return (iy >= (a->used/2)) ? MP_YES : MP_NO;
}
return MP_NO;
}
#endif

View File

@ -16,8 +16,7 @@
*/
/* store in signed [big endian] format */
int
mp_to_signed_bin (mp_int * a, unsigned char *b)
int mp_to_signed_bin (mp_int * a, unsigned char *b)
{
int res;

27
bn_mp_to_signed_bin_n.c Normal file
View File

@ -0,0 +1,27 @@
#include <tommath.h>
#ifdef BN_MP_TO_SIGNED_BIN_N_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
*/
/* store in signed [big endian] format */
int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen)
{
if (*outlen < (unsigned long)mp_signed_bin_size(a)) {
return MP_VAL;
}
*outlen = mp_signed_bin_size(a);
return mp_to_signed_bin(a, b);
}
#endif

View File

@ -16,8 +16,7 @@
*/
/* store in unsigned [big endian] format */
int
mp_to_unsigned_bin (mp_int * a, unsigned char *b)
int mp_to_unsigned_bin (mp_int * a, unsigned char *b)
{
int x, res;
mp_int t;

27
bn_mp_to_unsigned_bin_n.c Normal file
View File

@ -0,0 +1,27 @@
#include <tommath.h>
#ifdef BN_MP_TO_UNSIGNED_BIN_N_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
*/
/* store in unsigned [big endian] format */
int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen)
{
if (*outlen < (unsigned long)mp_unsigned_bin_size(a)) {
return MP_VAL;
}
*outlen = mp_unsigned_bin_size(a);
return mp_to_unsigned_bin(a, b);
}
#endif

View File

@ -16,8 +16,7 @@
*/
/* get the size for an unsigned equivalent */
int
mp_unsigned_bin_size (mp_int * a)
int mp_unsigned_bin_size (mp_int * a)
{
int size = mp_count_bits (a);
return (size / 8 + ((size & 7) != 0 ? 1 : 0));

View File

@ -21,11 +21,12 @@
#define TAB_SIZE 256
#endif
int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
{
mp_int M[TAB_SIZE], res, mu;
mp_digit buf;
int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
int (*redux)(mp_int*,mp_int*,mp_int*);
/* find window size */
x = mp_count_bits (X);
@ -72,8 +73,17 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
if ((err = mp_init (&mu)) != MP_OKAY) {
goto LBL_M;
}
if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
goto LBL_MU;
if (redmode == 0) {
if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
goto LBL_MU;
}
redux = mp_reduce;
} else {
if ((err = mp_reduce_2k_setup_l (P, &mu)) != MP_OKAY) {
goto LBL_MU;
}
redux = mp_reduce_2k_l;
}
/* create M table
@ -96,11 +106,14 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
}
for (x = 0; x < (winsize - 1); x++) {
/* square it */
if ((err = mp_sqr (&M[1 << (winsize - 1)],
&M[1 << (winsize - 1)])) != MP_OKAY) {
goto LBL_MU;
}
if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
/* reduce modulo P */
if ((err = redux (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
goto LBL_MU;
}
}
@ -112,7 +125,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
goto LBL_MU;
}
if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) {
if ((err = redux (&M[x], P, &mu)) != MP_OKAY) {
goto LBL_MU;
}
}
@ -161,7 +174,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
goto LBL_RES;
}
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
if ((err = redux (&res, P, &mu)) != MP_OKAY) {
goto LBL_RES;
}
continue;
@ -178,7 +191,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
goto LBL_RES;
}
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
if ((err = redux (&res, P, &mu)) != MP_OKAY) {
goto LBL_RES;
}
}
@ -187,7 +200,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
goto LBL_RES;
}
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
if ((err = redux (&res, P, &mu)) != MP_OKAY) {
goto LBL_RES;
}
@ -205,7 +218,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
goto LBL_RES;
}
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
if ((err = redux (&res, P, &mu)) != MP_OKAY) {
goto LBL_RES;
}
@ -215,7 +228,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
goto LBL_RES;
}
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
if ((err = redux (&res, P, &mu)) != MP_OKAY) {
goto LBL_RES;
}
}

View File

@ -20,11 +20,12 @@
CPU /Compiler /MUL CUTOFF/SQR CUTOFF
-------------------------------------------------------------
Intel P4 Northwood /GCC v3.4.1 / 88/ 128/LTM 0.32 ;-)
AMD Athlon64 /GCC v3.4.4 / 74/ 124/LTM 0.34
*/
int KARATSUBA_MUL_CUTOFF = 88, /* Min. number of digits before Karatsuba multiplication is used. */
KARATSUBA_SQR_CUTOFF = 128, /* Min. number of digits before Karatsuba squaring is used. */
int KARATSUBA_MUL_CUTOFF = 74, /* Min. number of digits before Karatsuba multiplication is used. */
KARATSUBA_SQR_CUTOFF = 124, /* Min. number of digits before Karatsuba squaring is used. */
TOOM_MUL_CUTOFF = 350, /* no optimal values of these are known yet so set em high */
TOOM_SQR_CUTOFF = 400;

File diff suppressed because it is too large Load Diff

View File

@ -1,3 +1,15 @@
February 12th, 2005
v0.34 -- Fixed two more small errors in mp_prime_random_ex()
-- Fixed overflow in mp_mul_d() [Kevin Kenny]
-- Added mp_to_(un)signed_bin_n() functions which do bounds checking for ya [and report the size]
-- Added "large" diminished radix support. Speeds up things like DSA where the moduli is of the form 2^k - P for some P < 2^(k/2) or so
Actually is faster than Montgomery on my AMD64 (and probably much faster on a P4)
-- Updated the manual a bit
-- Ok so I haven't done the textbook work yet... My current freelance gig has landed me in France till the
end of Feb/05. Once I get back I'll have tons of free time and I plan to go to town on the book.
As of this release the API will freeze. At least until the book catches up with all the changes. I welcome
bug reports but new algorithms will have to wait.
December 23rd, 2004
v0.33 -- Fixed "small" variant for mp_div() which would munge with negative dividends...
-- Fixed bug in mp_prime_random_ex() which would set the most significant byte to zero when

