added libtommath-0.34
This commit is contained in:
parent
4b7111d96e
commit
3d0fcaab0a
29
bn.tex
29
bn.tex
@ -49,7 +49,7 @@
|
||||
\begin{document}
|
||||
\frontmatter
|
||||
\pagestyle{empty}
|
||||
\title{LibTomMath User Manual \\ v0.33}
|
||||
\title{LibTomMath User Manual \\ v0.34}
|
||||
\author{Tom St Denis \\ tomstdenis@iahu.ca}
|
||||
\maketitle
|
||||
This text, the library and the accompanying textbook are all hereby placed in the public domain. This book has been
|
||||
@ -263,12 +263,12 @@ are the pros and cons of LibTomMath by comparing it to the math routines from Gn
|
||||
\begin{center}
|
||||
\begin{tabular}{|l|c|c|l|}
|
||||
\hline \textbf{Criteria} & \textbf{Pro} & \textbf{Con} & \textbf{Notes} \\
|
||||
\hline Few lines of code per file & X & & GnuPG $ = 300.9$, LibTomMath $ = 76.04$ \\
|
||||
\hline Few lines of code per file & X & & GnuPG $ = 300.9$, LibTomMath $ = 71.97$ \\
|
||||
\hline Commented function prototypes & X && GnuPG function names are cryptic. \\
|
||||
\hline Speed && X & LibTomMath is slower. \\
|
||||
\hline Totally free & X & & GPL has unfavourable restrictions.\\
|
||||
\hline Large function base & X & & GnuPG is barebones. \\
|
||||
\hline Four modular reduction algorithms & X & & Faster modular exponentiation. \\
|
||||
\hline Five modular reduction algorithms & X & & Faster modular exponentiation for a variety of moduli. \\
|
||||
\hline Portable & X & & GnuPG requires configuration to build. \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
@ -284,9 +284,12 @@ would require when working with large integers.
|
||||
So it may feel tempting to just rip the math code out of GnuPG (or GnuMP where it was taken from originally) in your
|
||||
own application but I think there are reasons not to. While LibTomMath is slower than libraries such as GnuMP it is
|
||||
not normally significantly slower. On x86 machines the difference is normally a factor of two when performing modular
|
||||
exponentiations.
|
||||
exponentiations. It depends largely on the processor, compiler and the moduli being used.
|
||||
|
||||
Essentially the only time you wouldn't use LibTomMath is when blazing speed is the primary concern.
|
||||
Essentially the only time you wouldn't use LibTomMath is when blazing speed is the primary concern. However,
|
||||
on the other side of the coin LibTomMath offers you a totally free (public domain) well structured math library
|
||||
that is very flexible, complete and performs well in resource contrained environments. Fast RSA for example can
|
||||
be performed with as little as 8KB of ram for data (again depending on build options).
|
||||
|
||||
\chapter{Getting Started with LibTomMath}
|
||||
\section{Building Programs}
|
||||
@ -809,7 +812,7 @@ mp\_int variables based on their digits only.
|
||||
|
||||
\index{mp\_cmp\_mag}
|
||||
\begin{alltt}
|
||||
int mp_cmp(mp_int * a, mp_int * b);
|
||||
int mp_cmp_mag(mp_int * a, mp_int * b);
|
||||
\end{alltt}
|
||||
This will compare $a$ to $b$ placing $a$ to the left of $b$. This function cannot fail and will return one of the
|
||||
three compare codes listed in figure \ref{fig:CMP}.
|
||||
@ -1220,12 +1223,13 @@ int mp_sqr (mp_int * a, mp_int * b);
|
||||
\end{alltt}
|
||||
|
||||
Will square $a$ and store it in $b$. Like the case of multiplication there are four different squaring
|
||||
algorithms all which can be called from mp\_sqr(). It is ideal to use mp\_sqr over mp\_mul when squaring terms.
|
||||
algorithms all which can be called from mp\_sqr(). It is ideal to use mp\_sqr over mp\_mul when squaring terms because
|
||||
of the speed difference.
|
||||
|
||||
\section{Tuning Polynomial Basis Routines}
|
||||
|
||||
Both of the Toom-Cook and Karatsuba multiplication algorithms are faster than the traditional $O(n^2)$ approach that
|
||||
the Comba and baseline algorithms use. At $O(n^{1.464973})$ and $O(n^{1.584962})$ running times respectfully they require
|
||||
the Comba and baseline algorithms use. At $O(n^{1.464973})$ and $O(n^{1.584962})$ running times respectively they require
|
||||
considerably less work. For example, a 10000-digit multiplication would take roughly 724,000 single precision
|
||||
multiplications with Toom-Cook or 100,000,000 single precision multiplications with the standard Comba (a factor
|
||||
of 138).
|
||||
@ -1297,14 +1301,14 @@ of $b$. This algorithm accepts an input $a$ of any range and is not limited by
|
||||
\section{Barrett Reduction}
|
||||
|
||||
Barrett reduction is a generic optimized reduction algorithm that requires pre--computation to achieve
|
||||
a decent speedup over straight division. First a $mu$ value must be precomputed with the following function.
|
||||
a decent speedup over straight division. First a $\mu$ value must be precomputed with the following function.
|
||||
|
||||
\index{mp\_reduce\_setup}
|
||||
\begin{alltt}
|
||||
int mp_reduce_setup(mp_int *a, mp_int *b);
|
||||
\end{alltt}
|
||||
|
||||
Given a modulus in $b$ this produces the required $mu$ value in $a$. For any given modulus this only has to
|
||||
Given a modulus in $b$ this produces the required $\mu$ value in $a$. For any given modulus this only has to
|
||||
be computed once. Modular reduction can now be performed with the following.
|
||||
|
||||
\index{mp\_reduce}
|
||||
@ -1312,7 +1316,7 @@ be computed once. Modular reduction can now be performed with the following.
|
||||
int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
|
||||
\end{alltt}
|
||||
|
||||
This will reduce $a$ in place modulo $b$ with the precomputed $mu$ value in $c$. $a$ must be in the range
|
||||
This will reduce $a$ in place modulo $b$ with the precomputed $\mu$ value in $c$. $a$ must be in the range
|
||||
$0 \le a < b^2$.
|
||||
|
||||
\begin{alltt}
|
||||
@ -1578,7 +1582,8 @@ will return $-2$.
|
||||
This algorithm uses the ``Newton Approximation'' method and will converge on the correct root fairly quickly. Since
|
||||
the algorithm requires raising $a$ to the power of $b$ it is not ideal to attempt to find roots for large
|
||||
values of $b$. If particularly large roots are required then a factor method could be used instead. For example,
|
||||
$a^{1/16}$ is equivalent to $\left (a^{1/4} \right)^{1/4}$.
|
||||
$a^{1/16}$ is equivalent to $\left (a^{1/4} \right)^{1/4}$ or simply
|
||||
$\left ( \left ( \left ( a^{1/2} \right )^{1/2} \right )^{1/2} \right )^{1/2}$
|
||||
|
||||
\chapter{Prime Numbers}
|
||||
\section{Trial Division}
|
||||
|
@ -21,8 +21,7 @@
|
||||
* Based on slow invmod except this is optimized for the case where b is
|
||||
* odd as per HAC Note 14.64 on pp. 610
|
||||
*/
|
||||
int
|
||||
fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
|
||||
int fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
|
||||
{
|
||||
mp_int x, y, u, v, B, D;
|
||||
int res, neg;
|
||||
|
@ -23,8 +23,7 @@
|
||||
*
|
||||
* Based on Algorithm 14.32 on pp.601 of HAC.
|
||||
*/
|
||||
int
|
||||
fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
|
||||
int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
|
||||
{
|
||||
int ix, res, olduse;
|
||||
mp_word W[MP_WARRAY];
|
||||
|
@ -31,8 +31,7 @@
|
||||
* Based on Algorithm 14.12 on pp.595 of HAC.
|
||||
*
|
||||
*/
|
||||
int
|
||||
fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
||||
int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
||||
{
|
||||
int olduse, res, pa, ix, iz;
|
||||
mp_digit W[MP_WARRAY];
|
||||
@ -81,7 +80,7 @@ fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
||||
}
|
||||
|
||||
/* store final carry */
|
||||
W[ix] = _W;
|
||||
W[ix] = _W & MP_MASK;
|
||||
|
||||
/* setup dest */
|
||||
olduse = c->used;
|
||||
|
@ -24,8 +24,7 @@
|
||||
*
|
||||
* Based on Algorithm 14.12 on pp.595 of HAC.
|
||||
*/
|
||||
int
|
||||
fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
||||
int fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
||||
{
|
||||
int olduse, res, pa, ix, iz;
|
||||
mp_digit W[MP_WARRAY];
|
||||
@ -72,7 +71,7 @@ fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
||||
}
|
||||
|
||||
/* store final carry */
|
||||
W[ix] = _W;
|
||||
W[ix] = _W & MP_MASK;
|
||||
|
||||
/* setup dest */
|
||||
olduse = c->used;
|
||||
|
@ -101,7 +101,7 @@ int fast_s_mp_sqr (mp_int * a, mp_int * b)
|
||||
}
|
||||
|
||||
/* store it */
|
||||
W[ix] = _W;
|
||||
W[ix] = _W & MP_MASK;
|
||||
|
||||
/* make next carry */
|
||||
W1 = _W >> ((mp_word)DIGIT_BIT);
|
||||
|
@ -65,21 +65,29 @@ int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
|
||||
#endif
|
||||
}
|
||||
|
||||
/* modified diminished radix reduction */
|
||||
#if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C)
|
||||
if (mp_reduce_is_2k_l(P) == MP_YES) {
|
||||
return s_mp_exptmod(G, X, P, Y, 1);
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef BN_MP_DR_IS_MODULUS_C
|
||||
/* is it a DR modulus? */
|
||||
dr = mp_dr_is_modulus(P);
|
||||
#else
|
||||
/* default to no */
|
||||
dr = 0;
|
||||
#endif
|
||||
|
||||
#ifdef BN_MP_REDUCE_IS_2K_C
|
||||
/* if not, is it a uDR modulus? */
|
||||
/* if not, is it a unrestricted DR modulus? */
|
||||
if (dr == 0) {
|
||||
dr = mp_reduce_is_2k(P) << 1;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* if the modulus is odd or dr != 0 use the fast method */
|
||||
/* if the modulus is odd or dr != 0 use the montgomery method */
|
||||
#ifdef BN_MP_EXPTMOD_FAST_C
|
||||
if (mp_isodd (P) == 1 || dr != 0) {
|
||||
return mp_exptmod_fast (G, X, P, Y, dr);
|
||||
@ -87,7 +95,7 @@ int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
|
||||
#endif
|
||||
#ifdef BN_S_MP_EXPTMOD_C
|
||||
/* otherwise use the generic Barrett reduction technique */
|
||||
return s_mp_exptmod (G, X, P, Y);
|
||||
return s_mp_exptmod (G, X, P, Y, 0);
|
||||
#else
|
||||
/* no exptmod for evens */
|
||||
return MP_VAL;
|
||||
|
@ -29,8 +29,7 @@
|
||||
#define TAB_SIZE 256
|
||||
#endif
|
||||
|
||||
int
|
||||
mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
|
||||
int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
|
||||
{
|
||||
mp_int M[TAB_SIZE], res;
|
||||
mp_digit buf, mp;
|
||||
|
@ -57,8 +57,9 @@ mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
|
||||
u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
|
||||
}
|
||||
|
||||
/* store final carry [if any] */
|
||||
/* store final carry [if any] and increment ix offset */
|
||||
*tmpc++ = u;
|
||||
++ix;
|
||||
|
||||
/* now zero digits above the top */
|
||||
while (ix++ < olduse) {
|
||||
|
@ -60,7 +60,7 @@ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback
|
||||
|
||||
/* calc the maskOR_msb */
|
||||
maskOR_msb = 0;
|
||||
maskOR_msb_offset = (size - 2) >> 3;
|
||||
maskOR_msb_offset = ((size & 7) == 1) ? 1 : 0;
|
||||
if (flags & LTM_PRIME_2MSB_ON) {
|
||||
maskOR_msb |= 1 << ((size - 2) & 7);
|
||||
} else if (flags & LTM_PRIME_2MSB_OFF) {
|
||||
@ -68,7 +68,7 @@ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback
|
||||
}
|
||||
|
||||
/* get the maskOR_lsb */
|
||||
maskOR_lsb = 0;
|
||||
maskOR_lsb = 1;
|
||||
if (flags & LTM_PRIME_BBS) {
|
||||
maskOR_lsb |= 3;
|
||||
}
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* read a string [ASCII] in a given radix */
|
||||
int mp_read_radix (mp_int * a, char *str, int radix)
|
||||
int mp_read_radix (mp_int * a, const char *str, int radix)
|
||||
{
|
||||
int y, res, neg;
|
||||
char ch;
|
||||
|
@ -19,8 +19,7 @@
|
||||
* precomputed via mp_reduce_setup.
|
||||
* From HAC pp.604 Algorithm 14.42
|
||||
*/
|
||||
int
|
||||
mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
|
||||
int mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
|
||||
{
|
||||
mp_int q;
|
||||
int res, um = m->used;
|
||||
|
@ -16,8 +16,7 @@
|
||||
*/
|
||||
|
||||
/* reduces a modulo n where n is of the form 2**p - d */
|
||||
int
|
||||
mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d)
|
||||
int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d)
|
||||
{
|
||||
mp_int q;
|
||||
int p, res;
|
||||
|
58
bn_mp_reduce_2k_l.c
Normal file
58
bn_mp_reduce_2k_l.c
Normal file
@ -0,0 +1,58 @@
|
||||
#include <tommath.h>
|
||||
#ifdef BN_MP_REDUCE_2K_L_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
|
||||
*/
|
||||
|
||||
/* reduces a modulo n where n is of the form 2**p - d
|
||||
This differs from reduce_2k since "d" can be larger
|
||||
than a single digit.