File diff suppressed because it is too large Load Diff

View File

@ -11,15 +11,16 @@ ulong64 _tt;
#endif
void ndraw(mp_int *a, char *name)
void ndraw(mp_int * a, char *name)
{
char buf[4096];
printf("%s: ", name);
mp_toradix(a, buf, 64);
printf("%s\n", buf);
}
static void draw(mp_int *a)
static void draw(mp_int * a)
{
ndraw(a, "");
}
@ -39,35 +40,38 @@ int lbit(void)
}
/* RDTSC from Scott Duplichan */
static ulong64 TIMFUNC (void)
{
#if defined __GNUC__
#if defined(__i386__) || defined(__x86_64__)
unsigned long long a;
__asm__ __volatile__ ("rdtsc\nmovl %%eax,%0\nmovl %%edx,4+%0\n"::"m"(a):"%eax","%edx");
return a;
#else /* gcc-IA64 version */
unsigned long result;
__asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
while (__builtin_expect ((int) result == -1, 0))
__asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
return result;
#endif
static ulong64 TIMFUNC(void)
{
#if defined __GNUC__
#if defined(__i386__) || defined(__x86_64__)
unsigned long long a;
__asm__ __volatile__("rdtsc\nmovl %%eax,%0\nmovl %%edx,4+%0\n"::
"m"(a):"%eax", "%edx");
return a;
#else /* gcc-IA64 version */
unsigned long result;
__asm__ __volatile__("mov %0=ar.itc":"=r"(result)::"memory");
while (__builtin_expect((int) result == -1, 0))
__asm__ __volatile__("mov %0=ar.itc":"=r"(result)::"memory");
return result;
#endif
// Microsoft and Intel Windows compilers
#elif defined _M_IX86
__asm rdtsc
#elif defined _M_AMD64
return __rdtsc ();
#elif defined _M_IA64
#if defined __INTEL_COMPILER
#include <ia64intrin.h>
#endif
return __getReg (3116);
#else
#error need rdtsc function for this build
#endif
}
#elif defined _M_IX86
__asm rdtsc
#elif defined _M_AMD64
return __rdtsc();
#elif defined _M_IA64
#if defined __INTEL_COMPILER
#include <ia64intrin.h>
#endif
return __getReg(3116);
#else
#error need rdtsc function for this build
#endif
}
#define DO(x) x; x;
//#define DO4(x) DO2(x); DO2(x);
@ -77,7 +81,7 @@ static ulong64 TIMFUNC (void)
int main(void)
{
ulong64 tt, gg, CLK_PER_SEC;
FILE *log, *logb, *logc;
FILE *log, *logb, *logc, *logd;
mp_int a, b, c, d, e, f;
int n, cnt, ix, old_kara_m, old_kara_s;
unsigned rr;
@ -92,166 +96,189 @@ int main(void)
srand(time(NULL));
/* temp. turn off TOOM */
TOOM_MUL_CUTOFF = TOOM_SQR_CUTOFF = 100000;
/* temp. turn off TOOM */
TOOM_MUL_CUTOFF = TOOM_SQR_CUTOFF = 100000;
CLK_PER_SEC = TIMFUNC();
sleep(1);
CLK_PER_SEC = TIMFUNC() - CLK_PER_SEC;
CLK_PER_SEC = TIMFUNC();
sleep(1);
CLK_PER_SEC = TIMFUNC() - CLK_PER_SEC;
printf("CLK_PER_SEC == %llu\n", CLK_PER_SEC);
printf("CLK_PER_SEC == %llu\n", CLK_PER_SEC);
goto exptmod;
log = fopen("logs/add.log", "w");
for (cnt = 8; cnt <= 128; cnt += 8) {
SLEEP;
mp_rand(&a, cnt);
mp_rand(&b, cnt);
rr = 0;
tt = -1;
do {
gg = TIMFUNC();
DO(mp_add(&a, &b, &c));
gg = (TIMFUNC() - gg) >> 1;
if (tt > gg)
tt = gg;
} while (++rr < 100000);
printf("Adding\t\t%4d-bit => %9llu/sec, %9llu cycles\n",
mp_count_bits(&a), CLK_PER_SEC / tt, tt);
fprintf(log, "%d %9llu\n", cnt * DIGIT_BIT, tt);
fflush(log);
}
fclose(log);
log = fopen("logs/add.log", "w");
for (cnt = 8; cnt <= 128; cnt += 8) {
SLEEP;
mp_rand(&a, cnt);
mp_rand(&b, cnt);
rr = 0;
tt = -1;
do {
gg = TIMFUNC();
DO(mp_add(&a,&b,&c));
gg = (TIMFUNC() - gg)>>1;
if (tt > gg) tt = gg;
} while (++rr < 100000);
printf("Adding\t\t%4d-bit => %9llu/sec, %9llu cycles\n", mp_count_bits(&a), CLK_PER_SEC/tt, tt);
fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, tt); fflush(log);
}
fclose(log);
log = fopen("logs/sub.log", "w");
for (cnt = 8; cnt <= 128; cnt += 8) {
SLEEP;
mp_rand(&a, cnt);
mp_rand(&b, cnt);
rr = 0;
tt = -1;
do {
gg = TIMFUNC();
DO(mp_sub(&a, &b, &c));
gg = (TIMFUNC() - gg) >> 1;
if (tt > gg)
tt = gg;
} while (++rr < 100000);
log = fopen("logs/sub.log", "w");
for (cnt = 8; cnt <= 128; cnt += 8) {
SLEEP;
mp_rand(&a, cnt);
mp_rand(&b, cnt);
rr = 0;
tt = -1;
do {
gg = TIMFUNC();
DO(mp_sub(&a,&b,&c));
gg = (TIMFUNC() - gg)>>1;
if (tt > gg) tt = gg;
} while (++rr < 100000);
printf("Subtracting\t\t%4d-bit => %9llu/sec, %9llu cycles\n", mp_count_bits(&a), CLK_PER_SEC/tt, tt);
fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, tt); fflush(log);
}
fclose(log);
printf("Subtracting\t\t%4d-bit => %9llu/sec, %9llu cycles\n",
mp_count_bits(&a), CLK_PER_SEC / tt, tt);
fprintf(log, "%d %9llu\n", cnt * DIGIT_BIT, tt);
fflush(log);
}
fclose(log);
/* do mult/square twice, first without karatsuba and second with */
multtest:
old_kara_m = KARATSUBA_MUL_CUTOFF;
old_kara_s = KARATSUBA_SQR_CUTOFF;
for (ix = 0; ix < 1; ix++) {
printf("With%s Karatsuba\n", (ix==0)?"out":"");
for (ix = 0; ix < 2; ix++) {
printf("With%s Karatsuba\n", (ix == 0) ? "out" : "");
KARATSUBA_MUL_CUTOFF = (ix==0)?9999:old_kara_m;
KARATSUBA_SQR_CUTOFF = (ix==0)?9999:old_kara_s;
KARATSUBA_MUL_CUTOFF = (ix == 0) ? 9999 : old_kara_m;
KARATSUBA_SQR_CUTOFF = (ix == 0) ? 9999 : old_kara_s;
log = fopen((ix==0)?"logs/mult.log":"logs/mult_kara.log", "w");
for (cnt = 4; cnt <= 288; cnt += 2) {
SLEEP;
mp_rand(&a, cnt);
mp_rand(&b, cnt);
rr = 0;
tt = -1;
do {
gg = TIMFUNC();
DO(mp_mul(&a, &b, &c));
gg = (TIMFUNC() - gg)>>1;
if (tt > gg) tt = gg;
} while (++rr < 100);
printf("Multiplying\t%4d-bit => %9llu/sec, %9llu cycles\n", mp_count_bits(&a), CLK_PER_SEC/tt, tt);
fprintf(log, "%d %9llu\n", mp_count_bits(&a), tt); fflush(log);
log = fopen((ix == 0) ? "logs/mult.log" : "logs/mult_kara.log", "w");
for (cnt = 4; cnt <= 10240 / DIGIT_BIT; cnt += 2) {
SLEEP;
mp_rand(&a, cnt);
mp_rand(&b, cnt);
rr = 0;
tt = -1;
do {
gg = TIMFUNC();
DO(mp_mul(&a, &b, &c));
gg = (TIMFUNC() - gg) >> 1;
if (tt > gg)
tt = gg;
} while (++rr < 100);
printf("Multiplying\t%4d-bit => %9llu/sec, %9llu cycles\n",
mp_count_bits(&a), CLK_PER_SEC / tt, tt);
fprintf(log, "%d %9llu\n", mp_count_bits(&a), tt);
fflush(log);
}
fclose(log);
log = fopen((ix==0)?"logs/sqr.log":"logs/sqr_kara.log", "w");
for (cnt = 4; cnt <= 288; cnt += 2) {
SLEEP;
mp_rand(&a, cnt);
rr = 0;
tt = -1;
do {
gg = TIMFUNC();
DO(mp_sqr(&a, &b));
gg = (TIMFUNC() - gg)>>1;
if (tt > gg) tt = gg;
} while (++rr < 100);
printf("Squaring\t%4d-bit => %9llu/sec, %9llu cycles\n", mp_count_bits(&a), CLK_PER_SEC/tt, tt);
fprintf(log, "%d %9llu\n", mp_count_bits(&a), tt); fflush(log);
log = fopen((ix == 0) ? "logs/sqr.log" : "logs/sqr_kara.log", "w");
for (cnt = 4; cnt <= 10240 / DIGIT_BIT; cnt += 2) {
SLEEP;
mp_rand(&a, cnt);
rr = 0;
tt = -1;
do {
gg = TIMFUNC();
DO(mp_sqr(&a, &b));
gg = (TIMFUNC() - gg) >> 1;
if (tt > gg)
tt = gg;
} while (++rr < 100);
printf("Squaring\t%4d-bit => %9llu/sec, %9llu cycles\n",
mp_count_bits(&a), CLK_PER_SEC / tt, tt);
fprintf(log, "%d %9llu\n", mp_count_bits(&a), tt);
fflush(log);
}
fclose(log);
}
exptmod:
{
{
char *primes[] = {
/* 2K moduli mersenne primes */
"6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151",
"531137992816767098689588206552468627329593117727031923199444138200403559860852242739162502265229285668889329486246501015346579337652707239409519978766587351943831270835393219031728127",
"10407932194664399081925240327364085538615262247266704805319112350403608059673360298012239441732324184842421613954281007791383566248323464908139906605677320762924129509389220345773183349661583550472959420547689811211693677147548478866962501384438260291732348885311160828538416585028255604666224831890918801847068222203140521026698435488732958028878050869736186900714720710555703168729087",
"1475979915214180235084898622737381736312066145333169775147771216478570297878078949377407337049389289382748507531496480477281264838760259191814463365330269540496961201113430156902396093989090226259326935025281409614983499388222831448598601834318536230923772641390209490231836446899608210795482963763094236630945410832793769905399982457186322944729636418890623372171723742105636440368218459649632948538696905872650486914434637457507280441823676813517852099348660847172579408422316678097670224011990280170474894487426924742108823536808485072502240519452587542875349976558572670229633962575212637477897785501552646522609988869914013540483809865681250419497686697771007",
"259117086013202627776246767922441530941818887553125427303974923161874019266586362086201209516800483406550695241733194177441689509238807017410377709597512042313066624082916353517952311186154862265604547691127595848775610568757931191017711408826252153849035830401185072116424747461823031471398340229288074545677907941037288235820705892351068433882986888616658650280927692080339605869308790500409503709875902119018371991620994002568935113136548829739112656797303241986517250116412703509705427773477972349821676443446668383119322540099648994051790241624056519054483690809616061625743042361721863339415852426431208737266591962061753535748892894599629195183082621860853400937932839420261866586142503251450773096274235376822938649407127700846077124211823080804139298087057504713825264571448379371125032081826126566649084251699453951887789613650248405739378594599444335231188280123660406262468609212150349937584782292237144339628858485938215738821232393687046160677362909315071",
"190797007524439073807468042969529173669356994749940177394741882673528979787005053706368049835514900244303495954950709725762186311224148828811920216904542206960744666169364221195289538436845390250168663932838805192055137154390912666527533007309292687539092257043362517857366624699975402375462954490293259233303137330643531556539739921926201438606439020075174723029056838272505051571967594608350063404495977660656269020823960825567012344189908927956646011998057988548630107637380993519826582389781888135705408653045219655801758081251164080554609057468028203308718724654081055323215860189611391296030471108443146745671967766308925858547271507311563765171008318248647110097614890313562856541784154881743146033909602737947385055355960331855614540900081456378659068370317267696980001187750995491090350108417050917991562167972281070161305972518044872048331306383715094854938415738549894606070722584737978176686422134354526989443028353644037187375385397838259511833166416134323695660367676897722287918773420968982326089026150031515424165462111337527431154890666327374921446276833564519776797633875503548665093914556482031482248883127023777039667707976559857333357013727342079099064400455741830654320379350833236245819348824064783585692924881021978332974949906122664421376034687815350484991",
/* 2K large moduli */
"179769313486231590772930519078902473361797697894230657273430081157732675805500963132708477322407536021120113879871393357658789768814416622492847430639474124377767893424865485276302219601246094119453082952085005768838150682342462881473913110540827237163350510684586239334100047359817950870678242457666208137217",
"32317006071311007300714876688669951960444102669715484032130345427524655138867890893197201411522913463688717960921898019494119559150490921095088152386448283120630877367300996091750197750389652106796057638384067568276792218642619756161838094338476170470581645852036305042887575891541065808607552399123930385521914333389668342420684974786564569494856176035326322058077805659331026192708460314150258592864177116725943603718461857357598351152301645904403697613233287231227125684710820209725157101726931323469678542580656697935045997268352998638099733077152121140120031150424541696791951097529546801429027668869927491725169",
"1044388881413152506691752710716624382579964249047383780384233483283953907971557456848826811934997558340890106714439262837987573438185793607263236087851365277945956976543709998340361590134383718314428070011855946226376318839397712745672334684344586617496807908705803704071284048740118609114467977783598029006686938976881787785946905630190260940599579453432823469303026696443059025015972399867714215541693835559885291486318237914434496734087811872639496475100189041349008417061675093668333850551032972088269550769983616369411933015213796825837188091833656751221318492846368125550225998300412344784862595674492194617023806505913245610825731835380087608622102834270197698202313169017678006675195485079921636419370285375124784014907159135459982790513399611551794271106831134090584272884279791554849782954323534517065223269061394905987693002122963395687782878948440616007412945674919823050571642377154816321380631045902916136926708342856440730447899971901781465763473223850267253059899795996090799469201774624817718449867455659250178329070473119433165550807568221846571746373296884912819520317457002440926616910874148385078411929804522981857338977648103126085902995208257421855249796721729039744118165938433694823325696642096892124547425283",
/* 2K moduli mersenne primes */
"6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151",
"531137992816767098689588206552468627329593117727031923199444138200403559860852242739162502265229285668889329486246501015346579337652707239409519978766587351943831270835393219031728127",
"10407932194664399081925240327364085538615262247266704805319112350403608059673360298012239441732324184842421613954281007791383566248323464908139906605677320762924129509389220345773183349661583550472959420547689811211693677147548478866962501384438260291732348885311160828538416585028255604666224831890918801847068222203140521026698435488732958028878050869736186900714720710555703168729087",
"1475979915214180235084898622737381736312066145333169775147771216478570297878078949377407337049389289382748507531496480477281264838760259191814463365330269540496961201113430156902396093989090226259326935025281409614983499388222831448598601834318536230923772641390209490231836446899608210795482963763094236630945410832793769905399982457186322944729636418890623372171723742105636440368218459649632948538696905872650486914434637457507280441823676813517852099348660847172579408422316678097670224011990280170474894487426924742108823536808485072502240519452587542875349976558572670229633962575212637477897785501552646522609988869914013540483809865681250419497686697771007",
"259117086013202627776246767922441530941818887553125427303974923161874019266586362086201209516800483406550695241733194177441689509238807017410377709597512042313066624082916353517952311186154862265604547691127595848775610568757931191017711408826252153849035830401185072116424747461823031471398340229288074545677907941037288235820705892351068433882986888616658650280927692080339605869308790500409503709875902119018371991620994002568935113136548829739112656797303241986517250116412703509705427773477972349821676443446668383119322540099648994051790241624056519054483690809616061625743042361721863339415852426431208737266591962061753535748892894599629195183082621860853400937932839420261866586142503251450773096274235376822938649407127700846077124211823080804139298087057504713825264571448379371125032081826126566649084251699453951887789613650248405739378594599444335231188280123660406262468609212150349937584782292237144339628858485938215738821232393687046160677362909315071",
"190797007524439073807468042969529173669356994749940177394741882673528979787005053706368049835514900244303495954950709725762186311224148828811920216904542206960744666169364221195289538436845390250168663932838805192055137154390912666527533007309292687539092257043362517857366624699975402375462954490293259233303137330643531556539739921926201438606439020075174723029056838272505051571967594608350063404495977660656269020823960825567012344189908927956646011998057988548630107637380993519826582389781888135705408653045219655801758081251164080554609057468028203308718724654081055323215860189611391296030471108443146745671967766308925858547271507311563765171008318248647110097614890313562856541784154881743146033909602737947385055355960331855614540900081456378659068370317267696980001187750995491090350108417050917991562167972281070161305972518044872048331306383715094854938415738549894606070722584737978176686422134354526989443028353644037187375385397838259511833166416134323695660367676897722287918773420968982326089026150031515424165462111337527431154890666327374921446276833564519776797633875503548665093914556482031482248883127023777039667707976559857333357013727342079099064400455741830654320379350833236245819348824064783585692924881021978332974949906122664421376034687815350484991",
/* DR moduli */
"14059105607947488696282932836518693308967803494693489478439861164411992439598399594747002144074658928593502845729752797260025831423419686528151609940203368612079",
"101745825697019260773923519755878567461315282017759829107608914364075275235254395622580447400994175578963163918967182013639660669771108475957692810857098847138903161308502419410142185759152435680068435915159402496058513611411688900243039",
"736335108039604595805923406147184530889923370574768772191969612422073040099331944991573923112581267542507986451953227192970402893063850485730703075899286013451337291468249027691733891486704001513279827771740183629161065194874727962517148100775228363421083691764065477590823919364012917984605619526140821797602431",
"38564998830736521417281865696453025806593491967131023221754800625044118265468851210705360385717536794615180260494208076605798671660719333199513807806252394423283413430106003596332513246682903994829528690198205120921557533726473585751382193953592127439965050261476810842071573684505878854588706623484573925925903505747545471088867712185004135201289273405614415899438276535626346098904241020877974002916168099951885406379295536200413493190419727789712076165162175783",
"542189391331696172661670440619180536749994166415993334151601745392193484590296600979602378676624808129613777993466242203025054573692562689251250471628358318743978285860720148446448885701001277560572526947619392551574490839286458454994488665744991822837769918095117129546414124448777033941223565831420390846864429504774477949153794689948747680362212954278693335653935890352619041936727463717926744868338358149568368643403037768649616778526013610493696186055899318268339432671541328195724261329606699831016666359440874843103020666106568222401047720269951530296879490444224546654729111504346660859907296364097126834834235287147",
"1487259134814709264092032648525971038895865645148901180585340454985524155135260217788758027400478312256339496385275012465661575576202252063145698732079880294664220579764848767704076761853197216563262660046602703973050798218246170835962005598561669706844469447435461092542265792444947706769615695252256130901271870341005768912974433684521436211263358097522726462083917939091760026658925757076733484173202927141441492573799914240222628795405623953109131594523623353044898339481494120112723445689647986475279242446083151413667587008191682564376412347964146113898565886683139407005941383669325997475076910488086663256335689181157957571445067490187939553165903773554290260531009121879044170766615232300936675369451260747671432073394867530820527479172464106442450727640226503746586340279816318821395210726268291535648506190714616083163403189943334431056876038286530365757187367147446004855912033137386225053275419626102417236133948503",
"1095121115716677802856811290392395128588168592409109494900178008967955253005183831872715423151551999734857184538199864469605657805519106717529655044054833197687459782636297255219742994736751541815269727940751860670268774903340296040006114013971309257028332849679096824800250742691718610670812374272414086863715763724622797509437062518082383056050144624962776302147890521249477060215148275163688301275847155316042279405557632639366066847442861422164832655874655824221577849928863023018366835675399949740429332468186340518172487073360822220449055340582568461568645259954873303616953776393853174845132081121976327462740354930744487429617202585015510744298530101547706821590188733515880733527449780963163909830077616357506845523215289297624086914545378511082534229620116563260168494523906566709418166011112754529766183554579321224940951177394088465596712620076240067370589036924024728375076210477267488679008016579588696191194060127319035195370137160936882402244399699172017835144537488486396906144217720028992863941288217185353914991583400421682751000603596655790990815525126154394344641336397793791497068253936771017031980867706707490224041075826337383538651825493679503771934836094655802776331664261631740148281763487765852746577808019633679",
/* DR moduli */
"14059105607947488696282932836518693308967803494693489478439861164411992439598399594747002144074658928593502845729752797260025831423419686528151609940203368612079",
"101745825697019260773923519755878567461315282017759829107608914364075275235254395622580447400994175578963163918967182013639660669771108475957692810857098847138903161308502419410142185759152435680068435915159402496058513611411688900243039",
"736335108039604595805923406147184530889923370574768772191969612422073040099331944991573923112581267542507986451953227192970402893063850485730703075899286013451337291468249027691733891486704001513279827771740183629161065194874727962517148100775228363421083691764065477590823919364012917984605619526140821797602431",
"38564998830736521417281865696453025806593491967131023221754800625044118265468851210705360385717536794615180260494208076605798671660719333199513807806252394423283413430106003596332513246682903994829528690198205120921557533726473585751382193953592127439965050261476810842071573684505878854588706623484573925925903505747545471088867712185004135201289273405614415899438276535626346098904241020877974002916168099951885406379295536200413493190419727789712076165162175783",
"542189391331696172661670440619180536749994166415993334151601745392193484590296600979602378676624808129613777993466242203025054573692562689251250471628358318743978285860720148446448885701001277560572526947619392551574490839286458454994488665744991822837769918095117129546414124448777033941223565831420390846864429504774477949153794689948747680362212954278693335653935890352619041936727463717926744868338358149568368643403037768649616778526013610493696186055899318268339432671541328195724261329606699831016666359440874843103020666106568222401047720269951530296879490444224546654729111504346660859907296364097126834834235287147",
"1487259134814709264092032648525971038895865645148901180585340454985524155135260217788758027400478312256339496385275012465661575576202252063145698732079880294664220579764848767704076761853197216563262660046602703973050798218246170835962005598561669706844469447435461092542265792444947706769615695252256130901271870341005768912974433684521436211263358097522726462083917939091760026658925757076733484173202927141441492573799914240222628795405623953109131594523623353044898339481494120112723445689647986475279242446083151413667587008191682564376412347964146113898565886683139407005941383669325997475076910488086663256335689181157957571445067490187939553165903773554290260531009121879044170766615232300936675369451260747671432073394867530820527479172464106442450727640226503746586340279816318821395210726268291535648506190714616083163403189943334431056876038286530365757187367147446004855912033137386225053275419626102417236133948503",
"1095121115716677802856811290392395128588168592409109494900178008967955253005183831872715423151551999734857184538199864469605657805519106717529655044054833197687459782636297255219742994736751541815269727940751860670268774903340296040006114013971309257028332849679096824800250742691718610670812374272414086863715763724622797509437062518082383056050144624962776302147890521249477060215148275163688301275847155316042279405557632639366066847442861422164832655874655824221577849928863023018366835675399949740429332468186340518172487073360822220449055340582568461568645259954873303616953776393853174845132081121976327462740354930744487429617202585015510744298530101547706821590188733515880733527449780963163909830077616357506845523215289297624086914545378511082534229620116563260168494523906566709418166011112754529766183554579321224940951177394088465596712620076240067370589036924024728375076210477267488679008016579588696191194060127319035195370137160936882402244399699172017835144537488486396906144217720028992863941288217185353914991583400421682751000603596655790990815525126154394344641336397793791497068253936771017031980867706707490224041075826337383538651825493679503771934836094655802776331664261631740148281763487765852746577808019633679",