|
||||
*/
|
||||
int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d)
|
||||
{
|
||||
mp_int q;
|
||||
int p, res;
|
||||
|
||||
if ((res = mp_init(&q)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
p = mp_count_bits(n);
|
||||
top:
|
||||
/* q = a/2**p, a = a mod 2**p */
|
||||
if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
/* q = q * d */
|
||||
if ((res = mp_mul(&q, d, &q)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
/* a = a + q */
|
||||
if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
if (mp_cmp_mag(a, n) != MP_LT) {
|
||||
s_mp_sub(a, n, a);
|
||||
goto top;
|
||||
}
|
||||
|
||||
ERR:
|
||||
mp_clear(&q);
|
||||
return res;
|
||||
}
|
||||
|
||||
#endif
|
@ -16,8 +16,7 @@
|
||||
*/
|
||||
|
||||
/* determines the setup value */
|
||||
int
|
||||
mp_reduce_2k_setup(mp_int *a, mp_digit *d)
|
||||
int mp_reduce_2k_setup(mp_int *a, mp_digit *d)
|
||||
{
|
||||
int res, p;
|
||||
mp_int tmp;
|
||||
|
40
bn_mp_reduce_2k_setup_l.c
Normal file
40
bn_mp_reduce_2k_setup_l.c
Normal file
@ -0,0 +1,40 @@
|
||||
#include <tommath.h>
|
||||
#ifdef BN_MP_REDUCE_2K_SETUP_L_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
|
||||
*/
|
||||
|
||||
/* determines the setup value */
|
||||
int mp_reduce_2k_setup_l(mp_int *a, mp_int *d)
|
||||
{
|
||||
int res;
|
||||
mp_int tmp;
|
||||
|
||||
if ((res = mp_init(&tmp)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
ERR:
|
||||
mp_clear(&tmp);
|
||||
return res;
|
||||
}
|
||||
#endif
|
@ -22,9 +22,9 @@ int mp_reduce_is_2k(mp_int *a)
|
||||
mp_digit iz;
|
||||
|
||||
if (a->used == 0) {
|
||||
return 0;
|
||||
return MP_NO;
|
||||
} else if (a->used == 1) {
|
||||
return 1;
|
||||
return MP_YES;
|
||||
} else if (a->used > 1) {
|
||||
iy = mp_count_bits(a);
|
||||
iz = 1;
|
||||
@ -33,7 +33,7 @@ int mp_reduce_is_2k(mp_int *a)
|
||||
/* Test every bit from the second digit up, must be 1 */
|
||||
for (ix = DIGIT_BIT; ix < iy; ix++) {
|
||||
if ((a->dp[iw] & iz) == 0) {
|
||||
return 0;
|
||||
return MP_NO;
|
||||
}
|
||||
iz <<= 1;
|
||||
if (iz > (mp_digit)MP_MASK) {
|
||||
@ -42,7 +42,7 @@ int mp_reduce_is_2k(mp_int *a)
|
||||
}
|
||||
}
|
||||
}
|
||||
return 1;
|
||||
return MP_YES;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
40
bn_mp_reduce_is_2k_l.c
Normal file
40
bn_mp_reduce_is_2k_l.c
Normal file
@ -0,0 +1,40 @@
|
||||
#include <tommath.h>
|
||||
#ifdef BN_MP_REDUCE_IS_2K_L_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
|
||||
*/
|
||||
|
||||
/* determines if reduce_2k_l can be used */
|
||||
int mp_reduce_is_2k_l(mp_int *a)
|
||||
{
|
||||
int ix, iy;
|
||||
|
||||
if (a->used == 0) {
|
||||
return MP_NO;
|
||||
} else if (a->used == 1) {
|
||||
return MP_YES;
|
||||
} else if (a->used > 1) {
|
||||
/* if more than half of the digits are -1 we're sold */
|
||||
for (iy = ix = 0; ix < a->used; ix++) {
|
||||
if (a->dp[ix] == MP_MASK) {
|
||||
++iy;
|
||||
}
|
||||
}
|
||||
return (iy >= (a->used/2)) ? MP_YES : MP_NO;
|
||||
|
||||
}
|
||||
return MP_NO;
|
||||
}
|
||||
|
||||
#endif
|
@ -16,8 +16,7 @@
|
||||
*/
|
||||
|
||||
/* store in signed [big endian] format */
|
||||
int
|
||||
mp_to_signed_bin (mp_int * a, unsigned char *b)
|
||||
int mp_to_signed_bin (mp_int * a, unsigned char *b)
|
||||
{
|
||||
int res;
|
||||
|
||||
|
27
bn_mp_to_signed_bin_n.c
Normal file
27
bn_mp_to_signed_bin_n.c
Normal file
@ -0,0 +1,27 @@
|
||||
#include <tommath.h>
|
||||
#ifdef BN_MP_TO_SIGNED_BIN_N_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
|
||||
*/
|
||||
|
||||
/* store in signed [big endian] format */
|
||||
int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen)
|
||||
{
|
||||
if (*outlen < (unsigned long)mp_signed_bin_size(a)) {
|
||||
return MP_VAL;
|
||||
}
|
||||
*outlen = mp_signed_bin_size(a);
|
||||
return mp_to_signed_bin(a, b);
|
||||
}
|
||||
#endif
|
@ -16,8 +16,7 @@
|
||||
*/
|
||||
|
||||
/* store in unsigned [big endian] format */
|
||||
int
|
||||
mp_to_unsigned_bin (mp_int * a, unsigned char *b)
|
||||
int mp_to_unsigned_bin (mp_int * a, unsigned char *b)
|
||||
{
|
||||
int x, res;
|
||||
mp_int t;
|
||||
|
27
bn_mp_to_unsigned_bin_n.c
Normal file
27
bn_mp_to_unsigned_bin_n.c
Normal file
@ -0,0 +1,27 @@
|
||||
#include <tommath.h>
|
||||
#ifdef BN_MP_TO_UNSIGNED_BIN_N_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
|
||||
*/
|
||||
|
||||
/* store in unsigned [big endian] format */
|
||||
int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen)
|
||||
{
|
||||
if (*outlen < (unsigned long)mp_unsigned_bin_size(a)) {
|
||||
return MP_VAL;
|
||||
}
|
||||
*outlen = mp_unsigned_bin_size(a);
|
||||
return mp_to_unsigned_bin(a, b);
|
||||
}
|
||||
#endif
|
@ -16,8 +16,7 @@
|
||||
*/
|
||||
|
||||
/* get the size for an unsigned equivalent */
|
||||
int
|
||||
mp_unsigned_bin_size (mp_int * a)
|
||||
int mp_unsigned_bin_size (mp_int * a)
|
||||
{
|
||||
int size = mp_count_bits (a);
|
||||
return (size / 8 + ((size & 7) != 0 ? 1 : 0));
|
||||
|
@ -21,11 +21,12 @@
|
||||
#define TAB_SIZE 256
|
||||
#endif
|
||||
|
||||
int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
|
||||
int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
|
||||
{
|
||||
mp_int M[TAB_SIZE], res, mu;
|
||||
mp_digit buf;
|
||||
int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
|
||||
int (*redux)(mp_int*,mp_int*,mp_int*);
|
||||
|
||||
/* find window size */
|
||||
x = mp_count_bits (X);
|
||||
@ -72,8 +73,17 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
|
||||
if ((err = mp_init (&mu)) != MP_OKAY) {
|
||||
goto LBL_M;
|
||||
}
|
||||
if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
|
||||
goto LBL_MU;
|
||||
|
||||
if (redmode == 0) {
|
||||
if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
|
||||
goto LBL_MU;
|
||||
}
|
||||
redux = mp_reduce;
|
||||
} else {
|
||||
if ((err = mp_reduce_2k_setup_l (P, &mu)) != MP_OKAY) {
|
||||
goto LBL_MU;
|
||||
}
|
||||
redux = mp_reduce_2k_l;
|
||||
}
|
||||
|
||||
/* create M table
|
||||
@ -96,11 +106,14 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
|
||||
}
|
||||
|
||||
for (x = 0; x < (winsize - 1); x++) {
|
||||
/* square it */
|
||||
if ((err = mp_sqr (&M[1 << (winsize - 1)],
|
||||
&M[1 << (winsize - 1)])) != MP_OKAY) {
|
||||
goto LBL_MU;
|
||||
}
|
||||
if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
|
||||
|
||||
/* reduce modulo P */
|
||||
if ((err = redux (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
|
||||
goto LBL_MU;
|
||||
}
|
||||
}
|
||||
@ -112,7 +125,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
|
||||
if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
|
||||
goto LBL_MU;
|
||||
}
|
||||
if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) {
|
||||
if ((err = redux (&M[x], P, &mu)) != MP_OKAY) {
|
||||
goto LBL_MU;
|
||||
}
|
||||
}
|
||||
@ -161,7 +174,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
|
||||
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
|
||||
if ((err = redux (&res, P, &mu)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
continue;
|
||||
@ -178,7 +191,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
|
||||
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
|
||||
if ((err = redux (&res, P, &mu)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
}
|
||||
@ -187,7 +200,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
|
||||
if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
|
||||
if ((err = redux (&res, P, &mu)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
|
||||
@ -205,7 +218,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
|
||||
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
|
||||
if ((err = redux (&res, P, &mu)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
|
||||
@ -215,7 +228,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
|
||||
if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
|
||||
if ((err = redux (&res, P, &mu)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
}
|
||||
|
5
bncore.c
5
bncore.c
@ -20,11 +20,12 @@
|
||||
CPU /Compiler /MUL CUTOFF/SQR CUTOFF
|
||||
-------------------------------------------------------------
|
||||
Intel P4 Northwood /GCC v3.4.1 / 88/ 128/LTM 0.32 ;-)
|
||||
AMD Athlon64 /GCC v3.4.4 / 74/ 124/LTM 0.34
|
||||
|
||||
*/
|
||||
|
||||
int KARATSUBA_MUL_CUTOFF = 88, /* Min. number of digits before Karatsuba multiplication is used. */
|
||||
KARATSUBA_SQR_CUTOFF = 128, /* Min. number of digits before Karatsuba squaring is used. */
|
||||
int KARATSUBA_MUL_CUTOFF = 74, /* Min. number of digits before Karatsuba multiplication is used. */
|
||||
KARATSUBA_SQR_CUTOFF = 124, /* Min. number of digits before Karatsuba squaring is used. */
|
||||
|
||||
TOOM_MUL_CUTOFF = 350, /* no optimal values of these are known yet so set em high */
|
||||
TOOM_SQR_CUTOFF = 400;
|
||||
|
5221
callgraph.txt
5221
callgraph.txt
File diff suppressed because it is too large
Load Diff
12
changes.txt
12
changes.txt
@ -1,3 +1,15 @@
|
||||
February 12th, 2005
|
||||
v0.34 -- Fixed two more small errors in mp_prime_random_ex()
|
||||
-- Fixed overflow in mp_mul_d() [Kevin Kenny]
|
||||
-- Added mp_to_(un)signed_bin_n() functions which do bounds checking for ya [and report the size]
|
||||
-- Added "large" diminished radix support. Speeds up things like DSA where the moduli is of the form 2^k - P for some P < 2^(k/2) or so
|
||||
Actually is faster than Montgomery on my AMD64 (and probably much faster on a P4)
|
||||
-- Updated the manual a bit
|
||||
-- Ok so I haven't done the textbook work yet... My current freelance gig has landed me in France till the
|
||||
end of Feb/05. Once I get back I'll have tons of free time and I plan to go to town on the book.
|
||||
As of this release the API will freeze. At least until the book catches up with all the changes. I welcome
|
||||
bug reports but new algorithms will have to wait.
|
||||
|
||||
December 23rd, 2004
|
||||
v0.33 -- Fixed "small" variant for mp_div() which would munge with negative dividends...
|
||||
-- Fixed bug in mp_prime_random_ex() which would set the most significant byte to zero when
|
||||
|
898
demo/demo.c
898
demo/demo.c
File diff suppressed because it is too large
Load Diff
380
demo/timing.c
380
demo/timing.c
@ -11,15 +11,16 @@ ulong64 _tt;
|
||||
#endif
|
||||
|
||||
|
||||
void ndraw(mp_int *a, char *name)
|
||||
void ndraw(mp_int * a, char *name)
|
||||
{
|
||||
char buf[4096];
|
||||
|
||||
printf("%s: ", name);
|
||||
mp_toradix(a, buf, 64);
|
||||
printf("%s\n", buf);
|
||||
}
|
||||
|
||||
static void draw(mp_int *a)
|
||||
static void draw(mp_int * a)
|
||||
{
|
||||
ndraw(a, "");
|
||||
}
|
||||
@ -39,35 +40,38 @@ int lbit(void)
|
||||
}
|
||||
|
||||
/* RDTSC from Scott Duplichan */
|
||||
static ulong64 TIMFUNC (void)
|
||||
{
|
||||
#if defined __GNUC__
|
||||
#if defined(__i386__) || defined(__x86_64__)
|
||||
unsigned long long a;
|
||||
__asm__ __volatile__ ("rdtsc\nmovl %%eax,%0\nmovl %%edx,4+%0\n"::"m"(a):"%eax","%edx");
|
||||
return a;
|
||||
#else /* gcc-IA64 version */
|
||||
unsigned long result;
|
||||
__asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
|
||||
while (__builtin_expect ((int) result == -1, 0))
|
||||
__asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
|
||||
return result;
|
||||
#endif
|
||||
static ulong64 TIMFUNC(void)
|
||||
{
|
||||
#if defined __GNUC__
|
||||
#if defined(__i386__) || defined(__x86_64__)
|
||||
unsigned long long a;
|
||||
__asm__ __volatile__("rdtsc\nmovl %%eax,%0\nmovl %%edx,4+%0\n"::
|
||||
"m"(a):"%eax", "%edx");
|
||||
return a;
|
||||
#else /* gcc-IA64 version */
|
||||
unsigned long result;
|
||||
__asm__ __volatile__("mov %0=ar.itc":"=r"(result)::"memory");
|
||||
|
||||
while (__builtin_expect((int) result == -1, 0))
|
||||
__asm__ __volatile__("mov %0=ar.itc":"=r"(result)::"memory");
|
||||
|
||||
return result;
|
||||
#endif
|
||||
|
||||
// Microsoft and Intel Windows compilers
|
||||
#elif defined _M_IX86
|
||||
__asm rdtsc
|
||||
#elif defined _M_AMD64
|
||||
return __rdtsc ();
|
||||
#elif defined _M_IA64
|
||||
#if defined __INTEL_COMPILER
|
||||
#include <ia64intrin.h>
|
||||
#endif
|
||||
return __getReg (3116);
|
||||
#else
|
||||
#error need rdtsc function for this build
|
||||
#endif
|
||||
}
|
||||
#elif defined _M_IX86
|
||||
__asm rdtsc
|
||||
#elif defined _M_AMD64
|
||||
return __rdtsc();
|
||||
#elif defined _M_IA64
|
||||
#if defined __INTEL_COMPILER
|
||||
#include <ia64intrin.h>
|
||||
#endif
|
||||
return __getReg(3116);
|
||||
#else
|
||||
#error need rdtsc function for this build
|
||||
#endif
|
||||
}
|
||||
|
||||
#define DO(x) x; x;
|
||||
//#define DO4(x) DO2(x); DO2(x);
|
||||
@ -77,7 +81,7 @@ static ulong64 TIMFUNC (void)
|
||||
int main(void)
|
||||
{
|
||||
ulong64 tt, gg, CLK_PER_SEC;
|
||||
FILE *log, *logb, *logc;
|
||||
FILE *log, *logb, *logc, *logd;
|
||||
mp_int a, b, c, d, e, f;
|
||||
int n, cnt, ix, old_kara_m, old_kara_s;
|
||||
unsigned rr;
|
||||
@ -92,166 +96,189 @@ int main(void)
|
||||
srand(time(NULL));
|
||||
|
||||
|
||||
/* temp. turn off TOOM */
|
||||
TOOM_MUL_CUTOFF = TOOM_SQR_CUTOFF = 100000;
|
||||
/* temp. turn off TOOM */
|
||||
TOOM_MUL_CUTOFF = TOOM_SQR_CUTOFF = 100000;
|
||||
|
||||
CLK_PER_SEC = TIMFUNC();
|
||||
sleep(1);
|
||||
CLK_PER_SEC = TIMFUNC() - CLK_PER_SEC;
|
||||
CLK_PER_SEC = TIMFUNC();
|
||||
sleep(1);
|
||||
CLK_PER_SEC = TIMFUNC() - CLK_PER_SEC;
|
||||
|
||||
printf("CLK_PER_SEC == %llu\n", CLK_PER_SEC);
|
||||
printf("CLK_PER_SEC == %llu\n", CLK_PER_SEC);
|
||||
goto exptmod;
|
||||
log = fopen("logs/add.log", "w");
|
||||
for (cnt = 8; cnt <= 128; cnt += 8) {
|
||||
SLEEP;
|
||||
mp_rand(&a, cnt);
|
||||
mp_rand(&b, cnt);
|
||||
rr = 0;
|
||||
tt = -1;
|
||||
do {
|
||||
gg = TIMFUNC();
|
||||
DO(mp_add(&a, &b, &c));
|
||||
gg = (TIMFUNC() - gg) >> 1;
|
||||
if (tt > gg)
|
||||
tt = gg;
|
||||
} while (++rr < 100000);
|
||||
printf("Adding\t\t%4d-bit => %9llu/sec, %9llu cycles\n",
|
||||
mp_count_bits(&a), CLK_PER_SEC / tt, tt);
|
||||
fprintf(log, "%d %9llu\n", cnt * DIGIT_BIT, tt);
|
||||
fflush(log);
|
||||
}
|
||||
fclose(log);
|
||||
|
||||
log = fopen("logs/add.log", "w");
|
||||
for (cnt = 8; cnt <= 128; cnt += 8) {
|
||||
SLEEP;
|
||||
mp_rand(&a, cnt);
|
||||
mp_rand(&b, cnt);
|
||||
rr = 0;
|
||||
tt = -1;
|
||||
do {
|
||||
gg = TIMFUNC();
|
||||
DO(mp_add(&a,&b,&c));
|
||||
gg = (TIMFUNC() - gg)>>1;
|
||||
if (tt > gg) tt = gg;
|
||||
} while (++rr < 100000);
|
||||
printf("Adding\t\t%4d-bit => %9llu/sec, %9llu cycles\n", mp_count_bits(&a), CLK_PER_SEC/tt, tt);
|