/* generic unrestricted moduli */
"17933601194860113372237070562165128350027320072176844226673287945873370751245439587792371960615073855669274087805055507977323024886880985062002853331424203",
"2893527720709661239493896562339544088620375736490408468011883030469939904368086092336458298221245707898933583190713188177399401852627749210994595974791782790253946539043962213027074922559572312141181787434278708783207966459019479487",
"347743159439876626079252796797422223177535447388206607607181663903045907591201940478223621722118173270898487582987137708656414344685816179420855160986340457973820182883508387588163122354089264395604796675278966117567294812714812796820596564876450716066283126720010859041484786529056457896367683122960411136319",
"47266428956356393164697365098120418976400602706072312735924071745438532218237979333351774907308168340693326687317443721193266215155735814510792148768576498491199122744351399489453533553203833318691678263241941706256996197460424029012419012634671862283532342656309677173602509498417976091509154360039893165037637034737020327399910409885798185771003505320583967737293415979917317338985837385734747478364242020380416892056650841470869294527543597349250299539682430605173321029026555546832473048600327036845781970289288898317888427517364945316709081173840186150794397479045034008257793436817683392375274635794835245695887",
"436463808505957768574894870394349739623346440601945961161254440072143298152040105676491048248110146278752857839930515766167441407021501229924721335644557342265864606569000117714935185566842453630868849121480179691838399545644365571106757731317371758557990781880691336695584799313313687287468894148823761785582982549586183756806449017542622267874275103877481475534991201849912222670102069951687572917937634467778042874315463238062009202992087620963771759666448266532858079402669920025224220613419441069718482837399612644978839925207109870840278194042158748845445131729137117098529028886770063736487420613144045836803985635654192482395882603511950547826439092832800532152534003936926017612446606135655146445620623395788978726744728503058670046885876251527122350275750995227",
"11424167473351836398078306042624362277956429440521137061889702611766348760692206243140413411077394583180726863277012016602279290144126785129569474909173584789822341986742719230331946072730319555984484911716797058875905400999504305877245849119687509023232790273637466821052576859232452982061831009770786031785669030271542286603956118755585683996118896215213488875253101894663403069677745948305893849505434201763745232895780711972432011344857521691017896316861403206449421332243658855453435784006517202894181640562433575390821384210960117518650374602256601091379644034244332285065935413233557998331562749140202965844219336298970011513882564935538704289446968322281451907487362046511461221329799897350993370560697505809686438782036235372137015731304779072430260986460269894522159103008260495503005267165927542949439526272736586626709581721032189532726389643625590680105784844246152702670169304203783072275089194754889511973916207",
"1214855636816562637502584060163403830270705000634713483015101384881871978446801224798536155406895823305035467591632531067547890948695117172076954220727075688048751022421198712032848890056357845974246560748347918630050853933697792254955890439720297560693579400297062396904306270145886830719309296352765295712183040773146419022875165382778007040109957609739589875590885701126197906063620133954893216612678838507540777138437797705602453719559017633986486649523611975865005712371194067612263330335590526176087004421363598470302731349138773205901447704682181517904064735636518462452242791676541725292378925568296858010151852326316777511935037531017413910506921922450666933202278489024521263798482237150056835746454842662048692127173834433089016107854491097456725016327709663199738238442164843147132789153725513257167915555162094970853584447993125488607696008169807374736711297007473812256272245489405898470297178738029484459690836250560495461579533254473316340608217876781986188705928270735695752830825527963838355419762516246028680280988020401914551825487349990306976304093109384451438813251211051597392127491464898797406789175453067960072008590614886532333015881171367104445044718144312416815712216611576221546455968770801413440778423979",
NULL
/* generic unrestricted moduli */
"17933601194860113372237070562165128350027320072176844226673287945873370751245439587792371960615073855669274087805055507977323024886880985062002853331424203",
"2893527720709661239493896562339544088620375736490408468011883030469939904368086092336458298221245707898933583190713188177399401852627749210994595974791782790253946539043962213027074922559572312141181787434278708783207966459019479487",
"347743159439876626079252796797422223177535447388206607607181663903045907591201940478223621722118173270898487582987137708656414344685816179420855160986340457973820182883508387588163122354089264395604796675278966117567294812714812796820596564876450716066283126720010859041484786529056457896367683122960411136319",
"47266428956356393164697365098120418976400602706072312735924071745438532218237979333351774907308168340693326687317443721193266215155735814510792148768576498491199122744351399489453533553203833318691678263241941706256996197460424029012419012634671862283532342656309677173602509498417976091509154360039893165037637034737020327399910409885798185771003505320583967737293415979917317338985837385734747478364242020380416892056650841470869294527543597349250299539682430605173321029026555546832473048600327036845781970289288898317888427517364945316709081173840186150794397479045034008257793436817683392375274635794835245695887",
"436463808505957768574894870394349739623346440601945961161254440072143298152040105676491048248110146278752857839930515766167441407021501229924721335644557342265864606569000117714935185566842453630868849121480179691838399545644365571106757731317371758557990781880691336695584799313313687287468894148823761785582982549586183756806449017542622267874275103877481475534991201849912222670102069951687572917937634467778042874315463238062009202992087620963771759666448266532858079402669920025224220613419441069718482837399612644978839925207109870840278194042158748845445131729137117098529028886770063736487420613144045836803985635654192482395882603511950547826439092832800532152534003936926017612446606135655146445620623395788978726744728503058670046885876251527122350275750995227",
"11424167473351836398078306042624362277956429440521137061889702611766348760692206243140413411077394583180726863277012016602279290144126785129569474909173584789822341986742719230331946072730319555984484911716797058875905400999504305877245849119687509023232790273637466821052576859232452982061831009770786031785669030271542286603956118755585683996118896215213488875253101894663403069677745948305893849505434201763745232895780711972432011344857521691017896316861403206449421332243658855453435784006517202894181640562433575390821384210960117518650374602256601091379644034244332285065935413233557998331562749140202965844219336298970011513882564935538704289446968322281451907487362046511461221329799897350993370560697505809686438782036235372137015731304779072430260986460269894522159103008260495503005267165927542949439526272736586626709581721032189532726389643625590680105784844246152702670169304203783072275089194754889511973916207",
"1214855636816562637502584060163403830270705000634713483015101384881871978446801224798536155406895823305035467591632531067547890948695117172076954220727075688048751022421198712032848890056357845974246560748347918630050853933697792254955890439720297560693579400297062396904306270145886830719309296352765295712183040773146419022875165382778007040109957609739589875590885701126197906063620133954893216612678838507540777138437797705602453719559017633986486649523611975865005712371194067612263330335590526176087004421363598470302731349138773205901447704682181517904064735636518462452242791676541725292378925568296858010151852326316777511935037531017413910506921922450666933202278489024521263798482237150056835746454842662048692127173834433089016107854491097456725016327709663199738238442164843147132789153725513257167915555162094970853584447993125488607696008169807374736711297007473812256272245489405898470297178738029484459690836250560495461579533254473316340608217876781986188705928270735695752830825527963838355419762516246028680280988020401914551825487349990306976304093109384451438813251211051597392127491464898797406789175453067960072008590614886532333015881171367104445044718144312416815712216611576221546455968770801413440778423979",
NULL
};
log = fopen("logs/expt.log", "w");
logb = fopen("logs/expt_dr.log", "w");
logc = fopen("logs/expt_2k.log", "w");
for (n = 0; primes[n]; n++) {
SLEEP;
mp_read_radix(&a, primes[n], 10);
mp_zero(&b);
for (rr = 0; rr < (unsigned)mp_count_bits(&a); rr++) {
mp_mul_2(&b, &b);
b.dp[0] |= lbit();
b.used += 1;
log = fopen("logs/expt.log", "w");
logb = fopen("logs/expt_dr.log", "w");
logc = fopen("logs/expt_2k.log", "w");
logd = fopen("logs/expt_2kl.log", "w");
for (n = 0; primes[n]; n++) {
SLEEP;
mp_read_radix(&a, primes[n], 10);
mp_zero(&b);
for (rr = 0; rr < (unsigned) mp_count_bits(&a); rr++) {
mp_mul_2(&b, &b);
b.dp[0] |= lbit();
b.used += 1;
}
mp_sub_d(&a, 1, &c);
mp_mod(&b, &c, &b);
mp_set(&c, 3);
rr = 0;
tt = -1;
do {
gg = TIMFUNC();
DO(mp_exptmod(&c, &b, &a, &d));
gg = (TIMFUNC() - gg) >> 1;
if (tt > gg)
tt = gg;
} while (++rr < 10);
mp_sub_d(&a, 1, &e);
mp_sub(&e, &b, &b);
mp_exptmod(&c, &b, &a, &e); /* c^(p-1-b) mod a */
mp_mulmod(&e, &d, &a, &d); /* c^b * c^(p-1-b) == c^p-1 == 1 */
if (mp_cmp_d(&d, 1)) {
printf("Different (%d)!!!\n", mp_count_bits(&a));
draw(&d);
exit(0);
}
printf("Exponentiating\t%4d-bit => %9llu/sec, %9llu cycles\n",
mp_count_bits(&a), CLK_PER_SEC / tt, tt);
fprintf(n < 4 ? logd : (n < 9) ? logc : (n < 16) ? logb : log,
"%d %9llu\n", mp_count_bits(&a), tt);
}
mp_sub_d(&a, 1, &c);
mp_mod(&b, &c, &b);
mp_set(&c, 3);
rr = 0;
tt = -1;
do {
gg = TIMFUNC();
DO(mp_exptmod(&c, &b, &a, &d));
gg = (TIMFUNC() - gg)>>1;
if (tt > gg) tt = gg;
} while (++rr < 10);
mp_sub_d(&a, 1, &e);
mp_sub(&e, &b, &b);
mp_exptmod(&c, &b, &a, &e); /* c^(p-1-b) mod a */
mp_mulmod(&e, &d, &a, &d); /* c^b * c^(p-1-b) == c^p-1 == 1 */
if (mp_cmp_d(&d, 1)) {
printf("Different (%d)!!!\n", mp_count_bits(&a));
draw(&d);
exit(0);
}
printf("Exponentiating\t%4d-bit => %9llu/sec, %9llu cycles\n", mp_count_bits(&a), CLK_PER_SEC/tt, tt);
fprintf((n < 6) ? logc : (n < 13) ? logb : log, "%d %9llu\n", mp_count_bits(&a), tt);
}
}
fclose(log);
fclose(logb);
fclose(logc);
fclose(logd);
log = fopen("logs/invmod.log", "w");
for (cnt = 4; cnt <= 128; cnt += 4) {
@ -260,28 +287,29 @@ int main(void)
mp_rand(&b, cnt);
do {
mp_add_d(&b, 1, &b);
mp_gcd(&a, &b, &c);
mp_add_d(&b, 1, &b);
mp_gcd(&a, &b, &c);
} while (mp_cmp_d(&c, 1) != MP_EQ);
rr = 0;
tt = -1;
rr = 0;
tt = -1;
do {
gg = TIMFUNC();
DO(mp_invmod(&b, &a, &c));
gg = (TIMFUNC() - gg)>>1;
if (tt > gg) tt = gg;
gg = TIMFUNC();
DO(mp_invmod(&b, &a, &c));
gg = (TIMFUNC() - gg) >> 1;
if (tt > gg)
tt = gg;
} while (++rr < 1000);
mp_mulmod(&b, &c, &a, &d);
if (mp_cmp_d(&d, 1) != MP_EQ) {
printf("Failed to invert\n");
return 0;
printf("Failed to invert\n");
return 0;
}
printf("Inverting mod\t%4d-bit => %9llu/sec, %9llu cycles\n", mp_count_bits(&a), CLK_PER_SEC/tt, tt);
fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, tt);
printf("Inverting mod\t%4d-bit => %9llu/sec, %9llu cycles\n",
mp_count_bits(&a), CLK_PER_SEC / tt, tt);
fprintf(log, "%d %9llu\n", cnt * DIGIT_BIT, tt);
}
fclose(log);
return 0;
}