||||
fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, tt); fflush(log);
|
||||
}
|
||||
fclose(log);
|
||||
log = fopen("logs/sub.log", "w");
|
||||
for (cnt = 8; cnt <= 128; cnt += 8) {
|
||||
SLEEP;
|
||||
mp_rand(&a, cnt);
|
||||
mp_rand(&b, cnt);
|
||||
rr = 0;
|
||||
tt = -1;
|
||||
do {
|
||||
gg = TIMFUNC();
|
||||
DO(mp_sub(&a, &b, &c));
|
||||
gg = (TIMFUNC() - gg) >> 1;
|
||||
if (tt > gg)
|
||||
tt = gg;
|
||||
} while (++rr < 100000);
|
||||
|
||||
log = fopen("logs/sub.log", "w");
|
||||
for (cnt = 8; cnt <= 128; cnt += 8) {
|
||||
SLEEP;
|
||||
mp_rand(&a, cnt);
|
||||
mp_rand(&b, cnt);
|
||||
rr = 0;
|
||||
tt = -1;
|
||||
do {
|
||||
gg = TIMFUNC();
|
||||
DO(mp_sub(&a,&b,&c));
|
||||
gg = (TIMFUNC() - gg)>>1;
|
||||
if (tt > gg) tt = gg;
|
||||
} while (++rr < 100000);
|
||||
|
||||
printf("Subtracting\t\t%4d-bit => %9llu/sec, %9llu cycles\n", mp_count_bits(&a), CLK_PER_SEC/tt, tt);
|
||||
fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, tt); fflush(log);
|
||||
}
|
||||
fclose(log);
|
||||
printf("Subtracting\t\t%4d-bit => %9llu/sec, %9llu cycles\n",
|
||||
mp_count_bits(&a), CLK_PER_SEC / tt, tt);
|
||||
fprintf(log, "%d %9llu\n", cnt * DIGIT_BIT, tt);
|
||||
fflush(log);
|
||||
}
|
||||
fclose(log);
|
||||
|
||||
/* do mult/square twice, first without karatsuba and second with */
|
||||
multtest:
|
||||
old_kara_m = KARATSUBA_MUL_CUTOFF;
|
||||
old_kara_s = KARATSUBA_SQR_CUTOFF;
|
||||
for (ix = 0; ix < 1; ix++) {
|
||||
printf("With%s Karatsuba\n", (ix==0)?"out":"");
|
||||
for (ix = 0; ix < 2; ix++) {
|
||||
printf("With%s Karatsuba\n", (ix == 0) ? "out" : "");
|
||||
|
||||
KARATSUBA_MUL_CUTOFF = (ix==0)?9999:old_kara_m;
|
||||
KARATSUBA_SQR_CUTOFF = (ix==0)?9999:old_kara_s;
|
||||
KARATSUBA_MUL_CUTOFF = (ix == 0) ? 9999 : old_kara_m;
|
||||
KARATSUBA_SQR_CUTOFF = (ix == 0) ? 9999 : old_kara_s;
|
||||
|
||||
log = fopen((ix==0)?"logs/mult.log":"logs/mult_kara.log", "w");
|
||||
for (cnt = 4; cnt <= 288; cnt += 2) {
|
||||
SLEEP;
|
||||
mp_rand(&a, cnt);
|
||||
mp_rand(&b, cnt);
|
||||
rr = 0;
|
||||
tt = -1;
|
||||
do {
|
||||
gg = TIMFUNC();
|
||||
DO(mp_mul(&a, &b, &c));
|
||||
gg = (TIMFUNC() - gg)>>1;
|
||||
if (tt > gg) tt = gg;
|
||||
} while (++rr < 100);
|
||||
printf("Multiplying\t%4d-bit => %9llu/sec, %9llu cycles\n", mp_count_bits(&a), CLK_PER_SEC/tt, tt);
|
||||
fprintf(log, "%d %9llu\n", mp_count_bits(&a), tt); fflush(log);
|
||||
log = fopen((ix == 0) ? "logs/mult.log" : "logs/mult_kara.log", "w");
|
||||
for (cnt = 4; cnt <= 10240 / DIGIT_BIT; cnt += 2) {
|
||||
SLEEP;
|
||||
mp_rand(&a, cnt);
|
||||
mp_rand(&b, cnt);
|
||||
rr = 0;
|
||||
tt = -1;
|
||||
do {
|
||||
gg = TIMFUNC();
|
||||
DO(mp_mul(&a, &b, &c));
|
||||
gg = (TIMFUNC() - gg) >> 1;
|
||||
if (tt > gg)
|
||||
tt = gg;
|
||||
} while (++rr < 100);
|
||||
printf("Multiplying\t%4d-bit => %9llu/sec, %9llu cycles\n",
|
||||
mp_count_bits(&a), CLK_PER_SEC / tt, tt);
|
||||
fprintf(log, "%d %9llu\n", mp_count_bits(&a), tt);
|
||||
fflush(log);
|
||||
}
|
||||
fclose(log);
|
||||
|
||||
log = fopen((ix==0)?"logs/sqr.log":"logs/sqr_kara.log", "w");
|
||||
for (cnt = 4; cnt <= 288; cnt += 2) {
|
||||
SLEEP;
|
||||
mp_rand(&a, cnt);
|
||||
rr = 0;
|
||||
tt = -1;
|
||||
do {
|
||||
gg = TIMFUNC();
|
||||
DO(mp_sqr(&a, &b));
|
||||
gg = (TIMFUNC() - gg)>>1;
|
||||
if (tt > gg) tt = gg;
|
||||
} while (++rr < 100);
|
||||
printf("Squaring\t%4d-bit => %9llu/sec, %9llu cycles\n", mp_count_bits(&a), CLK_PER_SEC/tt, tt);
|
||||
fprintf(log, "%d %9llu\n", mp_count_bits(&a), tt); fflush(log);
|
||||
log = fopen((ix == 0) ? "logs/sqr.log" : "logs/sqr_kara.log", "w");
|
||||
for (cnt = 4; cnt <= 10240 / DIGIT_BIT; cnt += 2) {
|
||||
SLEEP;
|
||||
mp_rand(&a, cnt);
|
||||
rr = 0;
|
||||
tt = -1;
|
||||
do {
|
||||
gg = TIMFUNC();
|
||||
DO(mp_sqr(&a, &b));
|
||||
gg = (TIMFUNC() - gg) >> 1;
|
||||
if (tt > gg)
|
||||
tt = gg;
|
||||
} while (++rr < 100);
|
||||
printf("Squaring\t%4d-bit => %9llu/sec, %9llu cycles\n",
|
||||
mp_count_bits(&a), CLK_PER_SEC / tt, tt);
|
||||
fprintf(log, "%d %9llu\n", mp_count_bits(&a), tt);
|
||||
fflush(log);
|
||||
}
|
||||
fclose(log);
|
||||
|
||||
}
|
||||
exptmod:
|
||||
|
||||
{
|
||||
{
|
||||
char *primes[] = {
|
||||
/* 2K moduli mersenne primes */
|
||||
"6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151",
|
||||
"531137992816767098689588206552468627329593117727031923199444138200403559860852242739162502265229285668889329486246501015346579337652707239409519978766587351943831270835393219031728127",
|
||||
"10407932194664399081925240327364085538615262247266704805319112350403608059673360298012239441732324184842421613954281007791383566248323464908139906605677320762924129509389220345773183349661583550472959420547689811211693677147548478866962501384438260291732348885311160828538416585028255604666224831890918801847068222203140521026698435488732958028878050869736186900714720710555703168729087",
|
||||
"1475979915214180235084898622737381736312066145333169775147771216478570297878078949377407337049389289382748507531496480477281264838760259191814463365330269540496961201113430156902396093989090226259326935025281409614983499388222831448598601834318536230923772641390209490231836446899608210795482963763094236630945410832793769905399982457186322944729636418890623372171723742105636440368218459649632948538696905872650486914434637457507280441823676813517852099348660847172579408422316678097670224011990280170474894487426924742108823536808485072502240519452587542875349976558572670229633962575212637477897785501552646522609988869914013540483809865681250419497686697771007",
|
||||
"259117086013202627776246767922441530941818887553125427303974923161874019266586362086201209516800483406550695241733194177441689509238807017410377709597512042313066624082916353517952311186154862265604547691127595848775610568757931191017711408826252153849035830401185072116424747461823031471398340229288074545677907941037288235820705892351068433882986888616658650280927692080339605869308790500409503709875902119018371991620994002568935113136548829739112656797303241986517250116412703509705427773477972349821676443446668383119322540099648994051790241624056519054483690809616061625743042361721863339415852426431208737266591962061753535748892894599629195183082621860853400937932839420261866586142503251450773096274235376822938649407127700846077124211823080804139298087057504713825264571448379371125032081826126566649084251699453951887789613650248405739378594599444335231188280123660406262468609212150349937584782292237144339628858485938215738821232393687046160677362909315071",
|
||||
"190797007524439073807468042969529173669356994749940177394741882673528979787005053706368049835514900244303495954950709725762186311224148828811920216904542206960744666169364221195289538436845390250168663932838805192055137154390912666527533007309292687539092257043362517857366624699975402375462954490293259233303137330643531556539739921926201438606439020075174723029056838272505051571967594608350063404495977660656269020823960825567012344189908927956646011998057988548630107637380993519826582389781888135705408653045219655801758081251164080554609057468028203308718724654081055323215860189611391296030471108443146745671967766308925858547271507311563765171008318248647110097614890313562856541784154881743146033909602737947385055355960331855614540900081456378659068370317267696980001187750995491090350108417050917991562167972281070161305972518044872048331306383715094854938415738549894606070722584737978176686422134354526989443028353644037187375385397838259511833166416134323695660367676897722287918773420968982326089026150031515424165462111337527431154890666327374921446276833564519776797633875503548665093914556482031482248883127023777039667707976559857333357013727342079099064400455741830654320379350833236245819348824064783585692924881021978332974949906122664421376034687815350484991",
|
||||
/* 2K large moduli */
|
||||
"179769313486231590772930519078902473361797697894230657273430081157732675805500963132708477322407536021120113879871393357658789768814416622492847430639474124377767893424865485276302219601246094119453082952085005768838150682342462881473913110540827237163350510684586239334100047359817950870678242457666208137217",
|
||||
"32317006071311007300714876688669951960444102669715484032130345427524655138867890893197201411522913463688717960921898019494119559150490921095088152386448283120630877367300996091750197750389652106796057638384067568276792218642619756161838094338476170470581645852036305042887575891541065808607552399123930385521914333389668342420684974786564569494856176035326322058077805659331026192708460314150258592864177116725943603718461857357598351152301645904403697613233287231227125684710820209725157101726931323469678542580656697935045997268352998638099733077152121140120031150424541696791951097529546801429027668869927491725169",
|
||||
"1044388881413152506691752710716624382579964249047383780384233483283953907971557456848826811934997558340890106714439262837987573438185793607263236087851365277945956976543709998340361590134383718314428070011855946226376318839397712745672334684344586617496807908705803704071284048740118609114467977783598029006686938976881787785946905630190260940599579453432823469303026696443059025015972399867714215541693835559885291486318237914434496734087811872639496475100189041349008417061675093668333850551032972088269550769983616369411933015213796825837188091833656751221318492846368125550225998300412344784862595674492194617023806505913245610825731835380087608622102834270197698202313169017678006675195485079921636419370285375124784014907159135459982790513399611551794271106831134090584272884279791554849782954323534517065223269061394905987693002122963395687782878948440616007412945674919823050571642377154816321380631045902916136926708342856440730447899971901781465763473223850267253059899795996090799469201774624817718449867455659250178329070473119433165550807568221846571746373296884912819520317457002440926616910874148385078411929804522981857338977648103126085902995208257421855249796721729039744118165938433694823325696642096892124547425283",
|
||||
/* 2K moduli mersenne primes */
|
||||
"6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151",
|
||||
"531137992816767098689588206552468627329593117727031923199444138200403559860852242739162502265229285668889329486246501015346579337652707239409519978766587351943831270835393219031728127",
|
||||
"10407932194664399081925240327364085538615262247266704805319112350403608059673360298012239441732324184842421613954281007791383566248323464908139906605677320762924129509389220345773183349661583550472959420547689811211693677147548478866962501384438260291732348885311160828538416585028255604666224831890918801847068222203140521026698435488732958028878050869736186900714720710555703168729087",
|
||||
"1475979915214180235084898622737381736312066145333169775147771216478570297878078949377407337049389289382748507531496480477281264838760259191814463365330269540496961201113430156902396093989090226259326935025281409614983499388222831448598601834318536230923772641390209490231836446899608210795482963763094236630945410832793769905399982457186322944729636418890623372171723742105636440368218459649632948538696905872650486914434637457507280441823676813517852099348660847172579408422316678097670224011990280170474894487426924742108823536808485072502240519452587542875349976558572670229633962575212637477897785501552646522609988869914013540483809865681250419497686697771007",
|
||||
"259117086013202627776246767922441530941818887553125427303974923161874019266586362086201209516800483406550695241733194177441689509238807017410377709597512042313066624082916353517952311186154862265604547691127595848775610568757931191017711408826252153849035830401185072116424747461823031471398340229288074545677907941037288235820705892351068433882986888616658650280927692080339605869308790500409503709875902119018371991620994002568935113136548829739112656797303241986517250116412703509705427773477972349821676443446668383119322540099648994051790241624056519054483690809616061625743042361721863339415852426431208737266591962061753535748892894599629195183082621860853400937932839420261866586142503251450773096274235376822938649407127700846077124211823080804139298087057504713825264571448379371125032081826126566649084251699453951887789613650248405739378594599444335231188280123660406262468609212150349937584782292237144339628858485938215738821232393687046160677362909315071",
|
||||
"190797007524439073807468042969529173669356994749940177394741882673528979787005053706368049835514900244303495954950709725762186311224148828811920216904542206960744666169364221195289538436845390250168663932838805192055137154390912666527533007309292687539092257043362517857366624699975402375462954490293259233303137330643531556539739921926201438606439020075174723029056838272505051571967594608350063404495977660656269020823960825567012344189908927956646011998057988548630107637380993519826582389781888135705408653045219655801758081251164080554609057468028203308718724654081055323215860189611391296030471108443146745671967766308925858547271507311563765171008318248647110097614890313562856541784154881743146033909602737947385055355960331855614540900081456378659068370317267696980001187750995491090350108417050917991562167972281070161305972518044872048331306383715094854938415738549894606070722584737978176686422134354526989443028353644037187375385397838259511833166416134323695660367676897722287918773420968982326089026150031515424165462111337527431154890666327374921446276833564519776797633875503548665093914556482031482248883127023777039667707976559857333357013727342079099064400455741830654320379350833236245819348824064783585692924881021978332974949906122664421376034687815350484991",
|
||||
|
||||
/* DR moduli */
|
||||
"14059105607947488696282932836518693308967803494693489478439861164411992439598399594747002144074658928593502845729752797260025831423419686528151609940203368612079",
|
||||
"101745825697019260773923519755878567461315282017759829107608914364075275235254395622580447400994175578963163918967182013639660669771108475957692810857098847138903161308502419410142185759152435680068435915159402496058513611411688900243039",
|
||||
"736335108039604595805923406147184530889923370574768772191969612422073040099331944991573923112581267542507986451953227192970402893063850485730703075899286013451337291468249027691733891486704001513279827771740183629161065194874727962517148100775228363421083691764065477590823919364012917984605619526140821797602431",
|
||||
"38564998830736521417281865696453025806593491967131023221754800625044118265468851210705360385717536794615180260494208076605798671660719333199513807806252394423283413430106003596332513246682903994829528690198205120921557533726473585751382193953592127439965050261476810842071573684505878854588706623484573925925903505747545471088867712185004135201289273405614415899438276535626346098904241020877974002916168099951885406379295536200413493190419727789712076165162175783",
|
||||
"542189391331696172661670440619180536749994166415993334151601745392193484590296600979602378676624808129613777993466242203025054573692562689251250471628358318743978285860720148446448885701001277560572526947619392551574490839286458454994488665744991822837769918095117129546414124448777033941223565831420390846864429504774477949153794689948747680362212954278693335653935890352619041936727463717926744868338358149568368643403037768649616778526013610493696186055899318268339432671541328195724261329606699831016666359440874843103020666106568222401047720269951530296879490444224546654729111504346660859907296364097126834834235287147",
|
||||
"1487259134814709264092032648525971038895865645148901180585340454985524155135260217788758027400478312256339496385275012465661575576202252063145698732079880294664220579764848767704076761853197216563262660046602703973050798218246170835962005598561669706844469447435461092542265792444947706769615695252256130901271870341005768912974433684521436211263358097522726462083917939091760026658925757076733484173202927141441492573799914240222628795405623953109131594523623353044898339481494120112723445689647986475279242446083151413667587008191682564376412347964146113898565886683139407005941383669325997475076910488086663256335689181157957571445067490187939553165903773554290260531009121879044170766615232300936675369451260747671432073394867530820527479172464106442450727640226503746586340279816318821395210726268291535648506190714616083163403189943334431056876038286530365757187367147446004855912033137386225053275419626102417236133948503",
|
||||
"1095121115716677802856811290392395128588168592409109494900178008967955253005183831872715423151551999734857184538199864469605657805519106717529655044054833197687459782636297255219742994736751541815269727940751860670268774903340296040006114013971309257028332849679096824800250742691718610670812374272414086863715763724622797509437062518082383056050144624962776302147890521249477060215148275163688301275847155316042279405557632639366066847442861422164832655874655824221577849928863023018366835675399949740429332468186340518172487073360822220449055340582568461568645259954873303616953776393853174845132081121976327462740354930744487429617202585015510744298530101547706821590188733515880733527449780963163909830077616357506845523215289297624086914545378511082534229620116563260168494523906566709418166011112754529766183554579321224940951177394088465596712620076240067370589036924024728375076210477267488679008016579588696191194060127319035195370137160936882402244399699172017835144537488486396906144217720028992863941288217185353914991583400421682751000603596655790990815525126154394344641336397793791497068253936771017031980867706707490224041075826337383538651825493679503771934836094655802776331664261631740148281763487765852746577808019633679",
|
||||
/* DR moduli */
|
||||
"14059105607947488696282932836518693308967803494693489478439861164411992439598399594747002144074658928593502845729752797260025831423419686528151609940203368612079",
|
||||
"101745825697019260773923519755878567461315282017759829107608914364075275235254395622580447400994175578963163918967182013639660669771108475957692810857098847138903161308502419410142185759152435680068435915159402496058513611411688900243039",
|
||||
"736335108039604595805923406147184530889923370574768772191969612422073040099331944991573923112581267542507986451953227192970402893063850485730703075899286013451337291468249027691733891486704001513279827771740183629161065194874727962517148100775228363421083691764065477590823919364012917984605619526140821797602431",
|
||||
"38564998830736521417281865696453025806593491967131023221754800625044118265468851210705360385717536794615180260494208076605798671660719333199513807806252394423283413430106003596332513246682903994829528690198205120921557533726473585751382193953592127439965050261476810842071573684505878854588706623484573925925903505747545471088867712185004135201289273405614415899438276535626346098904241020877974002916168099951885406379295536200413493190419727789712076165162175783",
|
||||
"542189391331696172661670440619180536749994166415993334151601745392193484590296600979602378676624808129613777993466242203025054573692562689251250471628358318743978285860720148446448885701001277560572526947619392551574490839286458454994488665744991822837769918095117129546414124448777033941223565831420390846864429504774477949153794689948747680362212954278693335653935890352619041936727463717926744868338358149568368643403037768649616778526013610493696186055899318268339432671541328195724261329606699831016666359440874843103020666106568222401047720269951530296879490444224546654729111504346660859907296364097126834834235287147",
|
||||
"1487259134814709264092032648525971038895865645148901180585340454985524155135260217788758027400478312256339496385275012465661575576202252063145698732079880294664220579764848767704076761853197216563262660046602703973050798218246170835962005598561669706844469447435461092542265792444947706769615695252256130901271870341005768912974433684521436211263358097522726462083917939091760026658925757076733484173202927141441492573799914240222628795405623953109131594523623353044898339481494120112723445689647986475279242446083151413667587008191682564376412347964146113898565886683139407005941383669325997475076910488086663256335689181157957571445067490187939553165903773554290260531009121879044170766615232300936675369451260747671432073394867530820527479172464106442450727640226503746586340279816318821395210726268291535648506190714616083163403189943334431056876038286530365757187367147446004855912033137386225053275419626102417236133948503",
|
||||
"1095121115716677802856811290392395128588168592409109494900178008967955253005183831872715423151551999734857184538199864469605657805519106717529655044054833197687459782636297255219742994736751541815269727940751860670268774903340296040006114013971309257028332849679096824800250742691718610670812374272414086863715763724622797509437062518082383056050144624962776302147890521249477060215148275163688301275847155316042279405557632639366066847442861422164832655874655824221577849928863023018366835675399949740429332468186340518172487073360822220449055340582568461568645259954873303616953776393853174845132081121976327462740354930744487429617202585015510744298530101547706821590188733515880733527449780963163909830077616357506845523215289297624086914545378511082534229620116563260168494523906566709418166011112754529766183554579321224940951177394088465596712620076240067370589036924024728375076210477267488679008016579588696191194060127319035195370137160936882402244399699172017835144537488486396906144217720028992863941288217185353914991583400421682751000603596655790990815525126154394344641336397793791497068253936771017031980867706707490224041075826337383538651825493679503771934836094655802776331664261631740148281763487765852746577808019633679",
|
||||
|
||||
/* generic unrestricted moduli */
|
||||
"17933601194860113372237070562165128350027320072176844226673287945873370751245439587792371960615073855669274087805055507977323024886880985062002853331424203",
|
||||
"2893527720709661239493896562339544088620375736490408468011883030469939904368086092336458298221245707898933583190713188177399401852627749210994595974791782790253946539043962213027074922559572312141181787434278708783207966459019479487",
|
||||
"347743159439876626079252796797422223177535447388206607607181663903045907591201940478223621722118173270898487582987137708656414344685816179420855160986340457973820182883508387588163122354089264395604796675278966117567294812714812796820596564876450716066283126720010859041484786529056457896367683122960411136319",
|
||||
"47266428956356393164697365098120418976400602706072312735924071745438532218237979333351774907308168340693326687317443721193266215155735814510792148768576498491199122744351399489453533553203833318691678263241941706256996197460424029012419012634671862283532342656309677173602509498417976091509154360039893165037637034737020327399910409885798185771003505320583967737293415979917317338985837385734747478364242020380416892056650841470869294527543597349250299539682430605173321029026555546832473048600327036845781970289288898317888427517364945316709081173840186150794397479045034008257793436817683392375274635794835245695887",
|
||||
"436463808505957768574894870394349739623346440601945961161254440072143298152040105676491048248110146278752857839930515766167441407021501229924721335644557342265864606569000117714935185566842453630868849121480179691838399545644365571106757731317371758557990781880691336695584799313313687287468894148823761785582982549586183756806449017542622267874275103877481475534991201849912222670102069951687572917937634467778042874315463238062009202992087620963771759666448266532858079402669920025224220613419441069718482837399612644978839925207109870840278194042158748845445131729137117098529028886770063736487420613144045836803985635654192482395882603511950547826439092832800532152534003936926017612446606135655146445620623395788978726744728503058670046885876251527122350275750995227",
|
||||
"11424167473351836398078306042624362277956429440521137061889702611766348760692206243140413411077394583180726863277012016602279290144126785129569474909173584789822341986742719230331946072730319555984484911716797058875905400999504305877245849119687509023232790273637466821052576859232452982061831009770786031785669030271542286603956118755585683996118896215213488875253101894663403069677745948305893849505434201763745232895780711972432011344857521691017896316861403206449421332243658855453435784006517202894181640562433575390821384210960117518650374602256601091379644034244332285065935413233557998331562749140202965844219336298970011513882564935538704289446968322281451907487362046511461221329799897350993370560697505809686438782036235372137015731304779072430260986460269894522159103008260495503005267165927542949439526272736586626709581721032189532726389643625590680105784844246152702670169304203783072275089194754889511973916207",
|
||||
"1214855636816562637502584060163403830270705000634713483015101384881871978446801224798536155406895823305035467591632531067547890948695117172076954220727075688048751022421198712032848890056357845974246560748347918630050853933697792254955890439720297560693579400297062396904306270145886830719309296352765295712183040773146419022875165382778007040109957609739589875590885701126197906063620133954893216612678838507540777138437797705602453719559017633986486649523611975865005712371194067612263330335590526176087004421363598470302731349138773205901447704682181517904064735636518462452242791676541725292378925568296858010151852326316777511935037531017413910506921922450666933202278489024521263798482237150056835746454842662048692127173834433089016107854491097456725016327709663199738238442164843147132789153725513257167915555162094970853584447993125488607696008169807374736711297007473812256272245489405898470297178738029484459690836250560495461579533254473316340608217876781986188705928270735695752830825527963838355419762516246028680280988020401914551825487349990306976304093109384451438813251211051597392127491464898797406789175453067960072008590614886532333015881171367104445044718144312416815712216611576221546455968770801413440778423979",
|
||||
NULL
|
||||
/* generic unrestricted moduli */
|
||||
"17933601194860113372237070562165128350027320072176844226673287945873370751245439587792371960615073855669274087805055507977323024886880985062002853331424203",
|
||||
"2893527720709661239493896562339544088620375736490408468011883030469939904368086092336458298221245707898933583190713188177399401852627749210994595974791782790253946539043962213027074922559572312141181787434278708783207966459019479487",
|
||||
"347743159439876626079252796797422223177535447388206607607181663903045907591201940478223621722118173270898487582987137708656414344685816179420855160986340457973820182883508387588163122354089264395604796675278966117567294812714812796820596564876450716066283126720010859041484786529056457896367683122960411136319",
|
||||
"47266428956356393164697365098120418976400602706072312735924071745438532218237979333351774907308168340693326687317443721193266215155735814510792148768576498491199122744351399489453533553203833318691678263241941706256996197460424029012419012634671862283532342656309677173602509498417976091509154360039893165037637034737020327399910409885798185771003505320583967737293415979917317338985837385734747478364242020380416892056650841470869294527543597349250299539682430605173321029026555546832473048600327036845781970289288898317888427517364945316709081173840186150794397479045034008257793436817683392375274635794835245695887",
|
||||
"436463808505957768574894870394349739623346440601945961161254440072143298152040105676491048248110146278752857839930515766167441407021501229924721335644557342265864606569000117714935185566842453630868849121480179691838399545644365571106757731317371758557990781880691336695584799313313687287468894148823761785582982549586183756806449017542622267874275103877481475534991201849912222670102069951687572917937634467778042874315463238062009202992087620963771759666448266532858079402669920025224220613419441069718482837399612644978839925207109870840278194042158748845445131729137117098529028886770063736487420613144045836803985635654192482395882603511950547826439092832800532152534003936926017612446606135655146445620623395788978726744728503058670046885876251527122350275750995227",
|
||||
"11424167473351836398078306042624362277956429440521137061889702611766348760692206243140413411077394583180726863277012016602279290144126785129569474909173584789822341986742719230331946072730319555984484911716797058875905400999504305877245849119687509023232790273637466821052576859232452982061831009770786031785669030271542286603956118755585683996118896215213488875253101894663403069677745948305893849505434201763745232895780711972432011344857521691017896316861403206449421332243658855453435784006517202894181640562433575390821384210960117518650374602256601091379644034244332285065935413233557998331562749140202965844219336298970011513882564935538704289446968322281451907487362046511461221329799897350993370560697505809686438782036235372137015731304779072430260986460269894522159103008260495503005267165927542949439526272736586626709581721032189532726389643625590680105784844246152702670169304203783072275089194754889511973916207",