2
dep.pl
View File

@ -13,6 +13,8 @@ print CLASS "#if !(defined(LTM1) && defined(LTM2) && defined(LTM3))\n#if defined
foreach my $filename (glob "bn*.c") {
my $define = $filename;
print "Processing $filename\n";
# convert filename to upper case so we can use it as a define
$define =~ tr/[a-z]/[A-Z]/;
$define =~ tr/\./_/;

View File

@ -10,13 +10,44 @@
*/
#define TIMES (1UL<<14UL)
/* RDTSC from Scott Duplichan */
static ulong64 TIMFUNC (void)
{
#if defined __GNUC__
#if defined(__i386__) || defined(__x86_64__)
unsigned long long a;
__asm__ __volatile__ ("rdtsc\nmovl %%eax,%0\nmovl %%edx,4+%0\n"::"m"(a):"%eax","%edx");
return a;
#else /* gcc-IA64 version */
unsigned long result;
__asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
while (__builtin_expect ((int) result == -1, 0))
__asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
return result;
#endif
// Microsoft and Intel Windows compilers
#elif defined _M_IX86
__asm rdtsc
#elif defined _M_AMD64
return __rdtsc ();
#elif defined _M_IA64
#if defined __INTEL_COMPILER
#include <ia64intrin.h>
#endif
return __getReg (3116);
#else
#error need rdtsc function for this build
#endif
}
#ifndef X86_TIMER
/* generic ISO C timer */
ulong64 LBL_T;
void t_start(void) { LBL_T = clock(); }
ulong64 t_read(void) { return clock() - LBL_T; }
void t_start(void) { LBL_T = TIMFUNC(); }
ulong64 t_read(void) { return TIMFUNC() - LBL_T; }
#else
extern void t_start(void);

View File

@ -1,10 +1,10 @@
480 88
960 113
1440 138
1920 163
2400 202
2880 226
3360 251
480 87
960 111
1440 135
1920 159
2400 200
2880 224
3360 248
3840 272
4320 296
4800 320

View File

@ -1,7 +1,7 @@
513 1499509
769 3682671
1025 8098887
2049 49332743
2561 89647783
3073 149440713
4097 326135364
513 1489160
769 3688476
1025 8162061
2049 49260015
2561 89579052
3073 148797060
4097 324449263

View File

@ -1,6 +1,5 @@
521 1423346
607 1841305
1279 8375656
2203 34104708
3217 83830729
4253 167916804
607 2272809
1279 9557382
2203 36250309
3217 87666486
4253 174168369

4
logs/expt_2kl.log Normal file
View File

@ -0,0 +1,4 @@
1024 6954080
2048 35993987
4096 176068521
521 1683720

View File

@ -1,7 +1,7 @@
532 1803110
784 3607375
1036 6089790
1540 14739797
2072 33251589
3080 82794331
4116 165212734
532 1989592
784 3898697
1036 6519700
1540 15676650
2072 33128187
3080 82963362
4116 168358337

View File

@ -1,143 +1,84 @@
271 580
390 861
511 1177
630 1598
749 2115
871 2670
991 3276
1111 3987
1231 4722
1351 5474
1471 6281
1589 7126
1710 8114
1831 8988
1946 10038
2071 10995
2188 12286
2310 13152
2430 14480
2549 15521
2671 17171
2790 18081
2911 19754
3031 20809
3150 22849
3269 23757
3391 25772
3508 26832
3631 29304
3750 30149
3865 32581
3988 33644
4111 36565
4231 37309
4351 40152
4471 41188
4590 44658
4710 45256
4827 48538
4951 49490
5070 53472
5190 53902
5308 57619
5431 58509
5550 63044
5664 63333
5791 67542
5911 68279
6028 73477
6150 73475
6271 78189
6390 78842
6510 84691
6631 84444
6751 89721
6871 90186
6991 96665
7111 96119
7231 101937
7350 102212
7471 109439
7591 108491
7709 114965
7829 115025
7951 123002
8071 121630
8190 128725
8311 128536
8430 137298
8550 135568
8671 143265
8791 142793
8911 152432
9030 150202
9151 158616
9271 157848
9391 168374
9511 165651
9627 174775
9750 173375
9871 185067
9985 181845
10111 191708
10229 190239
10351 202585
10467 198704
10591 209193
10711 207322
10831 220842
10950 215882
11071 227761
11191 225501
11311 239669
11430 234809
11550 243511
11671 255947
11791 255243
11906 267828
12029 263437
12149 276571
12270 275579
12390 288963
12510 284001
12631 298196
12751 297018
12869 310848
12990 305369
13111 319086
13230 318940
13349 333685
13471 327495
13588 343678
13711 341817
13831 357181
13948 350440
14071 367526
14189 365330
14311 381551
14429 374149
14549 392203
14670 389764
14791 406761
14910 398652
15026 417718
15150 414733
15269 432759
15390 1037071
15511 1053454
15631 1069198
15748 1086164
15871 1112820
15991 1129676
16111 1145924
16230 1163016
16345 1179911
16471 1197048
16586 1214352
16711 1232095
16829 1249338
16947 1266987
17071 1284181
17188 1302521
17311 1320539
271 555
390 855
508 1161
631 1605
749 2117
871 2687
991 3329
1108 4084
1231 4786
1351 5624
1470 6392
1586 7364
1710 8218
1830 9255
1951 10217
2067 11461
2191 12463
2308 13677
2430 14800
2551 16232
2671 17460
2791 18899
2902 20247
3028 21902
3151 23240
3267 24927
3391 26441
3511 28277
3631 29838
3749 31751
3869 33673
3989 35431
4111 37518
4231 39426
4349 41504
4471 43567
4591 45786
4711 47876
4831 50299
4951 52427
5071 54785
5189 57241
5307 59730
5431 62194
5551 64761
5670 67322
5789 70073
5907 72663
6030 75437
6151 78242
6268 81202
6389 83948
6509 86985
6631 89903
6747 93184
6869 96044
6991 99286
7109 102395
7229 105917
7351 108940
7470 112490
7589 115702
7711 119508
7831 122632
7951 126410
8071 129808
8190 133895
8311 137146
8431 141218
8549 144732
8667 149131
8790 152462
8911 156754
9030 160479
9149 165138
9271 168601
9391 173185
9511 176988
9627 181976
9751 185539
9870 190388
9991 194335
10110 199605
10228 203298

View File

@ -1,33 +1,84 @@
924 16686
1146 25334
1371 35304
1591 47122
1820 61500
2044 75254
2266 91732
2492 111656
2716 129428
2937 147508
3164 167758
3388 188248
3612 210826
3836 233814
4059 256898
4284 280210
4508 310372
4731 333902
4955 376502
5179 402854
5404 432004
5626 459010
5849 491868
6076 520550
6300 547400
6524 575968
6747 608482
6971 642850
7196 673670
7419 710680
7644 743942
7868 780394
8092 817342
271 560
391 870
511 1159
631 1605
750 2111
871 2737
991 3361
1111 4054
1231 4778
1351 5600
1471 6404
1591 7323
1710 8255
1831 9239
1948 10257
2070 11397
2190 12531
2308 13665
2429 14870
2550 16175
2671 17539
2787 18879
2911 20350
3031 21807
3150 23415
3270 24897
3388 26567
3511 28205
3627 30076
3751 31744
3869 33657
3991 35425
4111 37522
4229 39363
4351 41503
4470 43491
4590 45827
4711 47795
4828 50166
4951 52318
5070 54911
5191 57036
5308 58237
5431 60248
5551 62678
5671 64786
5791 67294
5908 69343
6031 71607
6151 74166
6271 76590
6391 78734
6511 81175
6631 83742
6750 86403
6868 88873
6990 91150
7110 94211
7228 96922
7351 99445
7469 102216
7589 104968
7711 108113
7827 110758
7950 113714
8071 116511
8186 119643
8310 122679
8425 125581
8551 128715
8669 131778
8788 135116
8910 138138
9031 141628
9148 144754
9268 148367
9391 151551
9511 155033
9631 158652
9751 162125
9871 165248
9988 168627
10111 172427
10231 176412

View File

@ -1,143 +1,84 @@
271 552
389 883
510 1191
629 1572
750 1996
863 2428
991 2891
1108 3539
1231 4182
1351 4980
1471 5771
1590 6551
1711 7313
1830 8240
1951 9184
2070 10087
2191 11140
2311 12111
2431 13219
2550 14247
2669 15353
2791 16446
2911 17692
3029 18848
3151 20028
3268 21282
3391 22696
3511 23971
3631 25303
3751 26675
3871 28245
3990 29736
4111 31124
4229 32714
4347 34397
4471 35877
4587 37269
4710 39011
4831 40884
4950 42501
5070 44005
5191 46026
5310 48168
5431 49801
5551 51385
5671 53604
5787 55942
5910 57757
6031 59391
6151 61754
6271 64234
6390 66110
6511 67845
6627 70474
6751 73113
6871 75064
6990 76940
7111 79681
7230 82548
7351 84597
7471 86507
7591 89497
7711 225216
7831 232192
7951 239583
8071 247302
8191 255497
8308 261587
8431 271490
8550 279492
8671 286927
8790 294680
8910 302974
9030 311300
9150 318635
9271 326740
9390 335304
9511 344297
9630 352056
9748 358652
9870 369723
9991 379119
10111 386982
10231 396075
10349 404396
10470 415375
10590 424146
10711 433390
10829 442662
10950 453238
11071 462178
11186 469811
11311 482529
11431 493214
11550 503210
11671 513486
11791 524244
11911 535277
12031 544872
12151 555695
12271 566893
12391 578385
12510 588658
12628 596914
12751 611324
12871 623437
12991 633907
13110 645605
13231 657684
13351 670037
13471 680939
13591 693047
13710 705363
13829 718178
13949 727930
14069 739641
14190 754817
14310 768192
14431 779875
14551 792655
14667 802847
14791 819806
14911 831684
15031 844936
15151 858813
15270 873037
15387 882123
15510 899117
15631 913465
15750 927989
15870 940790
15991 954948
16110 969483
16231 984544
16350 997837
16470 1012445
16590 1027834
16710 1043032
16831 1056394
16951 1071408
17069 1097263
17191 1113364
17306 1123650
265 562
389 882
509 1207
631 1572
750 1990
859 2433
991 2894
1109 3555
1230 4228
1350 5018
1471 5805
1591 6579
1709 7415
1829 8329
1949 9225
2071 10139
2188 11239
2309 12178
2431 13212
2551 14294
2671 15551
2791 16512
2911 17718
3030 18876
3150 20259
3270 21374
3391 22650
3511 23948
3631 25493
3750 26756
3870 28225
3989 29705
4110 31409
4230 32834
4351 34327
4471 35818
4591 37636
4711 39228
4830 40868
4949 42393
5070 44541
5191 46269
5310 48162
5429 49728
5548 51985
5671 53948
5791 55885
5910 57584
6031 60082
6150 62239
6270 64309
6390 66014
6511 68766
6631 71012
6750 73172
6871 74952
6991 77909
7111 80371
7231 82666
7351 84531
7469 87698
7589 90318
7711 225384
7830 232428
7950 240009
8070 246522
8190 253662
8310 260961
8431 269253
8549 275743
8671 283769
8789 290811
8911 300034
9030 306873
9149 315085
9270 323944
9390 332390
9508 337519
9631 348986
9749 356904
9871 367013
9989 373831
10108 381033
10230 393475