|
||||
"1214855636816562637502584060163403830270705000634713483015101384881871978446801224798536155406895823305035467591632531067547890948695117172076954220727075688048751022421198712032848890056357845974246560748347918630050853933697792254955890439720297560693579400297062396904306270145886830719309296352765295712183040773146419022875165382778007040109957609739589875590885701126197906063620133954893216612678838507540777138437797705602453719559017633986486649523611975865005712371194067612263330335590526176087004421363598470302731349138773205901447704682181517904064735636518462452242791676541725292378925568296858010151852326316777511935037531017413910506921922450666933202278489024521263798482237150056835746454842662048692127173834433089016107854491097456725016327709663199738238442164843147132789153725513257167915555162094970853584447993125488607696008169807374736711297007473812256272245489405898470297178738029484459690836250560495461579533254473316340608217876781986188705928270735695752830825527963838355419762516246028680280988020401914551825487349990306976304093109384451438813251211051597392127491464898797406789175453067960072008590614886532333015881171367104445044718144312416815712216611576221546455968770801413440778423979",
|
||||
NULL
|
||||
};
|
||||
log = fopen("logs/expt.log", "w");
|
||||
logb = fopen("logs/expt_dr.log", "w");
|
||||
logc = fopen("logs/expt_2k.log", "w");
|
||||
for (n = 0; primes[n]; n++) {
|
||||
SLEEP;
|
||||
mp_read_radix(&a, primes[n], 10);
|
||||
mp_zero(&b);
|
||||
for (rr = 0; rr < (unsigned)mp_count_bits(&a); rr++) {
|
||||
mp_mul_2(&b, &b);
|
||||
b.dp[0] |= lbit();
|
||||
b.used += 1;
|
||||
log = fopen("logs/expt.log", "w");
|
||||
logb = fopen("logs/expt_dr.log", "w");
|
||||
logc = fopen("logs/expt_2k.log", "w");
|
||||
logd = fopen("logs/expt_2kl.log", "w");
|
||||
for (n = 0; primes[n]; n++) {
|
||||
SLEEP;
|
||||
mp_read_radix(&a, primes[n], 10);
|
||||
mp_zero(&b);
|
||||
for (rr = 0; rr < (unsigned) mp_count_bits(&a); rr++) {
|
||||
mp_mul_2(&b, &b);
|
||||
b.dp[0] |= lbit();
|
||||
b.used += 1;
|
||||
}
|
||||
mp_sub_d(&a, 1, &c);
|
||||
mp_mod(&b, &c, &b);
|
||||
mp_set(&c, 3);
|
||||
rr = 0;
|
||||
tt = -1;
|
||||
do {
|
||||
gg = TIMFUNC();
|
||||
DO(mp_exptmod(&c, &b, &a, &d));
|
||||
gg = (TIMFUNC() - gg) >> 1;
|
||||
if (tt > gg)
|
||||
tt = gg;
|
||||
} while (++rr < 10);
|
||||
mp_sub_d(&a, 1, &e);
|
||||
mp_sub(&e, &b, &b);
|
||||
mp_exptmod(&c, &b, &a, &e); /* c^(p-1-b) mod a */
|
||||
mp_mulmod(&e, &d, &a, &d); /* c^b * c^(p-1-b) == c^p-1 == 1 */
|
||||
if (mp_cmp_d(&d, 1)) {
|
||||
printf("Different (%d)!!!\n", mp_count_bits(&a));
|
||||
draw(&d);
|
||||
exit(0);
|
||||
}
|
||||
printf("Exponentiating\t%4d-bit => %9llu/sec, %9llu cycles\n",
|
||||
mp_count_bits(&a), CLK_PER_SEC / tt, tt);
|
||||
fprintf(n < 4 ? logd : (n < 9) ? logc : (n < 16) ? logb : log,
|
||||
"%d %9llu\n", mp_count_bits(&a), tt);
|
||||
}
|
||||
mp_sub_d(&a, 1, &c);
|
||||
mp_mod(&b, &c, &b);
|
||||
mp_set(&c, 3);
|
||||
rr = 0;
|
||||
tt = -1;
|
||||
do {
|
||||
gg = TIMFUNC();
|
||||
DO(mp_exptmod(&c, &b, &a, &d));
|
||||
gg = (TIMFUNC() - gg)>>1;
|
||||
if (tt > gg) tt = gg;
|
||||
} while (++rr < 10);
|
||||
mp_sub_d(&a, 1, &e);
|
||||
mp_sub(&e, &b, &b);
|
||||
mp_exptmod(&c, &b, &a, &e); /* c^(p-1-b) mod a */
|
||||
mp_mulmod(&e, &d, &a, &d); /* c^b * c^(p-1-b) == c^p-1 == 1 */
|
||||
if (mp_cmp_d(&d, 1)) {
|
||||
printf("Different (%d)!!!\n", mp_count_bits(&a));
|
||||
draw(&d);
|
||||
exit(0);
|
||||
}
|
||||
printf("Exponentiating\t%4d-bit => %9llu/sec, %9llu cycles\n", mp_count_bits(&a), CLK_PER_SEC/tt, tt);
|
||||
fprintf((n < 6) ? logc : (n < 13) ? logb : log, "%d %9llu\n", mp_count_bits(&a), tt);
|
||||
}
|
||||
}
|
||||
fclose(log);
|
||||
fclose(logb);
|
||||
fclose(logc);
|
||||
fclose(logd);
|
||||
|
||||
log = fopen("logs/invmod.log", "w");
|
||||
for (cnt = 4; cnt <= 128; cnt += 4) {
|
||||
@ -260,28 +287,29 @@ int main(void)
|
||||
mp_rand(&b, cnt);
|
||||
|
||||
do {
|
||||
mp_add_d(&b, 1, &b);
|
||||
mp_gcd(&a, &b, &c);
|
||||
mp_add_d(&b, 1, &b);
|
||||
mp_gcd(&a, &b, &c);
|
||||
} while (mp_cmp_d(&c, 1) != MP_EQ);
|
||||
|
||||
rr = 0;
|
||||
tt = -1;
|
||||
rr = 0;
|
||||
tt = -1;
|
||||
do {
|
||||
gg = TIMFUNC();
|
||||
DO(mp_invmod(&b, &a, &c));
|
||||
gg = (TIMFUNC() - gg)>>1;
|
||||
if (tt > gg) tt = gg;
|
||||
gg = TIMFUNC();
|
||||
DO(mp_invmod(&b, &a, &c));
|
||||
gg = (TIMFUNC() - gg) >> 1;
|
||||
if (tt > gg)
|
||||
tt = gg;
|
||||
} while (++rr < 1000);
|
||||
mp_mulmod(&b, &c, &a, &d);
|
||||
if (mp_cmp_d(&d, 1) != MP_EQ) {
|
||||
printf("Failed to invert\n");
|
||||
return 0;
|
||||
printf("Failed to invert\n");
|
||||
return 0;
|
||||
}
|
||||
printf("Inverting mod\t%4d-bit => %9llu/sec, %9llu cycles\n", mp_count_bits(&a), CLK_PER_SEC/tt, tt);
|
||||
fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, tt);
|
||||
printf("Inverting mod\t%4d-bit => %9llu/sec, %9llu cycles\n",
|
||||
mp_count_bits(&a), CLK_PER_SEC / tt, tt);
|
||||
fprintf(log, "%d %9llu\n", cnt * DIGIT_BIT, tt);
|
||||
}
|
||||
fclose(log);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
2
dep.pl
2
dep.pl
@ -13,6 +13,8 @@ print CLASS "#if !(defined(LTM1) && defined(LTM2) && defined(LTM3))\n#if defined
|
||||
foreach my $filename (glob "bn*.c") {
|
||||
my $define = $filename;
|
||||
|
||||
print "Processing $filename\n";
|
||||
|
||||
# convert filename to upper case so we can use it as a define
|
||||
$define =~ tr/[a-z]/[A-Z]/;
|
||||
$define =~ tr/\./_/;
|
||||
|
35
etc/tune.c
35
etc/tune.c
@ -10,13 +10,44 @@
|
||||
*/
|
||||
#define TIMES (1UL<<14UL)
|
||||
|
||||
/* RDTSC from Scott Duplichan */
|
||||
static ulong64 TIMFUNC (void)
|
||||
{
|
||||
#if defined __GNUC__
|
||||
#if defined(__i386__) || defined(__x86_64__)
|
||||
unsigned long long a;
|
||||
__asm__ __volatile__ ("rdtsc\nmovl %%eax,%0\nmovl %%edx,4+%0\n"::"m"(a):"%eax","%edx");
|
||||
return a;
|
||||
#else /* gcc-IA64 version */
|
||||
unsigned long result;
|
||||
__asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
|
||||
while (__builtin_expect ((int) result == -1, 0))
|
||||
__asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
|
||||
return result;
|
||||
#endif
|
||||
|
||||
// Microsoft and Intel Windows compilers
|
||||
#elif defined _M_IX86
|
||||
__asm rdtsc
|
||||
#elif defined _M_AMD64
|
||||
return __rdtsc ();
|
||||
#elif defined _M_IA64
|
||||
#if defined __INTEL_COMPILER
|
||||
#include <ia64intrin.h>
|
||||
#endif
|
||||
return __getReg (3116);
|
||||
#else
|
||||
#error need rdtsc function for this build
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
#ifndef X86_TIMER
|
||||
|
||||
/* generic ISO C timer */
|
||||
ulong64 LBL_T;
|
||||
void t_start(void) { LBL_T = clock(); }
|
||||
ulong64 t_read(void) { return clock() - LBL_T; }
|
||||
void t_start(void) { LBL_T = TIMFUNC(); }
|
||||
ulong64 t_read(void) { return TIMFUNC() - LBL_T; }
|
||||
|
||||
#else
|
||||
extern void t_start(void);
|
||||
|
14
logs/add.log
14
logs/add.log
@ -1,10 +1,10 @@
|
||||
480 88
|
||||
960 113
|
||||
1440 138
|
||||
1920 163
|
||||
2400 202
|
||||
2880 226
|
||||
3360 251
|
||||
480 87
|
||||
960 111
|
||||
1440 135
|
||||
1920 159
|
||||
2400 200
|
||||
2880 224
|
||||
3360 248
|
||||
3840 272
|
||||
4320 296
|
||||
4800 320
|
||||
|
@ -1,7 +1,7 @@
|
||||
513 1499509
|
||||
769 3682671
|
||||
1025 8098887
|
||||
2049 49332743
|
||||
2561 89647783
|
||||
3073 149440713
|
||||
4097 326135364
|
||||
513 1489160
|
||||
769 3688476
|
||||
1025 8162061
|
||||
2049 49260015
|
||||
2561 89579052
|
||||
3073 148797060
|
||||
4097 324449263
|
||||
|
@ -1,6 +1,5 @@
|
||||
521 1423346
|
||||
607 1841305
|
||||
1279 8375656
|
||||
2203 34104708
|
||||
3217 83830729
|
||||
4253 167916804
|
||||
607 2272809
|
||||
1279 9557382
|
||||
2203 36250309
|
||||
3217 87666486
|
||||
4253 174168369
|
||||
|
4
logs/expt_2kl.log
Normal file
4
logs/expt_2kl.log
Normal file
@ -0,0 +1,4 @@
|
||||
1024 6954080
|
||||
2048 35993987
|
||||
4096 176068521
|
||||
521 1683720
|
@ -1,7 +1,7 @@
|
||||
532 1803110
|
||||
784 3607375
|
||||
1036 6089790
|
||||
1540 14739797
|
||||
2072 33251589
|
||||
3080 82794331
|
||||
4116 165212734
|
||||
532 1989592
|
||||
784 3898697
|
||||
1036 6519700
|
||||
1540 15676650
|
||||
2072 33128187
|
||||
3080 82963362
|
||||
4116 168358337
|
||||
|
227
logs/mult.log
227
logs/mult.log
@ -1,143 +1,84 @@
|
||||
271 580
|
||||
390 861
|
||||
511 1177
|
||||
630 1598
|
||||
749 2115
|
||||
871 2670
|
||||
991 3276
|
||||
1111 3987
|
||||
1231 4722
|
||||
1351 5474
|
||||
1471 6281
|
||||
1589 7126
|
||||
1710 8114
|
||||
1831 8988
|
||||
1946 10038
|
||||
2071 10995
|
||||
2188 12286
|
||||
2310 13152
|
||||
2430 14480
|
||||
2549 15521
|
||||
2671 17171
|
||||
2790 18081
|
||||
2911 19754
|
||||
3031 20809
|
||||
3150 22849
|
||||
3269 23757
|
||||
3391 25772
|
||||
3508 26832
|
||||
3631 29304
|
||||
3750 30149
|
||||
3865 32581
|
||||
3988 33644
|
||||
4111 36565
|
||||
4231 37309
|
||||
4351 40152
|
||||
4471 41188
|
||||
4590 44658
|
||||
4710 45256
|
||||
4827 48538
|
||||
4951 49490
|
||||
5070 53472
|
||||
5190 53902
|
||||
5308 57619
|
||||
5431 58509
|
||||
5550 63044
|
||||
5664 63333
|
||||
5791 67542
|
||||
5911 68279
|
||||
6028 73477
|
||||
6150 73475
|
||||
6271 78189
|
||||
6390 78842
|
||||
6510 84691
|
||||
6631 84444
|
||||
6751 89721
|
||||
6871 90186
|
||||
6991 96665
|
||||
7111 96119
|
||||
7231 101937
|
||||
7350 102212
|
||||
7471 109439
|
||||
7591 108491
|
||||
7709 114965
|
||||
7829 115025
|
||||
7951 123002
|
||||
8071 121630
|
||||
8190 128725
|
||||
8311 128536
|
||||
8430 137298
|
||||
8550 135568
|
||||
8671 143265
|
||||
8791 142793
|
||||
8911 152432
|
||||
9030 150202
|
||||
9151 158616
|
||||
9271 157848
|
||||
9391 168374
|
||||
9511 165651
|
||||
9627 174775
|
||||
9750 173375
|
||||
9871 185067
|
||||
9985 181845
|
||||
10111 191708
|
||||
10229 190239
|
||||
10351 202585
|
||||
10467 198704
|
||||
10591 209193
|
||||
10711 207322
|
||||
10831 220842
|
||||
10950 215882
|
||||
11071 227761
|
||||
11191 225501
|
||||
11311 239669
|
||||
11430 234809
|
||||
11550 243511
|
||||
11671 255947
|
||||
11791 255243
|
||||
11906 267828
|
||||
12029 263437
|
||||
12149 276571
|
||||
12270 275579
|
||||
12390 288963
|
||||
12510 284001
|
||||
12631 298196
|
||||
12751 297018
|
||||
12869 310848
|
||||
12990 305369
|
||||
13111 319086
|
||||
13230 318940
|
||||
13349 333685
|
||||
13471 327495
|
||||
13588 343678
|
||||
13711 341817
|
||||
13831 357181
|
||||
13948 350440
|
||||
14071 367526
|
||||
14189 365330
|
||||
14311 381551
|
||||
14429 374149
|
||||
14549 392203
|
||||
14670 389764
|
||||
14791 406761
|
||||
14910 398652
|
||||
15026 417718
|
||||
15150 414733
|
||||
15269 432759
|
||||
15390 1037071
|
||||
15511 1053454
|
||||
15631 1069198
|
||||
15748 1086164
|
||||
15871 1112820
|
||||
15991 1129676
|
||||
16111 1145924
|
||||
16230 1163016
|
||||
16345 1179911
|
||||
16471 1197048
|
||||
16586 1214352
|
||||
16711 1232095
|
||||
16829 1249338
|
||||
16947 1266987
|
||||
17071 1284181
|
||||
17188 1302521
|
||||
17311 1320539
|
||||
271 555
|
||||
390 855
|
||||
508 1161
|
||||
631 1605
|
||||
749 2117
|
||||
871 2687
|
||||
991 3329
|
||||
1108 4084
|
||||
1231 4786
|
||||
1351 5624
|
||||
1470 6392
|
||||
1586 7364
|
||||
1710 8218
|
||||
1830 9255
|
||||
1951 10217
|
||||
2067 11461
|
||||
2191 12463
|
||||
2308 13677
|
||||
2430 14800
|
||||
2551 16232
|
||||
2671 17460
|
||||
2791 18899
|
||||
2902 20247
|
||||
3028 21902
|
||||
3151 23240
|
||||
3267 24927
|
||||
3391 26441
|
||||
3511 28277
|
||||
3631 29838
|
||||
3749 31751
|
||||
3869 33673
|
||||
3989 35431
|
||||
4111 37518
|
||||
4231 39426
|
||||
4349 41504
|
||||
4471 43567
|
||||
4591 45786
|
||||
4711 47876
|
||||
4831 50299
|
||||
4951 52427
|
||||
5071 54785
|
||||
5189 57241
|
||||
5307 59730
|
||||
5431 62194
|
||||
5551 64761
|
||||
5670 67322
|
||||
5789 70073
|
||||
5907 72663
|
||||
6030 75437
|
||||
6151 78242
|
||||
6268 81202
|
||||
6389 83948
|
||||
6509 86985
|
||||
6631 89903
|
||||
6747 93184
|
||||
6869 96044
|
||||
6991 99286
|
||||
7109 102395
|
||||
7229 105917
|
||||
7351 108940
|
||||
7470 112490
|
||||
7589 115702
|
||||
7711 119508
|
||||
7831 122632
|
||||
7951 126410
|
||||
8071 129808
|
||||
8190 133895
|
||||
8311 137146
|
||||
8431 141218
|
||||
8549 144732
|
||||
8667 149131
|
||||
8790 152462
|
||||
8911 156754
|
||||
9030 160479
|
||||
9149 165138
|
||||
9271 168601
|
||||
9391 173185
|
||||
9511 176988
|
||||
9627 181976
|
||||
9751 185539
|
||||
9870 190388
|
||||
9991 194335
|
||||
10110 199605
|
||||
10228 203298
|
||||
|
@ -1,33 +1,84 @@
|
||||
924 16686
|
||||
1146 25334
|
||||
1371 35304
|
||||
1591 47122
|
||||
1820 61500
|
||||
2044 75254
|
||||
2266 91732
|
||||
2492 111656
|
||||
2716 129428
|
||||
2937 147508
|
||||
3164 167758
|
||||
3388 188248
|
||||
3612 210826
|
||||
3836 233814
|
||||
4059 256898
|
||||
4284 280210
|
||||
4508 310372
|
||||
4731 333902
|
||||
4955 376502
|
||||
5179 402854
|
||||
5404 432004
|
||||
5626 459010
|
||||
5849 491868
|
||||
6076 520550
|
||||
6300 547400
|
||||
6524 575968
|
||||
6747 608482
|
||||
6971 642850
|
||||
7196 673670
|
||||
7419 710680
|
||||
7644 743942
|
||||
7868 780394
|
||||
8092 817342
|
||||
271 560
|
||||
391 870
|
||||
511 1159
|
||||
631 1605
|
||||
750 2111
|
||||
871 2737
|
||||
991 3361
|
||||
1111 4054
|
||||
1231 4778
|
||||
1351 5600
|
||||
1471 6404
|
||||
1591 7323
|
||||
1710 8255
|
||||
1831 9239
|
||||
1948 10257
|
||||
2070 11397
|
||||
2190 12531
|
||||
2308 13665
|
||||
2429 14870
|
||||
2550 16175
|
||||
2671 17539
|
||||
2787 18879
|
||||
2911 20350
|
||||
3031 21807
|
||||
3150 23415
|
||||
3270 24897
|
||||
3388 26567
|
||||
3511 28205
|
||||
3627 30076
|
||||
3751 31744
|
||||
3869 33657
|
||||
3991 35425
|
||||
4111 37522
|
||||
4229 39363
|
||||
4351 41503
|
||||
4470 43491
|
||||
4590 45827
|
||||
4711 47795
|
||||
4828 50166
|
||||
4951 52318
|
||||
5070 54911
|
||||
5191 57036
|
||||
5308 58237
|
||||
5431 60248
|
||||
5551 62678
|
||||
5671 64786
|
||||
5791 67294
|
||||
5908 69343
|
||||
6031 71607
|
||||
6151 74166
|
||||
6271 76590
|
||||
6391 78734
|
||||
6511 81175
|