View File

@ -1,33 +1,84 @@
922 11272
1148 16004
1370 21958
1596 28684
1817 37832
2044 46386
2262 56218
2492 66388
2716 77478
2940 89380
3163 103680
3385 116274
3612 135334
3836 151332
4057 164938
4284 183178
4508 198864
4731 215222
4954 231986
5180 251660
5404 269414
5626 288454
5850 307806
6076 329458
6299 347726
6523 369864
6748 387832
6971 413010
7194 453310
7415 476936
7643 497118
7867 521394
8091 540224
271 560
388 878
511 1179
629 1625
751 1988
871 2423
989 2896
1111 3561
1231 4209
1350 5015
1470 5804
1591 6556
1709 7420
1831 8263
1951 9173
2070 10153
2191 11229
2310 12167
2431 13211
2550 14309
2671 15524
2788 16525
2910 17712
3028 18822
3148 20220
3271 21343
3391 22652
3511 23944
3630 25485
3750 26778
3868 28201
3990 29653
4111 31393
4225 32841
4350 34328
4471 35786
4590 37652
4711 39245
4830 40876
4951 42433
5068 44547
5191 46321
5311 48140
5430 49727
5550 52034
5671 53954
5791 55921
5908 57597
6031 60084
6148 62226
6270 64295
6390 66045
6511 68779
6629 71003
6751 73169
6871 74992
6991 77895
7110 80376
7231 82628
7351 84468
7470 87664
7591 90284
7711 91352
7828 93995
7950 96276
8071 98691
8190 101256
8308 103631
8431 105222
8550 108343
8671 110281
8787 112764
8911 115397
9031 117690
9151 120266
9271 122715
9391 124624
9510 127937
9630 130313
9750 132914
9871 136129
9991 138517
10108 141525
10231 144225

View File

@ -1,16 +1,16 @@
480 87
960 114
1440 139
1920 159
2400 204
2880 228
3360 250
3840 273
4320 300
480 94
960 116
1440 140
1920 164
2400 205
2880 229
3360 253
3840 277
4320 299
4800 321
5280 348
5760 370
6240 393
6720 420
7200 444
7680 466
5280 345
5760 371
6240 395
6720 419
7200 441
7680 465

View File

@ -3,7 +3,7 @@
#Tom St Denis
#version of library
VERSION=0.33
VERSION=0.34
CFLAGS += -I./ -Wall -W -Wshadow -Wsign-compare
@ -57,11 +57,13 @@ bn_mp_prime_is_prime.o bn_mp_prime_next_prime.o bn_mp_dr_reduce.o \
bn_mp_dr_is_modulus.o bn_mp_dr_setup.o bn_mp_reduce_setup.o \
bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_div_3.o bn_s_mp_exptmod.o \
bn_mp_reduce_2k.o bn_mp_reduce_is_2k.o bn_mp_reduce_2k_setup.o \
bn_mp_reduce_2k_l.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_2k_setup_l.o \
bn_mp_radix_smap.o bn_mp_read_radix.o bn_mp_toradix.o bn_mp_radix_size.o \
bn_mp_fread.o bn_mp_fwrite.o bn_mp_cnt_lsb.o bn_error.o \
bn_mp_init_multi.o bn_mp_clear_multi.o bn_mp_exteuclid.o bn_mp_toradix_n.o \
bn_mp_prime_random_ex.o bn_mp_get_int.o bn_mp_sqrt.o bn_mp_is_square.o bn_mp_init_set.o \
bn_mp_init_set_int.o bn_mp_invmod_slow.o bn_mp_prime_rabin_miller_trials.o
bn_mp_init_set_int.o bn_mp_invmod_slow.o bn_mp_prime_rabin_miller_trials.o \
bn_mp_to_signed_bin_n.o bn_mp_to_unsigned_bin_n.o
libtommath.a: $(OBJECTS)
$(AR) $(ARFLAGS) libtommath.a $(OBJECTS)

View File

@ -27,11 +27,13 @@ bn_mp_prime_is_prime.obj bn_mp_prime_next_prime.obj bn_mp_dr_reduce.obj \
bn_mp_dr_is_modulus.obj bn_mp_dr_setup.obj bn_mp_reduce_setup.obj \
bn_mp_toom_mul.obj bn_mp_toom_sqr.obj bn_mp_div_3.obj bn_s_mp_exptmod.obj \
bn_mp_reduce_2k.obj bn_mp_reduce_is_2k.obj bn_mp_reduce_2k_setup.obj \
bn_mp_reduce_2k_l.obj bn_mp_reduce_is_2k_l.obj bn_mp_reduce_2k_setup_l.obj \
bn_mp_radix_smap.obj bn_mp_read_radix.obj bn_mp_toradix.obj bn_mp_radix_size.obj \
bn_mp_fread.obj bn_mp_fwrite.obj bn_mp_cnt_lsb.obj bn_error.obj \
bn_mp_init_multi.obj bn_mp_clear_multi.obj bn_mp_exteuclid.obj bn_mp_toradix_n.obj \
bn_mp_prime_random_ex.obj bn_mp_get_int.obj bn_mp_sqrt.obj bn_mp_is_square.obj \
bn_mp_init_set.obj bn_mp_init_set_int.obj bn_mp_invmod_slow.obj bn_mp_prime_rabin_miller_trials.obj
bn_mp_init_set.obj bn_mp_init_set_int.obj bn_mp_invmod_slow.obj bn_mp_prime_rabin_miller_trials.obj \
bn_mp_to_signed_bin_n.obj bn_mp_to_unsigned_bin_n.obj
TARGET = libtommath.lib

View File

@ -32,11 +32,13 @@ bn_mp_prime_is_prime.o bn_mp_prime_next_prime.o bn_mp_dr_reduce.o \
bn_mp_dr_is_modulus.o bn_mp_dr_setup.o bn_mp_reduce_setup.o \
bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_div_3.o bn_s_mp_exptmod.o \
bn_mp_reduce_2k.o bn_mp_reduce_is_2k.o bn_mp_reduce_2k_setup.o \
bn_mp_reduce_2k_l.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_2k_setup_l.o \
bn_mp_radix_smap.o bn_mp_read_radix.o bn_mp_toradix.o bn_mp_radix_size.o \
bn_mp_fread.o bn_mp_fwrite.o bn_mp_cnt_lsb.o bn_error.o \
bn_mp_init_multi.o bn_mp_clear_multi.o bn_mp_exteuclid.o bn_mp_toradix_n.o \
bn_mp_prime_random_ex.o bn_mp_get_int.o bn_mp_sqrt.o bn_mp_is_square.o bn_mp_init_set.o \
bn_mp_init_set_int.o bn_mp_invmod_slow.o bn_mp_prime_rabin_miller_trials.o
bn_mp_init_set_int.o bn_mp_invmod_slow.o bn_mp_prime_rabin_miller_trials.o \
bn_mp_to_signed_bin_n.o bn_mp_to_unsigned_bin_n.o
# make a Windows DLL via Cygwin
windll: $(OBJECTS)

View File

@ -59,11 +59,13 @@ bn_mp_prime_is_prime.o bn_mp_prime_next_prime.o bn_mp_dr_reduce.o \
bn_mp_dr_is_modulus.o bn_mp_dr_setup.o bn_mp_reduce_setup.o \
bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_div_3.o bn_s_mp_exptmod.o \
bn_mp_reduce_2k.o bn_mp_reduce_is_2k.o bn_mp_reduce_2k_setup.o \
bn_mp_reduce_2k_l.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_2k_setup_l.o \
bn_mp_radix_smap.o bn_mp_read_radix.o bn_mp_toradix.o bn_mp_radix_size.o \
bn_mp_fread.o bn_mp_fwrite.o bn_mp_cnt_lsb.o bn_error.o \
bn_mp_init_multi.o bn_mp_clear_multi.o bn_mp_exteuclid.o bn_mp_toradix_n.o \
bn_mp_prime_random_ex.o bn_mp_get_int.o bn_mp_sqrt.o bn_mp_is_square.o bn_mp_init_set.o \
bn_mp_init_set_int.o bn_mp_invmod_slow.o bn_mp_prime_rabin_miller_trials.o
bn_mp_init_set_int.o bn_mp_invmod_slow.o bn_mp_prime_rabin_miller_trials.o \
bn_mp_to_signed_bin_n.o bn_mp_to_unsigned_bin_n.o
libtommath.a: $(OBJECTS)
$(AR) $(ARFLAGS) libtommath.a $(OBJECTS)

View File

@ -26,11 +26,13 @@ bn_mp_prime_is_prime.obj bn_mp_prime_next_prime.obj bn_mp_dr_reduce.obj \
bn_mp_dr_is_modulus.obj bn_mp_dr_setup.obj bn_mp_reduce_setup.obj \
bn_mp_toom_mul.obj bn_mp_toom_sqr.obj bn_mp_div_3.obj bn_s_mp_exptmod.obj \
bn_mp_reduce_2k.obj bn_mp_reduce_is_2k.obj bn_mp_reduce_2k_setup.obj \
bn_mp_reduce_2k_l.obj bn_mp_reduce_is_2k_l.obj bn_mp_reduce_2k_setup_l.obj \
bn_mp_radix_smap.obj bn_mp_read_radix.obj bn_mp_toradix.obj bn_mp_radix_size.obj \
bn_mp_fread.obj bn_mp_fwrite.obj bn_mp_cnt_lsb.obj bn_error.obj \
bn_mp_init_multi.obj bn_mp_clear_multi.obj bn_mp_exteuclid.obj bn_mp_toradix_n.obj \
bn_mp_prime_random_ex.obj bn_mp_get_int.obj bn_mp_sqrt.obj bn_mp_is_square.obj \
bn_mp_init_set.obj bn_mp_init_set_int.obj bn_mp_invmod_slow.obj bn_mp_prime_rabin_miller_trials.obj
bn_mp_init_set.obj bn_mp_init_set_int.obj bn_mp_invmod_slow.obj bn_mp_prime_rabin_miller_trials.obj \
bn_mp_to_signed_bin_n.obj bn_mp_to_unsigned_bin_n.obj
library: $(OBJECTS)
lib /out:tommath.lib $(OBJECTS)

View File

@ -1,7 +1,7 @@
#Makefile for GCC
#
#Tom St Denis
VERSION=0:33
VERSION=0:34
CC = libtool --mode=compile gcc
CFLAGS += -I./ -Wall -W -Wshadow -Wsign-compare
@ -53,11 +53,14 @@ bn_mp_prime_is_prime.o bn_mp_prime_next_prime.o bn_mp_dr_reduce.o \
bn_mp_dr_is_modulus.o bn_mp_dr_setup.o bn_mp_reduce_setup.o \
bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_div_3.o bn_s_mp_exptmod.o \
bn_mp_reduce_2k.o bn_mp_reduce_is_2k.o bn_mp_reduce_2k_setup.o \
bn_mp_reduce_2k_l.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_2k_setup_l.o \
bn_mp_radix_smap.o bn_mp_read_radix.o bn_mp_toradix.o bn_mp_radix_size.o \
bn_mp_fread.o bn_mp_fwrite.o bn_mp_cnt_lsb.o bn_error.o \
bn_mp_init_multi.o bn_mp_clear_multi.o bn_mp_exteuclid.o bn_mp_toradix_n.o \
bn_mp_prime_random_ex.o bn_mp_get_int.o bn_mp_sqrt.o bn_mp_is_square.o bn_mp_init_set.o \
bn_mp_init_set_int.o bn_mp_invmod_slow.o bn_mp_prime_rabin_miller_trials.o
bn_mp_init_set_int.o bn_mp_invmod_slow.o bn_mp_prime_rabin_miller_trials.o \
bn_mp_to_signed_bin_n.o bn_mp_to_unsigned_bin_n.o
libtommath.la: $(OBJECTS)
libtool --mode=link gcc *.lo -o libtommath.la -rpath $(LIBPATH) -version-info $(VERSION)

Binary file not shown.

View File

@ -69,8 +69,7 @@ char *mp_error_to_string(int code)
* Based on slow invmod except this is optimized for the case where b is
* odd as per HAC Note 14.64 on pp. 610
*/
int
fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
int fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
{
mp_int x, y, u, v, B, D;
int res, neg;
@ -220,8 +219,7 @@ LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);
*
* Based on Algorithm 14.32 on pp.601 of HAC.
*/
int
fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
{
int ix, res, olduse;
mp_word W[MP_WARRAY];
@ -401,8 +399,7 @@ fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
* Based on Algorithm 14.12 on pp.595 of HAC.
*
*/
int
fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
{
int olduse, res, pa, ix, iz;
mp_digit W[MP_WARRAY];
@ -451,7 +448,7 @@ fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
}
/* store final carry */
W[ix] = _W;
W[ix] = _W & MP_MASK;
/* setup dest */
olduse = c->used;
@ -504,8 +501,7 @@ fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
*
* Based on Algorithm 14.12 on pp.595 of HAC.
*/
int
fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
int fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
{
int olduse, res, pa, ix, iz;
mp_digit W[MP_WARRAY];
@ -552,7 +548,7 @@ fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
}
/* store final carry */
W[ix] = _W;
W[ix] = _W & MP_MASK;
/* setup dest */
olduse = c->used;
@ -683,7 +679,7 @@ int fast_s_mp_sqr (mp_int * a, mp_int * b)
}
/* store it */
W[ix] = _W;
W[ix] = _W & MP_MASK;
/* make next carry */
W1 = _W >> ((mp_word)DIGIT_BIT);
@ -2467,21 +2463,29 @@ int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
#endif
}
/* modified diminished radix reduction */
#if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C)
if (mp_reduce_is_2k_l(P) == MP_YES) {
return s_mp_exptmod(G, X, P, Y, 1);
}
#endif
#ifdef BN_MP_DR_IS_MODULUS_C
/* is it a DR modulus? */
dr = mp_dr_is_modulus(P);
#else
/* default to no */
dr = 0;
#endif
#ifdef BN_MP_REDUCE_IS_2K_C
/* if not, is it a uDR modulus? */
/* if not, is it a unrestricted DR modulus? */
if (dr == 0) {
dr = mp_reduce_is_2k(P) << 1;
}
#endif
/* if the modulus is odd or dr != 0 use the fast method */
/* if the modulus is odd or dr != 0 use the montgomery method */
#ifdef BN_MP_EXPTMOD_FAST_C
if (mp_isodd (P) == 1 || dr != 0) {
return mp_exptmod_fast (G, X, P, Y, dr);
@ -2489,7 +2493,7 @@ int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
#endif
#ifdef BN_S_MP_EXPTMOD_C
/* otherwise use the generic Barrett reduction technique */
return s_mp_exptmod (G, X, P, Y);
return s_mp_exptmod (G, X, P, Y, 0);
#else
/* no exptmod for evens */
return MP_VAL;
@ -2535,8 +2539,7 @@ int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
#define TAB_SIZE 256
#endif
int
mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
{
mp_int M[TAB_SIZE], res;
mp_digit buf, mp;
@ -4989,8 +4992,9 @@ mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
}
/* store final carry [if any] */
/* store final carry [if any] and increment ix offset */
*tmpc++ = u;
++ix;
/* now zero digits above the top */
while (ix++ < olduse) {
@ -5847,7 +5851,7 @@ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback
/* calc the maskOR_msb */
maskOR_msb = 0;
maskOR_msb_offset = (size - 2) >> 3;
maskOR_msb_offset = ((size & 7) == 1) ? 1 : 0;
if (flags & LTM_PRIME_2MSB_ON) {
maskOR_msb |= 1 << ((size - 2) & 7);
} else if (flags & LTM_PRIME_2MSB_OFF) {
@ -5855,7 +5859,7 @@ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback
}
/* get the maskOR_lsb */
maskOR_lsb = 0;
maskOR_lsb = 1;
if (flags & LTM_PRIME_BBS) {
maskOR_lsb |= 3;
}
@ -6080,7 +6084,7 @@ mp_rand (mp_int * a, int digits)
*/
/* read a string [ASCII] in a given radix */
int mp_read_radix (mp_int * a, char *str, int radix)
int mp_read_radix (mp_int * a, const char *str, int radix)
{
int y, res, neg;
char ch;
@ -6263,8 +6267,7 @@ mp_read_unsigned_bin (mp_int * a, unsigned char *b, int c)
* precomputed via mp_reduce_setup.
* From HAC pp.604 Algorithm 14.42
*/
int
mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
int mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
{
mp_int q;
int res, um = m->used;
@ -6361,8 +6364,7 @@ CLEANUP:
*/
/* reduces a modulo n where n is of the form 2**p - d */
int
mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d)
int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d)
{
mp_int q;
int p, res;
@ -6404,6 +6406,68 @@ ERR:
/* End: bn_mp_reduce_2k.c */
/* Start: bn_mp_reduce_2k_l.c */
#include <tommath.h>
#ifdef BN_MP_REDUCE_2K_L_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
*/
/* reduces a modulo n where n is of the form 2**p - d
This differs from reduce_2k since "d" can be larger
than a single digit.
*/
int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d)
{
mp_int q;
int p, res;
if ((res = mp_init(&q)) != MP_OKAY) {
return res;
}
p = mp_count_bits(n);
top:
/* q = a/2**p, a = a mod 2**p */
if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
goto ERR;
}
/* q = q * d */
if ((res = mp_mul(&q, d, &q)) != MP_OKAY) {
goto ERR;
}
/* a = a + q */
if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
goto ERR;
}
if (mp_cmp_mag(a, n) != MP_LT) {
s_mp_sub(a, n, a);
goto top;
}
ERR:
mp_clear(&q);
return res;
}
#endif
/* End: bn_mp_reduce_2k_l.c */
/* Start: bn_mp_reduce_2k_setup.c */
#include <tommath.h>
#ifdef BN_MP_REDUCE_2K_SETUP_C
@ -6423,8 +6487,7 @@ ERR:
*/
/* determines the setup value */
int
mp_reduce_2k_setup(mp_int *a, mp_digit *d)
int mp_reduce_2k_setup(mp_int *a, mp_digit *d)
{
int res, p;
mp_int tmp;
@ -6452,6 +6515,50 @@ mp_reduce_2k_setup(mp_int *a, mp_digit *d)
/* End: bn_mp_reduce_2k_setup.c */
/* Start: bn_mp_reduce_2k_setup_l.c */
#include <tommath.h>
#ifdef BN_MP_REDUCE_2K_SETUP_L_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
*/
/* determines the setup value */
int mp_reduce_2k_setup_l(mp_int *a, mp_int *d)
{
int res;
mp_int tmp;
if ((res = mp_init(&tmp)) != MP_OKAY) {
return res;
}
if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) {
goto ERR;
}
if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) {
goto ERR;
}
ERR:
mp_clear(&tmp);
return res;
}
#endif
/* End: bn_mp_reduce_2k_setup_l.c */
/* Start: bn_mp_reduce_is_2k.c */
#include <tommath.h>
#ifdef BN_MP_REDUCE_IS_2K_C
@ -6477,9 +6584,9 @@ int mp_reduce_is_2k(mp_int *a)
mp_digit iz;
if (a->used == 0) {
return 0;
return MP_NO;
} else if (a->used == 1) {
return 1;
return MP_YES;
} else if (a->used > 1) {
iy = mp_count_bits(a);
iz = 1;
@ -6488,7 +6595,7 @@ int mp_reduce_is_2k(mp_int *a)
/* Test every bit from the second digit up, must be 1 */
for (ix = DIGIT_BIT; ix < iy; ix++) {
if ((a->dp[iw] & iz) == 0) {
return 0;
return MP_NO;
}
iz <<= 1;
if (iz > (mp_digit)MP_MASK) {
@ -6497,13 +6604,57 @@ int mp_reduce_is_2k(mp_int *a)
}
}
}
return 1;
return MP_YES;
}
#endif
/* End: bn_mp_reduce_is_2k.c */
/* Start: bn_mp_reduce_is_2k_l.c */
#include <tommath.h>
#ifdef BN_MP_REDUCE_IS_2K_L_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
*/
/* determines if reduce_2k_l can be used */
int mp_reduce_is_2k_l(mp_int *a)
{
int ix, iy;
if (a->used == 0) {
return MP_NO;
} else if (a->used == 1) {
return MP_YES;
} else if (a->used > 1) {
/* if more than half of the digits are -1 we're sold */
for (iy = ix = 0; ix < a->used; ix++) {
if (a->dp[ix] == MP_MASK) {
++iy;
}
}
return (iy >= (a->used/2)) ? MP_YES : MP_NO;
}
return MP_NO;
}
#endif
/* End: bn_mp_reduce_is_2k_l.c */
/* Start: bn_mp_reduce_setup.c */
#include <tommath.h>
#ifdef BN_MP_REDUCE_SETUP_C
@ -7138,8 +7289,7 @@ mp_submod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
*/
/* store in signed [big endian] format */
int
mp_to_signed_bin (mp_int * a, unsigned char *b)
int mp_to_signed_bin (mp_int * a, unsigned char *b)
{
int res;
@ -7153,6 +7303,37 @@ mp_to_signed_bin (mp_int * a, unsigned char *b)
/* End: bn_mp_to_signed_bin.c */
/* Start: bn_mp_to_signed_bin_n.c */
#include <tommath.h>
#ifdef BN_MP_TO_SIGNED_BIN_N_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
*/
/* store in signed [big endian] format */
int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen)
{
if (*outlen < (unsigned long)mp_signed_bin_size(a)) {
return MP_VAL;
}
*outlen = mp_signed_bin_size(a);
return mp_to_signed_bin(a, b);
}
#endif
/* End: bn_mp_to_signed_bin_n.c */
/* Start: bn_mp_to_unsigned_bin.c */
#include <tommath.h>
#ifdef BN_MP_TO_UNSIGNED_BIN_C
@ -7172,8 +7353,7 @@ mp_to_signed_bin (mp_int * a, unsigned char *b)
*/
/* store in unsigned [big endian] format */
int
mp_to_unsigned_bin (mp_int * a, unsigned char *b)
int mp_to_unsigned_bin (mp_int * a, unsigned char *b)
{
int x, res;
mp_int t;
@ -7202,6 +7382,37 @@ mp_to_unsigned_bin (mp_int * a, unsigned char *b)
/* End: bn_mp_to_unsigned_bin.c */
/* Start: bn_mp_to_unsigned_bin_n.c */
#include <tommath.h>
#ifdef BN_MP_TO_UNSIGNED_BIN_N_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
*/
/* store in unsigned [big endian] format */
int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen)
{
if (*outlen < (unsigned long)mp_unsigned_bin_size(a)) {
return MP_VAL;
}
*outlen = mp_unsigned_bin_size(a);
return mp_to_unsigned_bin(a, b);
}
#endif
/* End: bn_mp_to_unsigned_bin_n.c */
/* Start: bn_mp_toom_mul.c */
#include <tommath.h>
#ifdef BN_MP_TOOM_MUL_C
@ -7894,8 +8105,7 @@ int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen)
*/
/* get the size for an unsigned equivalent */
int
mp_unsigned_bin_size (mp_int * a)
int mp_unsigned_bin_size (mp_int * a)
{
int size = mp_count_bits (a);
return (size / 8 + ((size & 7) != 0 ? 1 : 0));
@ -8218,11 +8428,12 @@ s_mp_add (mp_int * a, mp_int * b, mp_int * c)
#define TAB_SIZE 256
#endif
int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
{
mp_int M[TAB_SIZE], res, mu;
mp_digit buf;
int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
int (*redux)(mp_int*,mp_int*,mp_int*);
/* find window size */
x = mp_count_bits (X);
@ -8269,8 +8480,17 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
if ((err = mp_init (&mu)) != MP_OKAY) {
goto LBL_M;
}
if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
goto LBL_MU;
if (redmode == 0) {
if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
goto LBL_MU;
}
redux = mp_reduce;
} else {
if ((err = mp_reduce_2k_setup_l (P, &mu)) != MP_OKAY) {
goto LBL_MU;
}
redux = mp_reduce_2k_l;
}
/* create M table
@ -8293,11 +8513,14 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
}
for (x = 0; x < (winsize - 1); x++) {
/* square it */
if ((err = mp_sqr (&M[1 << (winsize - 1)],
&M[1 << (winsize - 1)])) != MP_OKAY) {
goto LBL_MU;
}
if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
/* reduce modulo P */
if ((err = redux (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
goto LBL_MU;
}
}
@ -8309,7 +8532,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
goto LBL_MU;
}
if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) {
if ((err = redux (&M[x], P, &mu)) != MP_OKAY) {
goto LBL_MU;
}
}
@ -8358,7 +8581,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
goto LBL_RES;
}
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
if ((err = redux (&res, P, &mu)) != MP_OKAY) {
goto LBL_RES;
}
continue;
@ -8375,7 +8598,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
goto LBL_RES;
}
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
if ((err = redux (&res, P, &mu)) != MP_OKAY) {
goto LBL_RES;
}
}
@ -8384,7 +8607,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
goto LBL_RES;
}
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
if ((err = redux (&res, P, &mu)) != MP_OKAY) {
goto LBL_RES;
}
@ -8402,7 +8625,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
goto LBL_RES;
}
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
if ((err = redux (&res, P, &mu)) != MP_OKAY) {
goto LBL_RES;
}
@ -8412,7 +8635,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
goto LBL_RES;
}
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
if ((err = redux (&res, P, &mu)) != MP_OKAY) {
goto LBL_RES;
}
}
@ -8803,11 +9026,12 @@ s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
CPU /Compiler /MUL CUTOFF/SQR CUTOFF
-------------------------------------------------------------
Intel P4 Northwood /GCC v3.4.1 / 88/ 128/LTM 0.32 ;-)
AMD Athlon64 /GCC v3.4.4 / 74/ 124/LTM 0.34
*/
int KARATSUBA_MUL_CUTOFF = 88, /* Min. number of digits before Karatsuba multiplication is used. */
KARATSUBA_SQR_CUTOFF = 128, /* Min. number of digits before Karatsuba squaring is used. */
int KARATSUBA_MUL_CUTOFF = 74, /* Min. number of digits before Karatsuba multiplication is used. */
KARATSUBA_SQR_CUTOFF = 124, /* Min. number of digits before Karatsuba squaring is used. */
TOOM_MUL_CUTOFF = 350, /* no optimal values of these are known yet so set em high */
TOOM_SQR_CUTOFF = 400;