||||
6631 83742
|
||||
6750 86403
|
||||
6868 88873
|
||||
6990 91150
|
||||
7110 94211
|
||||
7228 96922
|
||||
7351 99445
|
||||
7469 102216
|
||||
7589 104968
|
||||
7711 108113
|
||||
7827 110758
|
||||
7950 113714
|
||||
8071 116511
|
||||
8186 119643
|
||||
8310 122679
|
||||
8425 125581
|
||||
8551 128715
|
||||
8669 131778
|
||||
8788 135116
|
||||
8910 138138
|
||||
9031 141628
|
||||
9148 144754
|
||||
9268 148367
|
||||
9391 151551
|
||||
9511 155033
|
||||
9631 158652
|
||||
9751 162125
|
||||
9871 165248
|
||||
9988 168627
|
||||
10111 172427
|
||||
10231 176412
|
||||
|
227
logs/sqr.log
227
logs/sqr.log
@ -1,143 +1,84 @@
|
||||
271 552
|
||||
389 883
|
||||
510 1191
|
||||
629 1572
|
||||
750 1996
|
||||
863 2428
|
||||
991 2891
|
||||
1108 3539
|
||||
1231 4182
|
||||
1351 4980
|
||||
1471 5771
|
||||
1590 6551
|
||||
1711 7313
|
||||
1830 8240
|
||||
1951 9184
|
||||
2070 10087
|
||||
2191 11140
|
||||
2311 12111
|
||||
2431 13219
|
||||
2550 14247
|
||||
2669 15353
|
||||
2791 16446
|
||||
2911 17692
|
||||
3029 18848
|
||||
3151 20028
|
||||
3268 21282
|
||||
3391 22696
|
||||
3511 23971
|
||||
3631 25303
|
||||
3751 26675
|
||||
3871 28245
|
||||
3990 29736
|
||||
4111 31124
|
||||
4229 32714
|
||||
4347 34397
|
||||
4471 35877
|
||||
4587 37269
|
||||
4710 39011
|
||||
4831 40884
|
||||
4950 42501
|
||||
5070 44005
|
||||
5191 46026
|
||||
5310 48168
|
||||
5431 49801
|
||||
5551 51385
|
||||
5671 53604
|
||||
5787 55942
|
||||
5910 57757
|
||||
6031 59391
|
||||
6151 61754
|
||||
6271 64234
|
||||
6390 66110
|
||||
6511 67845
|
||||
6627 70474
|
||||
6751 73113
|
||||
6871 75064
|
||||
6990 76940
|
||||
7111 79681
|
||||
7230 82548
|
||||
7351 84597
|
||||
7471 86507
|
||||
7591 89497
|
||||
7711 225216
|
||||
7831 232192
|
||||
7951 239583
|
||||
8071 247302
|
||||
8191 255497
|
||||
8308 261587
|
||||
8431 271490
|
||||
8550 279492
|
||||
8671 286927
|
||||
8790 294680
|
||||
8910 302974
|
||||
9030 311300
|
||||
9150 318635
|
||||
9271 326740
|
||||
9390 335304
|
||||
9511 344297
|
||||
9630 352056
|
||||
9748 358652
|
||||
9870 369723
|
||||
9991 379119
|
||||
10111 386982
|
||||
10231 396075
|
||||
10349 404396
|
||||
10470 415375
|
||||
10590 424146
|
||||
10711 433390
|
||||
10829 442662
|
||||
10950 453238
|
||||
11071 462178
|
||||
11186 469811
|
||||
11311 482529
|
||||
11431 493214
|
||||
11550 503210
|
||||
11671 513486
|
||||
11791 524244
|
||||
11911 535277
|
||||
12031 544872
|
||||
12151 555695
|
||||
12271 566893
|
||||
12391 578385
|
||||
12510 588658
|
||||
12628 596914
|
||||
12751 611324
|
||||
12871 623437
|
||||
12991 633907
|
||||
13110 645605
|
||||
13231 657684
|
||||
13351 670037
|
||||
13471 680939
|
||||
13591 693047
|
||||
13710 705363
|
||||
13829 718178
|
||||
13949 727930
|
||||
14069 739641
|
||||
14190 754817
|
||||
14310 768192
|
||||
14431 779875
|
||||
14551 792655
|
||||
14667 802847
|
||||
14791 819806
|
||||
14911 831684
|
||||
15031 844936
|
||||
15151 858813
|
||||
15270 873037
|
||||
15387 882123
|
||||
15510 899117
|
||||
15631 913465
|
||||
15750 927989
|
||||
15870 940790
|
||||
15991 954948
|
||||
16110 969483
|
||||
16231 984544
|
||||
16350 997837
|
||||
16470 1012445
|
||||
16590 1027834
|
||||
16710 1043032
|
||||
16831 1056394
|
||||
16951 1071408
|
||||
17069 1097263
|
||||
17191 1113364
|
||||
17306 1123650
|
||||
265 562
|
||||
389 882
|
||||
509 1207
|
||||
631 1572
|
||||
750 1990
|
||||
859 2433
|
||||
991 2894
|
||||
1109 3555
|
||||
1230 4228
|
||||
1350 5018
|
||||
1471 5805
|
||||
1591 6579
|
||||
1709 7415
|
||||
1829 8329
|
||||
1949 9225
|
||||
2071 10139
|
||||
2188 11239
|
||||
2309 12178
|
||||
2431 13212
|
||||
2551 14294
|
||||
2671 15551
|
||||
2791 16512
|
||||
2911 17718
|
||||
3030 18876
|
||||
3150 20259
|
||||
3270 21374
|
||||
3391 22650
|
||||
3511 23948
|
||||
3631 25493
|
||||
3750 26756
|
||||
3870 28225
|
||||
3989 29705
|
||||
4110 31409
|
||||
4230 32834
|
||||
4351 34327
|
||||
4471 35818
|
||||
4591 37636
|
||||
4711 39228
|
||||
4830 40868
|
||||
4949 42393
|
||||
5070 44541
|
||||
5191 46269
|
||||
5310 48162
|
||||
5429 49728
|
||||
5548 51985
|
||||
5671 53948
|
||||
5791 55885
|
||||
5910 57584
|
||||
6031 60082
|
||||
6150 62239
|
||||
6270 64309
|
||||
6390 66014
|
||||
6511 68766
|
||||
6631 71012
|
||||
6750 73172
|
||||
6871 74952
|
||||
6991 77909
|
||||
7111 80371
|
||||
7231 82666
|
||||
7351 84531
|
||||
7469 87698
|
||||
7589 90318
|
||||
7711 225384
|
||||
7830 232428
|
||||
7950 240009
|
||||
8070 246522
|
||||
8190 253662
|
||||
8310 260961
|
||||
8431 269253
|
||||
8549 275743
|
||||
8671 283769
|
||||
8789 290811
|
||||
8911 300034
|
||||
9030 306873
|
||||
9149 315085
|
||||
9270 323944
|
||||
9390 332390
|
||||
9508 337519
|
||||
9631 348986
|
||||
9749 356904
|
||||
9871 367013
|
||||
9989 373831
|
||||
10108 381033
|
||||
10230 393475
|
||||
|
@ -1,33 +1,84 @@
|
||||
922 11272
|
||||
1148 16004
|
||||
1370 21958
|
||||
1596 28684
|
||||
1817 37832
|
||||
2044 46386
|
||||
2262 56218
|
||||
2492 66388
|
||||
2716 77478
|
||||
2940 89380
|
||||
3163 103680
|
||||
3385 116274
|
||||
3612 135334
|
||||
3836 151332
|
||||
4057 164938
|
||||
4284 183178
|
||||
4508 198864
|
||||
4731 215222
|
||||
4954 231986
|
||||
5180 251660
|
||||
5404 269414
|
||||
5626 288454
|
||||
5850 307806
|
||||
6076 329458
|
||||
6299 347726
|
||||
6523 369864
|
||||
6748 387832
|
||||
6971 413010
|
||||
7194 453310
|
||||
7415 476936
|
||||
7643 497118
|
||||
7867 521394
|
||||
8091 540224
|
||||
271 560
|
||||
388 878
|
||||
511 1179
|
||||
629 1625
|
||||
751 1988
|
||||
871 2423
|
||||
989 2896
|
||||
1111 3561
|
||||
1231 4209
|
||||
1350 5015
|
||||
1470 5804
|
||||
1591 6556
|
||||
1709 7420
|
||||
1831 8263
|
||||
1951 9173
|
||||
2070 10153
|
||||
2191 11229
|
||||
2310 12167
|
||||
2431 13211
|
||||
2550 14309
|
||||
2671 15524
|
||||
2788 16525
|
||||
2910 17712
|
||||
3028 18822
|
||||
3148 20220
|
||||
3271 21343
|
||||
3391 22652
|
||||
3511 23944
|
||||
3630 25485
|
||||
3750 26778
|
||||
3868 28201
|
||||
3990 29653
|
||||
4111 31393
|
||||
4225 32841
|
||||
4350 34328
|
||||
4471 35786
|
||||
4590 37652
|
||||
4711 39245
|
||||
4830 40876
|
||||
4951 42433
|
||||
5068 44547
|
||||
5191 46321
|
||||
5311 48140
|
||||
5430 49727
|
||||
5550 52034
|
||||
5671 53954
|
||||
5791 55921
|
||||
5908 57597
|
||||
6031 60084
|
||||
6148 62226
|
||||
6270 64295
|
||||
6390 66045
|
||||
6511 68779
|
||||
6629 71003
|
||||
6751 73169
|
||||
6871 74992
|
||||
6991 77895
|
||||
7110 80376
|
||||
7231 82628
|
||||
7351 84468
|
||||
7470 87664
|
||||
7591 90284
|
||||
7711 91352
|
||||
7828 93995
|
||||
7950 96276
|
||||
8071 98691
|
||||
8190 101256
|
||||
8308 103631
|
||||
8431 105222
|
||||
8550 108343
|
||||
8671 110281
|
||||
8787 112764
|
||||
8911 115397
|
||||
9031 117690
|
||||
9151 120266
|
||||
9271 122715
|
||||
9391 124624
|
||||
9510 127937
|
||||
9630 130313
|
||||
9750 132914
|
||||
9871 136129
|
||||
9991 138517
|
||||
10108 141525
|
||||
10231 144225
|
||||
|
30
logs/sub.log
30
logs/sub.log
@ -1,16 +1,16 @@
|
||||
480 87
|
||||
960 114
|
||||
1440 139
|
||||
1920 159
|
||||
2400 204
|
||||
2880 228
|
||||
3360 250
|
||||
3840 273
|
||||
4320 300
|
||||
480 94
|
||||
960 116
|
||||
1440 140
|
||||
1920 164
|
||||
2400 205
|
||||
2880 229
|
||||
3360 253
|
||||
3840 277
|
||||
4320 299
|
||||
4800 321
|
||||
5280 348
|
||||
5760 370
|
||||
6240 393
|
||||
6720 420
|
||||
7200 444
|
||||
7680 466
|
||||
5280 345
|
||||
5760 371
|
||||
6240 395
|
||||
6720 419
|
||||
7200 441
|
||||
7680 465
|
||||
|
6
makefile
6
makefile
@ -3,7 +3,7 @@
|
||||
#Tom St Denis
|
||||
|
||||
#version of library
|
||||
VERSION=0.33
|
||||
VERSION=0.34
|
||||
|
||||
CFLAGS += -I./ -Wall -W -Wshadow -Wsign-compare
|
||||
|
||||
@ -57,11 +57,13 @@ bn_mp_prime_is_prime.o bn_mp_prime_next_prime.o bn_mp_dr_reduce.o \
|
||||
bn_mp_dr_is_modulus.o bn_mp_dr_setup.o bn_mp_reduce_setup.o \
|
||||
bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_div_3.o bn_s_mp_exptmod.o \
|
||||
bn_mp_reduce_2k.o bn_mp_reduce_is_2k.o bn_mp_reduce_2k_setup.o \
|
||||
bn_mp_reduce_2k_l.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_2k_setup_l.o \
|
||||
bn_mp_radix_smap.o bn_mp_read_radix.o bn_mp_toradix.o bn_mp_radix_size.o \
|
||||
bn_mp_fread.o bn_mp_fwrite.o bn_mp_cnt_lsb.o bn_error.o \
|
||||
bn_mp_init_multi.o bn_mp_clear_multi.o bn_mp_exteuclid.o bn_mp_toradix_n.o \
|
||||
bn_mp_prime_random_ex.o bn_mp_get_int.o bn_mp_sqrt.o bn_mp_is_square.o bn_mp_init_set.o \
|
||||
bn_mp_init_set_int.o bn_mp_invmod_slow.o bn_mp_prime_rabin_miller_trials.o
|
||||
bn_mp_init_set_int.o bn_mp_invmod_slow.o bn_mp_prime_rabin_miller_trials.o \
|
||||
bn_mp_to_signed_bin_n.o bn_mp_to_unsigned_bin_n.o
|
||||
|
||||
libtommath.a: $(OBJECTS)
|
||||
$(AR) $(ARFLAGS) libtommath.a $(OBJECTS)
|
||||
|
@ -27,11 +27,13 @@ bn_mp_prime_is_prime.obj bn_mp_prime_next_prime.obj bn_mp_dr_reduce.obj \
|
||||
bn_mp_dr_is_modulus.obj bn_mp_dr_setup.obj bn_mp_reduce_setup.obj \
|
||||
bn_mp_toom_mul.obj bn_mp_toom_sqr.obj bn_mp_div_3.obj bn_s_mp_exptmod.obj \
|
||||
bn_mp_reduce_2k.obj bn_mp_reduce_is_2k.obj bn_mp_reduce_2k_setup.obj \
|
||||
bn_mp_reduce_2k_l.obj bn_mp_reduce_is_2k_l.obj bn_mp_reduce_2k_setup_l.obj \
|
||||
bn_mp_radix_smap.obj bn_mp_read_radix.obj bn_mp_toradix.obj bn_mp_radix_size.obj \
|
||||
bn_mp_fread.obj bn_mp_fwrite.obj bn_mp_cnt_lsb.obj bn_error.obj \
|
||||
bn_mp_init_multi.obj bn_mp_clear_multi.obj bn_mp_exteuclid.obj bn_mp_toradix_n.obj \
|
||||
bn_mp_prime_random_ex.obj bn_mp_get_int.obj bn_mp_sqrt.obj bn_mp_is_square.obj \
|
||||
bn_mp_init_set.obj bn_mp_init_set_int.obj bn_mp_invmod_slow.obj bn_mp_prime_rabin_miller_trials.obj
|
||||
bn_mp_init_set.obj bn_mp_init_set_int.obj bn_mp_invmod_slow.obj bn_mp_prime_rabin_miller_trials.obj \
|
||||
bn_mp_to_signed_bin_n.obj bn_mp_to_unsigned_bin_n.obj
|
||||
|
||||
TARGET = libtommath.lib
|
||||
|
||||
|
@ -32,11 +32,13 @@ bn_mp_prime_is_prime.o bn_mp_prime_next_prime.o bn_mp_dr_reduce.o \
|
||||
bn_mp_dr_is_modulus.o bn_mp_dr_setup.o bn_mp_reduce_setup.o \
|
||||
bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_div_3.o bn_s_mp_exptmod.o \
|
||||
bn_mp_reduce_2k.o bn_mp_reduce_is_2k.o bn_mp_reduce_2k_setup.o \
|
||||
bn_mp_reduce_2k_l.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_2k_setup_l.o \
|
||||
bn_mp_radix_smap.o bn_mp_read_radix.o bn_mp_toradix.o bn_mp_radix_size.o \
|
||||
bn_mp_fread.o bn_mp_fwrite.o bn_mp_cnt_lsb.o bn_error.o \
|
||||
bn_mp_init_multi.o bn_mp_clear_multi.o bn_mp_exteuclid.o bn_mp_toradix_n.o \
|
||||
bn_mp_prime_random_ex.o bn_mp_get_int.o bn_mp_sqrt.o bn_mp_is_square.o bn_mp_init_set.o \
|
||||
bn_mp_init_set_int.o bn_mp_invmod_slow.o bn_mp_prime_rabin_miller_trials.o
|
||||
bn_mp_init_set_int.o bn_mp_invmod_slow.o bn_mp_prime_rabin_miller_trials.o \
|
||||
bn_mp_to_signed_bin_n.o bn_mp_to_unsigned_bin_n.o
|
||||
|
||||
# make a Windows DLL via Cygwin
|
||||
windll: $(OBJECTS)
|
||||
|
@ -59,11 +59,13 @@ bn_mp_prime_is_prime.o bn_mp_prime_next_prime.o bn_mp_dr_reduce.o \
|
||||
bn_mp_dr_is_modulus.o bn_mp_dr_setup.o bn_mp_reduce_setup.o \
|
||||
bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_div_3.o bn_s_mp_exptmod.o \
|
||||
bn_mp_reduce_2k.o bn_mp_reduce_is_2k.o bn_mp_reduce_2k_setup.o \
|
||||
bn_mp_reduce_2k_l.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_2k_setup_l.o \
|
||||
bn_mp_radix_smap.o bn_mp_read_radix.o bn_mp_toradix.o bn_mp_radix_size.o \
|
||||
bn_mp_fread.o bn_mp_fwrite.o bn_mp_cnt_lsb.o bn_error.o \
|
||||
bn_mp_init_multi.o bn_mp_clear_multi.o bn_mp_exteuclid.o bn_mp_toradix_n.o \
|
||||
bn_mp_prime_random_ex.o bn_mp_get_int.o bn_mp_sqrt.o bn_mp_is_square.o bn_mp_init_set.o \
|
||||
bn_mp_init_set_int.o bn_mp_invmod_slow.o bn_mp_prime_rabin_miller_trials.o
|
||||
bn_mp_init_set_int.o bn_mp_invmod_slow.o bn_mp_prime_rabin_miller_trials.o \
|
||||
bn_mp_to_signed_bin_n.o bn_mp_to_unsigned_bin_n.o
|
||||
|
||||
libtommath.a: $(OBJECTS)
|
||||
$(AR) $(ARFLAGS) libtommath.a $(OBJECTS)
|
||||
|
@ -26,11 +26,13 @@ bn_mp_prime_is_prime.obj bn_mp_prime_next_prime.obj bn_mp_dr_reduce.obj \
|
||||
bn_mp_dr_is_modulus.obj bn_mp_dr_setup.obj bn_mp_reduce_setup.obj \
|
||||
bn_mp_toom_mul.obj bn_mp_toom_sqr.obj bn_mp_div_3.obj bn_s_mp_exptmod.obj \
|
||||
bn_mp_reduce_2k.obj bn_mp_reduce_is_2k.obj bn_mp_reduce_2k_setup.obj \
|
||||
bn_mp_reduce_2k_l.obj bn_mp_reduce_is_2k_l.obj bn_mp_reduce_2k_setup_l.obj \
|
||||
bn_mp_radix_smap.obj bn_mp_read_radix.obj bn_mp_toradix.obj bn_mp_radix_size.obj \
|
||||
bn_mp_fread.obj bn_mp_fwrite.obj bn_mp_cnt_lsb.obj bn_error.obj \
|
||||
bn_mp_init_multi.obj bn_mp_clear_multi.obj bn_mp_exteuclid.obj bn_mp_toradix_n.obj \
|
||||
bn_mp_prime_random_ex.obj bn_mp_get_int.obj bn_mp_sqrt.obj bn_mp_is_square.obj \
|
||||
bn_mp_init_set.obj bn_mp_init_set_int.obj bn_mp_invmod_slow.obj bn_mp_prime_rabin_miller_trials.obj
|
||||
bn_mp_init_set.obj bn_mp_init_set_int.obj bn_mp_invmod_slow.obj bn_mp_prime_rabin_miller_trials.obj \
|
||||
bn_mp_to_signed_bin_n.obj bn_mp_to_unsigned_bin_n.obj
|
||||
|
||||
library: $(OBJECTS)
|
||||
lib /out:tommath.lib $(OBJECTS)
|
||||
|
@ -1,7 +1,7 @@
|
||||
#Makefile for GCC
|
||||
#
|
||||
#Tom St Denis
|
||||
VERSION=0:33
|
||||
VERSION=0:34
|
||||
|
||||
CC = libtool --mode=compile gcc
|
||||
CFLAGS += -I./ -Wall -W -Wshadow -Wsign-compare
|
||||
@ -53,11 +53,14 @@ bn_mp_prime_is_prime.o bn_mp_prime_next_prime.o bn_mp_dr_reduce.o \
|
||||
bn_mp_dr_is_modulus.o bn_mp_dr_setup.o bn_mp_reduce_setup.o \
|
||||
bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_div_3.o bn_s_mp_exptmod.o \
|
||||
bn_mp_reduce_2k.o bn_mp_reduce_is_2k.o bn_mp_reduce_2k_setup.o \
|
||||
bn_mp_reduce_2k_l.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_2k_setup_l.o \
|
||||
bn_mp_radix_smap.o bn_mp_read_radix.o bn_mp_toradix.o bn_mp_radix_size.o \
|
||||
bn_mp_fread.o bn_mp_fwrite.o bn_mp_cnt_lsb.o bn_error.o \
|
||||
bn_mp_init_multi.o bn_mp_clear_multi.o bn_mp_exteuclid.o bn_mp_toradix_n.o \
|
||||
bn_mp_prime_random_ex.o bn_mp_get_int.o bn_mp_sqrt.o bn_mp_is_square.o bn_mp_init_set.o \
|
||||
bn_mp_init_set_int.o bn_mp_invmod_slow.o bn_mp_prime_rabin_miller_trials.o
|
||||
bn_mp_init_set_int.o bn_mp_invmod_slow.o bn_mp_prime_rabin_miller_trials.o \
|
||||
bn_mp_to_signed_bin_n.o bn_mp_to_unsigned_bin_n.o
|
||||
|
||||
|
||||
libtommath.la: $(OBJECTS)
|
||||
libtool --mode=link gcc *.lo -o libtommath.la -rpath $(LIBPATH) -version-info $(VERSION)
|
||||
|
BIN
poster.pdf
BIN
poster.pdf
Binary file not shown.
320
pre_gen/mpi.c
320
pre_gen/mpi.c
@ -69,8 +69,7 @@ char *mp_error_to_string(int code)
|
||||
* Based on slow invmod except this is optimized for the case where b is
|
||||
* odd as per HAC Note 14.64 on pp. 610
|
||||
*/
|
||||
int
|
||||
fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
|
||||
int fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
|
||||
{
|
||||
mp_int x, y, u, v, B, D;
|
||||
int res, neg;
|
||||
@ -220,8 +219,7 @@ LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);
|
||||
*
|
||||
* Based on Algorithm 14.32 on pp.601 of HAC.
|
||||
*/
|
||||
int
|
||||
fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
|
||||
int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
|
||||
{
|
||||
int ix, res, olduse;
|
||||
mp_word W[MP_WARRAY];
|
||||
@ -401,8 +399,7 @@ fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
|
||||
* Based on Algorithm 14.12 on pp.595 of HAC.
|
||||
*
|
||||
*/
|
||||
int
|
||||
fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
||||
int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
||||
{
|
||||
int olduse, res, pa, ix, iz;
|
||||
mp_digit W[MP_WARRAY];
|
||||
@ -451,7 +448,7 @@ fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
||||
}
|
||||
|
||||
/* store final carry */
|
||||
W[ix] = _W;
|
||||
W[ix] = _W & MP_MASK;
|
||||
|
||||
/* setup dest */
|
||||
olduse = c->used;
|
||||
@ -504,8 +501,7 @@ fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
||||
*
|
||||
* Based on Algorithm 14.12 on pp.595 of HAC.
|
||||
*/
|
||||
int
|
||||
fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
||||
int fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
||||
{
|
||||
int olduse, res, pa, ix, iz;
|
||||
mp_digit W[MP_WARRAY];
|
||||
@ -552,7 +548,7 @@ fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
||||
}
|
||||
|
||||
/* store final carry */
|
||||
W[ix] = _W;
|
||||
W[ix] = _W & MP_MASK;
|
||||
|
||||
/* setup dest */
|
||||
olduse = c->used;
|
||||
@ -683,7 +679,7 @@ int fast_s_mp_sqr (mp_int * a, mp_int * b)
|
||||
}
|
||||
|
||||
/* store it */
|
||||
W[ix] = _W;
|
||||
W[ix] = _W & MP_MASK;
|
||||
|
||||
/* make next carry */
|
||||
W1 = _W >> ((mp_word)DIGIT_BIT);
|
||||
@ -2467,21 +2463,29 @@ int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
|
||||
#endif
|
||||
}
|
||||
|
||||
/* modified diminished radix reduction */
|
||||
#if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C)
|
||||
if (mp_reduce_is_2k_l(P) == MP_YES) {
|
||||
return s_mp_exptmod(G, X, P, Y, 1);
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef BN_MP_DR_IS_MODULUS_C
|
||||
/* is it a DR modulus? */
|
||||
dr = mp_dr_is_modulus(P);
|
||||
#else
|
||||
/* default to no */
|
||||
dr = 0;
|
||||
#endif
|
||||
|
||||
#ifdef BN_MP_REDUCE_IS_2K_C
|
||||
/* if not, is it a uDR modulus? */
|
||||
/* if not, is it a unrestricted DR modulus? */
|
||||
if (dr == 0) {
|
||||
dr = mp_reduce_is_2k(P) << 1;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* if the modulus is odd or dr != 0 use the fast method */
|
||||
/* if the modulus is odd or dr != 0 use the montgomery method */
|
||||
#ifdef BN_MP_EXPTMOD_FAST_C
|
||||
if (mp_isodd (P) == 1 || dr != 0) {
|
||||
return mp_exptmod_fast (G, X, P, Y, dr);
|
||||
@ -2489,7 +2493,7 @@ int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
|
||||
#endif
|
||||
#ifdef BN_S_MP_EXPTMOD_C
|
||||
/* otherwise use the generic Barrett reduction technique */
|
||||
return s_mp_exptmod (G, X, P, Y);
|
||||
return s_mp_exptmod (G, X, P, Y, 0);
|
||||
#else
|
||||
/* no exptmod for evens */
|
||||
return MP_VAL;
|
||||
@ -2535,8 +2539,7 @@ int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
|
||||
#define TAB_SIZE 256
|
||||
#endif
|
||||
|
||||
int
|
||||
mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
|
||||
int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
|
||||
{
|
||||
mp_int M[TAB_SIZE], res;
|
||||
mp_digit buf, mp;
|
||||
@ -4989,8 +4992,9 @@ mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
|
||||
u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
|
||||
}
|
||||
|
||||
/* store final carry [if any] */
|
||||
/* store final carry [if any] and increment ix offset */
|
||||
*tmpc++ = u;
|
||||
++ix;
|
||||
|
||||
/* now zero digits above the top */
|
||||
while (ix++ < olduse) {
|
||||
@ -5847,7 +5851,7 @@ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback
|
||||
|
||||
/* calc the maskOR_msb */
|
||||
maskOR_msb = 0;
|
||||
maskOR_msb_offset = (size - 2) >> 3;
|
||||
maskOR_msb_offset = ((size & 7) == 1) ? 1 : 0;
|
||||
if (flags & LTM_PRIME_2MSB_ON) {
|
||||
maskOR_msb |= 1 << ((size - 2) & 7);
|
||||
} else if (flags & LTM_PRIME_2MSB_OFF) {
|
||||
@ -5855,7 +5859,7 @@ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback
|
||||
}
|
||||
|
||||
/* get the maskOR_lsb */
|
||||
maskOR_lsb = 0;
|
||||
maskOR_lsb = 1;
|
||||
if (flags & LTM_PRIME_BBS) {
|
||||
maskOR_lsb |= 3;
|
||||
}
|
||||
@ -6080,7 +6084,7 @@ mp_rand (mp_int * a, int digits)
|
||||
*/
|
||||
|
||||
/* read a string [ASCII] in a given radix */
|
||||
int mp_read_radix (mp_int * a, char *str, int radix)
|
||||
int mp_read_radix (mp_int * a, const char *str, int radix)
|
||||
{
|
||||
int y, res, neg;
|
||||
char ch;
|
||||
@ -6263,8 +6267,7 @@ mp_read_unsigned_bin (mp_int * a, unsigned char *b, int c)
|
||||
* precomputed via mp_reduce_setup.
|
||||
* From HAC pp.604 Algorithm 14.42
|
||||
*/
|
||||
int
|
||||
mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
|
||||
int mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
|
||||
{
|
||||
mp_int q;
|
||||
int res, um = m->used;
|
||||
@ -6361,8 +6364,7 @@ CLEANUP:
|
||||
*/
|
||||
|
||||
/* reduces a modulo n where n is of the form 2**p - d */
|
||||
int
|
||||
mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d)
|
||||
int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d)
|
||||
{
|
||||
mp_int q;
|
||||
int p, res;
|
||||
@ -6404,6 +6406,68 @@ ERR:
|
||||
|
||||
/* End: bn_mp_reduce_2k.c */
|
||||
|
||||
/* Start: bn_mp_reduce_2k_l.c */
|
||||
#include <tommath.h>
|
||||
#ifdef BN_MP_REDUCE_2K_L_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
|
||||
*/
|
||||
|
||||
/* reduces a modulo n where n is of the form 2**p - d
|
||||
This differs from reduce_2k since "d" can be larger
|
||||
than a single digit.