View File

@ -429,6 +429,15 @@ int mp_reduce_2k_setup(mp_int *a, mp_digit *d);
/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d);
/* returns true if a can be reduced with mp_reduce_2k_l */
int mp_reduce_is_2k_l(mp_int *a);
/* determines k value for 2k reduction */
int mp_reduce_2k_setup_l(mp_int *a, mp_int *d);
/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d);
/* d = a**b (mod c) */
int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
@ -511,12 +520,14 @@ int mp_count_bits(mp_int *a);
int mp_unsigned_bin_size(mp_int *a);
int mp_read_unsigned_bin(mp_int *a, unsigned char *b, int c);
int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen);
int mp_signed_bin_size(mp_int *a);
int mp_read_signed_bin(mp_int *a, unsigned char *b, int c);
int mp_to_signed_bin(mp_int *a, unsigned char *b);
int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen);
int mp_read_radix(mp_int *a, char *str, int radix);
int mp_read_radix(mp_int *a, const char *str, int radix);
int mp_toradix(mp_int *a, char *str, int radix);
int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen);
int mp_radix_size(mp_int *a, int radix, int *size);
@ -554,7 +565,7 @@ int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c);
int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c);
int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int mode);
int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y);
int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int mode);
void bn_reverse(unsigned char *s, int len);
extern const char *mp_s_rmap;

Binary file not shown.

View File

@ -66,7 +66,7 @@ QUALCOMM Australia \\
}
}
\maketitle
This text has been placed in the public domain. This text corresponds to the v0.30 release of the
This text has been placed in the public domain. This text corresponds to the v0.34 release of the
LibTomMath project.
\begin{alltt}

File diff suppressed because it is too large Load Diff

View File

@ -90,8 +90,11 @@
#define BN_MP_READ_UNSIGNED_BIN_C
#define BN_MP_REDUCE_C
#define BN_MP_REDUCE_2K_C
#define BN_MP_REDUCE_2K_L_C
#define BN_MP_REDUCE_2K_SETUP_C
#define BN_MP_REDUCE_2K_SETUP_L_C
#define BN_MP_REDUCE_IS_2K_C
#define BN_MP_REDUCE_IS_2K_L_C
#define BN_MP_REDUCE_SETUP_C
#define BN_MP_RSHD_C
#define BN_MP_SET_C
@ -105,7 +108,9 @@
#define BN_MP_SUB_D_C
#define BN_MP_SUBMOD_C
#define BN_MP_TO_SIGNED_BIN_C
#define BN_MP_TO_SIGNED_BIN_N_C
#define BN_MP_TO_UNSIGNED_BIN_C
#define BN_MP_TO_UNSIGNED_BIN_N_C
#define BN_MP_TOOM_MUL_C
#define BN_MP_TOOM_SQR_C
#define BN_MP_TORADIX_C
@ -324,11 +329,12 @@
#define BN_MP_CLEAR_C
#define BN_MP_ABS_C
#define BN_MP_CLEAR_MULTI_C
#define BN_MP_REDUCE_IS_2K_L_C
#define BN_S_MP_EXPTMOD_C
#define BN_MP_DR_IS_MODULUS_C
#define BN_MP_REDUCE_IS_2K_C
#define BN_MP_ISODD_C
#define BN_MP_EXPTMOD_FAST_C
#define BN_S_MP_EXPTMOD_C
#endif
#if defined(BN_MP_EXPTMOD_FAST_C)
@ -725,6 +731,17 @@
#define BN_MP_CLEAR_C
#endif
#if defined(BN_MP_REDUCE_2K_L_C)
#define BN_MP_INIT_C
#define BN_MP_COUNT_BITS_C
#define BN_MP_DIV_2D_C
#define BN_MP_MUL_C
#define BN_S_MP_ADD_C
#define BN_MP_CMP_MAG_C
#define BN_S_MP_SUB_C
#define BN_MP_CLEAR_C
#endif
#if defined(BN_MP_REDUCE_2K_SETUP_C)
#define BN_MP_INIT_C
#define BN_MP_COUNT_BITS_C
@ -733,11 +750,22 @@
#define BN_S_MP_SUB_C
#endif
#if defined(BN_MP_REDUCE_2K_SETUP_L_C)
#define BN_MP_INIT_C
#define BN_MP_2EXPT_C
#define BN_MP_COUNT_BITS_C
#define BN_S_MP_SUB_C
#define BN_MP_CLEAR_C
#endif
#if defined(BN_MP_REDUCE_IS_2K_C)
#define BN_MP_REDUCE_2K_C
#define BN_MP_COUNT_BITS_C
#endif
#if defined(BN_MP_REDUCE_IS_2K_L_C)
#endif
#if defined(BN_MP_REDUCE_SETUP_C)
#define BN_MP_2EXPT_C
#define BN_MP_DIV_C
@ -815,6 +843,11 @@
#define BN_MP_TO_UNSIGNED_BIN_C
#endif
#if defined(BN_MP_TO_SIGNED_BIN_N_C)
#define BN_MP_SIGNED_BIN_SIZE_C
#define BN_MP_TO_SIGNED_BIN_C
#endif
#if defined(BN_MP_TO_UNSIGNED_BIN_C)
#define BN_MP_INIT_COPY_C
#define BN_MP_ISZERO_C
@ -822,6 +855,11 @@
#define BN_MP_CLEAR_C
#endif
#if defined(BN_MP_TO_UNSIGNED_BIN_N_C)
#define BN_MP_UNSIGNED_BIN_SIZE_C
#define BN_MP_TO_UNSIGNED_BIN_C
#endif
#if defined(BN_MP_TOOM_MUL_C)
#define BN_MP_INIT_MULTI_C
#define BN_MP_MOD_2D_C
@ -902,10 +940,12 @@
#define BN_MP_INIT_C
#define BN_MP_CLEAR_C
#define BN_MP_REDUCE_SETUP_C
#define BN_MP_REDUCE_C
#define BN_MP_REDUCE_2K_SETUP_L_C
#define BN_MP_REDUCE_2K_L_C
#define BN_MP_MOD_C
#define BN_MP_COPY_C
#define BN_MP_SQR_C
#define BN_MP_REDUCE_C
#define BN_MP_MUL_C
#define BN_MP_SET_C
#define BN_MP_EXCH_C