|
||||
*/
|
||||
int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d)
|
||||
{
|
||||
mp_int q;
|
||||
int p, res;
|
||||
|
||||
if ((res = mp_init(&q)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
p = mp_count_bits(n);
|
||||
top:
|
||||
/* q = a/2**p, a = a mod 2**p */
|
||||
if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
/* q = q * d */
|
||||
if ((res = mp_mul(&q, d, &q)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
/* a = a + q */
|
||||
if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
if (mp_cmp_mag(a, n) != MP_LT) {
|
||||
s_mp_sub(a, n, a);
|
||||
goto top;
|
||||
}
|
||||
|
||||
ERR:
|
||||
mp_clear(&q);
|
||||
return res;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* End: bn_mp_reduce_2k_l.c */
|
||||
|
||||
/* Start: bn_mp_reduce_2k_setup.c */
|
||||
#include <tommath.h>
|
||||
#ifdef BN_MP_REDUCE_2K_SETUP_C
|
||||
@ -6423,8 +6487,7 @@ ERR:
|
||||
*/
|
||||
|
||||
/* determines the setup value */
|
||||
int
|
||||
mp_reduce_2k_setup(mp_int *a, mp_digit *d)
|
||||
int mp_reduce_2k_setup(mp_int *a, mp_digit *d)
|
||||
{
|
||||
int res, p;
|
||||
mp_int tmp;
|
||||
@ -6452,6 +6515,50 @@ mp_reduce_2k_setup(mp_int *a, mp_digit *d)
|
||||
|
||||
/* End: bn_mp_reduce_2k_setup.c */
|
||||
|
||||
/* Start: bn_mp_reduce_2k_setup_l.c */
|
||||
#include <tommath.h>
|
||||
#ifdef BN_MP_REDUCE_2K_SETUP_L_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
|
||||
*/
|
||||
|
||||
/* determines the setup value */
|
||||
int mp_reduce_2k_setup_l(mp_int *a, mp_int *d)
|
||||
{
|
||||
int res;
|
||||
mp_int tmp;
|
||||
|
||||
if ((res = mp_init(&tmp)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
ERR:
|
||||
mp_clear(&tmp);
|
||||
return res;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* End: bn_mp_reduce_2k_setup_l.c */
|
||||
|
||||
/* Start: bn_mp_reduce_is_2k.c */
|
||||
#include <tommath.h>
|
||||
#ifdef BN_MP_REDUCE_IS_2K_C
|
||||
@ -6477,9 +6584,9 @@ int mp_reduce_is_2k(mp_int *a)
|
||||
mp_digit iz;
|
||||
|
||||
if (a->used == 0) {
|
||||
return 0;
|
||||
return MP_NO;
|
||||
} else if (a->used == 1) {
|
||||
return 1;
|
||||
return MP_YES;
|
||||
} else if (a->used > 1) {
|
||||
iy = mp_count_bits(a);
|
||||
iz = 1;
|
||||
@ -6488,7 +6595,7 @@ int mp_reduce_is_2k(mp_int *a)
|
||||
/* Test every bit from the second digit up, must be 1 */
|
||||
for (ix = DIGIT_BIT; ix < iy; ix++) {
|
||||
if ((a->dp[iw] & iz) == 0) {
|
||||
return 0;
|
||||
return MP_NO;
|
||||
}
|
||||
iz <<= 1;
|
||||
if (iz > (mp_digit)MP_MASK) {
|
||||
@ -6497,13 +6604,57 @@ int mp_reduce_is_2k(mp_int *a)
|
||||
}
|
||||
}
|
||||
}
|
||||
return 1;
|
||||
return MP_YES;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* End: bn_mp_reduce_is_2k.c */
|
||||
|
||||
/* Start: bn_mp_reduce_is_2k_l.c */
|
||||
#include <tommath.h>
|
||||
#ifdef BN_MP_REDUCE_IS_2K_L_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
|
||||
*/
|
||||
|
||||
/* determines if reduce_2k_l can be used */
|
||||
int mp_reduce_is_2k_l(mp_int *a)
|
||||
{
|
||||
int ix, iy;
|
||||
|
||||
if (a->used == 0) {
|
||||
return MP_NO;
|
||||
} else if (a->used == 1) {
|
||||
return MP_YES;
|
||||
} else if (a->used > 1) {
|
||||
/* if more than half of the digits are -1 we're sold */
|
||||
for (iy = ix = 0; ix < a->used; ix++) {
|
||||
if (a->dp[ix] == MP_MASK) {
|
||||
++iy;
|
||||
}
|
||||
}
|
||||
return (iy >= (a->used/2)) ? MP_YES : MP_NO;
|
||||
|
||||
}
|
||||
return MP_NO;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* End: bn_mp_reduce_is_2k_l.c */
|
||||
|
||||
/* Start: bn_mp_reduce_setup.c */
|
||||
#include <tommath.h>
|
||||
#ifdef BN_MP_REDUCE_SETUP_C
|
||||
@ -7138,8 +7289,7 @@ mp_submod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
|
||||
*/
|
||||
|
||||
/* store in signed [big endian] format */
|
||||
int
|
||||
mp_to_signed_bin (mp_int * a, unsigned char *b)
|
||||
int mp_to_signed_bin (mp_int * a, unsigned char *b)
|
||||
{
|
||||
int res;
|
||||
|
||||
@ -7153,6 +7303,37 @@ mp_to_signed_bin (mp_int * a, unsigned char *b)
|
||||
|
||||
/* End: bn_mp_to_signed_bin.c */
|
||||
|
||||
/* Start: bn_mp_to_signed_bin_n.c */
|
||||
#include <tommath.h>
|
||||
#ifdef BN_MP_TO_SIGNED_BIN_N_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
|
||||
*/
|
||||
|
||||
/* store in signed [big endian] format */
|
||||
int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen)
|
||||
{
|
||||
if (*outlen < (unsigned long)mp_signed_bin_size(a)) {
|
||||
return MP_VAL;
|
||||
}
|
||||
*outlen = mp_signed_bin_size(a);
|
||||
return mp_to_signed_bin(a, b);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* End: bn_mp_to_signed_bin_n.c */
|
||||
|
||||
/* Start: bn_mp_to_unsigned_bin.c */
|
||||
#include <tommath.h>
|
||||
#ifdef BN_MP_TO_UNSIGNED_BIN_C
|
||||
@ -7172,8 +7353,7 @@ mp_to_signed_bin (mp_int * a, unsigned char *b)
|
||||
*/
|
||||
|
||||
/* store in unsigned [big endian] format */
|
||||
int
|
||||
mp_to_unsigned_bin (mp_int * a, unsigned char *b)
|
||||
int mp_to_unsigned_bin (mp_int * a, unsigned char *b)
|
||||
{
|
||||
int x, res;
|
||||
mp_int t;
|
||||
@ -7202,6 +7382,37 @@ mp_to_unsigned_bin (mp_int * a, unsigned char *b)
|
||||
|
||||
/* End: bn_mp_to_unsigned_bin.c */
|
||||
|
||||
/* Start: bn_mp_to_unsigned_bin_n.c */
|
||||
#include <tommath.h>
|
||||
#ifdef BN_MP_TO_UNSIGNED_BIN_N_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
|
||||
*/
|
||||
|
||||
/* store in unsigned [big endian] format */
|
||||
int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen)
|
||||
{
|
||||
if (*outlen < (unsigned long)mp_unsigned_bin_size(a)) {
|
||||
return MP_VAL;
|
||||
}
|
||||
*outlen = mp_unsigned_bin_size(a);
|
||||
return mp_to_unsigned_bin(a, b);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* End: bn_mp_to_unsigned_bin_n.c */
|
||||
|
||||
/* Start: bn_mp_toom_mul.c */
|
||||
#include <tommath.h>
|
||||
#ifdef BN_MP_TOOM_MUL_C
|
||||
@ -7894,8 +8105,7 @@ int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen)
|
||||
*/
|
||||
|
||||
/* get the size for an unsigned equivalent */
|
||||
int
|
||||
mp_unsigned_bin_size (mp_int * a)
|
||||
int mp_unsigned_bin_size (mp_int * a)
|
||||
{
|
||||
int size = mp_count_bits (a);
|
||||
return (size / 8 + ((size & 7) != 0 ? 1 : 0));
|
||||
@ -8218,11 +8428,12 @@ s_mp_add (mp_int * a, mp_int * b, mp_int * c)
|
||||
#define TAB_SIZE 256
|
||||
#endif
|
||||
|
||||
int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
|
||||
int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
|
||||
{
|
||||
mp_int M[TAB_SIZE], res, mu;
|
||||
mp_digit buf;
|
||||
int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
|
||||
int (*redux)(mp_int*,mp_int*,mp_int*);
|
||||
|
||||
/* find window size */
|
||||
x = mp_count_bits (X);
|
||||
@ -8269,8 +8480,17 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
|
||||
if ((err = mp_init (&mu)) != MP_OKAY) {
|
||||
goto LBL_M;
|
||||
}
|
||||
if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
|
||||
goto LBL_MU;
|
||||
|
||||
if (redmode == 0) {
|
||||
if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
|
||||
goto LBL_MU;
|
||||
}
|
||||
redux = mp_reduce;
|
||||
} else {
|
||||
if ((err = mp_reduce_2k_setup_l (P, &mu)) != MP_OKAY) {
|
||||
goto LBL_MU;
|
||||
}
|
||||
redux = mp_reduce_2k_l;
|
||||
}
|
||||
|
||||
/* create M table
|
||||
@ -8293,11 +8513,14 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
|
||||
}
|
||||
|
||||
for (x = 0; x < (winsize - 1); x++) {
|
||||
/* square it */
|
||||
if ((err = mp_sqr (&M[1 << (winsize - 1)],
|
||||
&M[1 << (winsize - 1)])) != MP_OKAY) {
|
||||
goto LBL_MU;
|
||||
}
|
||||
if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
|
||||
|
||||
/* reduce modulo P */
|
||||
if ((err = redux (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
|
||||
goto LBL_MU;
|
||||
}
|
||||
}
|
||||
@ -8309,7 +8532,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
|
||||
if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
|
||||
goto LBL_MU;
|
||||
}
|
||||
if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) {
|
||||
if ((err = redux (&M[x], P, &mu)) != MP_OKAY) {
|
||||
goto LBL_MU;
|
||||
}
|
||||
}
|
||||
@ -8358,7 +8581,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
|
||||
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
|
||||
if ((err = redux (&res, P, &mu)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
continue;
|
||||
@ -8375,7 +8598,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
|
||||
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
|
||||
if ((err = redux (&res, P, &mu)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
}
|
||||
@ -8384,7 +8607,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
|
||||
if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
|
||||
if ((err = redux (&res, P, &mu)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
|
||||
@ -8402,7 +8625,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
|
||||
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
|
||||
if ((err = redux (&res, P, &mu)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
|
||||
@ -8412,7 +8635,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
|
||||
if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
|
||||
if ((err = redux (&res, P, &mu)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
}
|
||||
@ -8803,11 +9026,12 @@ s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
|
||||
CPU /Compiler /MUL CUTOFF/SQR CUTOFF
|
||||
-------------------------------------------------------------
|
||||
Intel P4 Northwood /GCC v3.4.1 / 88/ 128/LTM 0.32 ;-)
|
||||
AMD Athlon64 /GCC v3.4.4 / 74/ 124/LTM 0.34
|
||||
|
||||
*/
|
||||
|
||||
int KARATSUBA_MUL_CUTOFF = 88, /* Min. number of digits before Karatsuba multiplication is used. */
|
||||
KARATSUBA_SQR_CUTOFF = 128, /* Min. number of digits before Karatsuba squaring is used. */
|
||||
int KARATSUBA_MUL_CUTOFF = 74, /* Min. number of digits before Karatsuba multiplication is used. */
|
||||
KARATSUBA_SQR_CUTOFF = 124, /* Min. number of digits before Karatsuba squaring is used. */
|
||||
|
||||
TOOM_MUL_CUTOFF = 350, /* no optimal values of these are known yet so set em high */
|
||||
TOOM_SQR_CUTOFF = 400;
|
||||
|
15
tommath.h
15
tommath.h
@ -429,6 +429,15 @@ int mp_reduce_2k_setup(mp_int *a, mp_digit *d);
|
||||
/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
|
||||
int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d);
|
||||
|
||||
/* returns true if a can be reduced with mp_reduce_2k_l */
|
||||
int mp_reduce_is_2k_l(mp_int *a);
|
||||
|
||||
/* determines k value for 2k reduction */
|
||||
int mp_reduce_2k_setup_l(mp_int *a, mp_int *d);
|
||||
|
||||
/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
|
||||
int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d);
|
||||
|
||||
/* d = a**b (mod c) */
|
||||
int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
|
||||
|
||||
@ -511,12 +520,14 @@ int mp_count_bits(mp_int *a);
|
||||
int mp_unsigned_bin_size(mp_int *a);
|
||||
int mp_read_unsigned_bin(mp_int *a, unsigned char *b, int c);
|
||||
int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
|
||||
int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen);
|
||||
|
||||
int mp_signed_bin_size(mp_int *a);
|
||||
int mp_read_signed_bin(mp_int *a, unsigned char *b, int c);
|
||||
int mp_to_signed_bin(mp_int *a, unsigned char *b);
|
||||
int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen);
|
||||
|
||||
int mp_read_radix(mp_int *a, char *str, int radix);
|
||||
int mp_read_radix(mp_int *a, const char *str, int radix);
|
||||
int mp_toradix(mp_int *a, char *str, int radix);
|
||||
int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen);
|
||||
int mp_radix_size(mp_int *a, int radix, int *size);
|
||||
@ -554,7 +565,7 @@ int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c);
|
||||
int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c);
|
||||
int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
|
||||
int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int mode);
|
||||
int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y);
|
||||
int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int mode);
|
||||
void bn_reverse(unsigned char *s, int len);
|
||||
|
||||
extern const char *mp_s_rmap;
|
||||
|
BIN
tommath.pdf
BIN
tommath.pdf
Binary file not shown.
@ -66,7 +66,7 @@ QUALCOMM Australia \\
|
||||
}
|
||||
}
|
||||
\maketitle
|
||||
This text has been placed in the public domain. This text corresponds to the v0.30 release of the
|
||||
This text has been placed in the public domain. This text corresponds to the v0.34 release of the
|
||||
LibTomMath project.
|
||||
|
||||
\begin{alltt}
|
||||
|
1276
tommath.tex
1276
tommath.tex
File diff suppressed because it is too large
Load Diff
@ -90,8 +90,11 @@
|
||||
#define BN_MP_READ_UNSIGNED_BIN_C
|
||||
#define BN_MP_REDUCE_C
|
||||
#define BN_MP_REDUCE_2K_C
|
||||
#define BN_MP_REDUCE_2K_L_C
|
||||
#define BN_MP_REDUCE_2K_SETUP_C
|
||||
#define BN_MP_REDUCE_2K_SETUP_L_C
|
||||
#define BN_MP_REDUCE_IS_2K_C
|
||||
#define BN_MP_REDUCE_IS_2K_L_C
|
||||
#define BN_MP_REDUCE_SETUP_C
|
||||
#define BN_MP_RSHD_C
|
||||
#define BN_MP_SET_C
|
||||
@ -105,7 +108,9 @@
|
||||
#define BN_MP_SUB_D_C
|
||||
#define BN_MP_SUBMOD_C
|
||||
#define BN_MP_TO_SIGNED_BIN_C
|
||||
#define BN_MP_TO_SIGNED_BIN_N_C
|
||||
#define BN_MP_TO_UNSIGNED_BIN_C
|
||||
#define BN_MP_TO_UNSIGNED_BIN_N_C
|
||||
#define BN_MP_TOOM_MUL_C
|
||||
#define BN_MP_TOOM_SQR_C
|
||||
#define BN_MP_TORADIX_C
|
||||
@ -324,11 +329,12 @@
|
||||
#define BN_MP_CLEAR_C
|
||||
#define BN_MP_ABS_C
|
||||
#define BN_MP_CLEAR_MULTI_C
|
||||
#define BN_MP_REDUCE_IS_2K_L_C
|
||||
#define BN_S_MP_EXPTMOD_C
|
||||
#define BN_MP_DR_IS_MODULUS_C
|
||||
#define BN_MP_REDUCE_IS_2K_C
|
||||
#define BN_MP_ISODD_C
|
||||
#define BN_MP_EXPTMOD_FAST_C
|
||||
#define BN_S_MP_EXPTMOD_C
|
||||
#endif
|
||||
|
||||
#if defined(BN_MP_EXPTMOD_FAST_C)
|
||||
@ -725,6 +731,17 @@
|
||||
#define BN_MP_CLEAR_C
|
||||
#endif
|
||||
|
||||
#if defined(BN_MP_REDUCE_2K_L_C)
|
||||
#define BN_MP_INIT_C
|
||||
#define BN_MP_COUNT_BITS_C
|
||||
#define BN_MP_DIV_2D_C
|
||||
#define BN_MP_MUL_C
|
||||
#define BN_S_MP_ADD_C
|
||||
#define BN_MP_CMP_MAG_C
|
||||
#define BN_S_MP_SUB_C
|
||||
#define BN_MP_CLEAR_C
|
||||
#endif
|
||||
|
||||
#if defined(BN_MP_REDUCE_2K_SETUP_C)
|
||||
#define BN_MP_INIT_C
|
||||
#define BN_MP_COUNT_BITS_C
|
||||
@ -733,11 +750,22 @@
|
||||
#define BN_S_MP_SUB_C
|
||||
#endif
|
||||
|
||||
#if defined(BN_MP_REDUCE_2K_SETUP_L_C)
|
||||
#define BN_MP_INIT_C
|
||||
#define BN_MP_2EXPT_C
|
||||
#define BN_MP_COUNT_BITS_C
|
||||
#define BN_S_MP_SUB_C
|
||||
#define BN_MP_CLEAR_C
|
||||
#endif
|
||||
|
||||
#if defined(BN_MP_REDUCE_IS_2K_C)
|
||||
#define BN_MP_REDUCE_2K_C
|
||||
#define BN_MP_COUNT_BITS_C
|
||||
#endif
|
||||
|
||||
#if defined(BN_MP_REDUCE_IS_2K_L_C)
|
||||
#endif
|
||||
|
||||
#if defined(BN_MP_REDUCE_SETUP_C)
|
||||
#define BN_MP_2EXPT_C
|
||||
#define BN_MP_DIV_C
|
||||
@ -815,6 +843,11 @@
|
||||
#define BN_MP_TO_UNSIGNED_BIN_C
|
||||
#endif
|
||||
|
||||
#if defined(BN_MP_TO_SIGNED_BIN_N_C)
|
||||
#define BN_MP_SIGNED_BIN_SIZE_C
|
||||
#define BN_MP_TO_SIGNED_BIN_C
|
||||
#endif
|
||||
|
||||
#if defined(BN_MP_TO_UNSIGNED_BIN_C)
|
||||
#define BN_MP_INIT_COPY_C
|
||||
#define BN_MP_ISZERO_C
|
||||
@ -822,6 +855,11 @@
|
||||
#define BN_MP_CLEAR_C
|
||||
#endif
|
||||
|
||||
#if defined(BN_MP_TO_UNSIGNED_BIN_N_C)
|
||||
#define BN_MP_UNSIGNED_BIN_SIZE_C
|
||||
#define BN_MP_TO_UNSIGNED_BIN_C
|
||||
#endif
|
||||
|
||||
#if defined(BN_MP_TOOM_MUL_C)
|
||||
#define BN_MP_INIT_MULTI_C
|
||||
#define BN_MP_MOD_2D_C
|
||||
@ -902,10 +940,12 @@
|
||||
#define BN_MP_INIT_C
|
||||
#define BN_MP_CLEAR_C
|
||||
#define BN_MP_REDUCE_SETUP_C
|
||||
#define BN_MP_REDUCE_C
|
||||
#define BN_MP_REDUCE_2K_SETUP_L_C
|
||||
#define BN_MP_REDUCE_2K_L_C
|
||||
#define BN_MP_MOD_C
|
||||
#define BN_MP_COPY_C
|
||||
#define BN_MP_SQR_C
|
||||
#define BN_MP_REDUCE_C
|
||||
#define BN_MP_MUL_C
|
||||
#define BN_MP_SET_C
|
||||
#define BN_MP_EXCH_C
|
||||
|
Loading…
Reference in New Issue
Block a user