added libtommath-0.09
This commit is contained in:
parent
2cfbb89142
commit
40c00add00
104
bn.c
104
bn.c
@ -2888,11 +2888,6 @@ int mp_exptmod(mp_int *G, mp_int *X, mp_int *P, mp_int *Y)
|
||||
*
|
||||
* The M table contains powers of the input base, e.g. M[x] = G^x mod P
|
||||
*
|
||||
* This table is not made in the straight forward manner of a for loop with only
|
||||
* multiplications. Since squaring is faster than multiplication we use as many
|
||||
* squarings as possible. As a result about half of the steps to make the M
|
||||
* table are squarings.
|
||||
*
|
||||
* The first half of the table is not computed though accept for M[0] and M[1]
|
||||
*/
|
||||
mp_set(&M[0], 1);
|
||||
@ -2914,7 +2909,6 @@ int mp_exptmod(mp_int *G, mp_int *X, mp_int *P, mp_int *Y)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* create upper table */
|
||||
for (x = (1<<(winsize-1))+1; x < (1 << winsize); x++) {
|
||||
if ((err = mp_mul(&M[x-1], &M[1], &M[x])) != MP_OKAY) {
|
||||
@ -3132,6 +3126,104 @@ __T1: mp_clear(&t1);
|
||||
return res;
|
||||
}
|
||||
|
||||
/* computes the jacobi c = (a | n) (or Legendre if b is prime)
|
||||
* HAC pp. 73 Algorithm 2.149
|
||||
*/
|
||||
int mp_jacobi(mp_int *a, mp_int *n, int *c)
|
||||
{
|
||||
mp_int a1, n1, e;
|
||||
int s, r, res;
|
||||
mp_digit residue;
|
||||
|
||||
/* step 1. if a == 0, return 0 */
|
||||
if (mp_iszero(a) == 1) {
|
||||
*c = 0;
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* step 2. if a == 1, return 1 */
|
||||
if (mp_cmp_d(a, 1) == MP_EQ) {
|
||||
*c = 1;
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* default */
|
||||
s = 0;
|
||||
|
||||
/* step 3. write a = a1 * 2^e */
|
||||
if ((res = mp_init_copy(&a1, a)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
if ((res = mp_init(&n1)) != MP_OKAY) {
|
||||
goto __A1;
|
||||
}
|
||||
|
||||
if ((res = mp_init(&e)) != MP_OKAY) {
|
||||
goto __N1;
|
||||
}
|
||||
|
||||
while (mp_iseven(&a1) == 1) {
|
||||
if ((res = mp_add_d(&e, 1, &e)) != MP_OKAY) {
|
||||
goto __E;
|
||||
}
|
||||
|
||||
if ((res = mp_div_2(&a1, &a1)) != MP_OKAY) {
|
||||
goto __E;
|
||||
}
|
||||
}
|
||||
|
||||
/* step 4. if e is even set s=1 */
|
||||
if (mp_iseven(&e) == 1) {
|
||||
s = 1;
|
||||
} else {
|
||||
/* else set s=1 if n = 1/7 (mod 8) or s=-1 if n = 3/5 (mod 8) */
|
||||
if ((res = mp_mod_d(n, 8, &residue)) != MP_OKAY) {
|
||||
goto __E;
|
||||
}
|
||||
|
||||
if (residue == 1 || residue == 7) {
|
||||
s = 1;
|
||||
} else if (residue == 3 || residue == 5) {
|
||||
s = -1;
|
||||
}
|
||||
}
|
||||
|
||||
/* step 5. if n == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */
|
||||
if ((res = mp_mod_d(n, 4, &residue)) != MP_OKAY) {
|
||||
goto __E;
|
||||
}
|
||||
if (residue == 3) {
|
||||
if ((res = mp_mod_d(&a1, 4, &residue)) != MP_OKAY) {
|
||||
goto __E;
|
||||
}
|
||||
if (residue == 3) {
|
||||
s = -s;
|
||||
}
|
||||
}
|
||||
|
||||
/* if a1 == 1 we're done */
|
||||
if (mp_cmp_d(&a1, 1) == MP_EQ) {
|
||||
*c = s;
|
||||
} else {
|
||||
/* n1 = n mod a1 */
|
||||
if ((res = mp_mod(n, &a1, &n1)) != MP_OKAY) {
|
||||
goto __E;
|
||||
}
|
||||
if ((res = mp_jacobi(&n1, &a1, &r)) != MP_OKAY) {
|
||||
goto __E;
|
||||
}
|
||||
*c = s * r;
|
||||
}
|
||||
|
||||
/* done */
|
||||
res = MP_OKAY;
|
||||
__E: mp_clear(&e);
|
||||
__N1: mp_clear(&n1);
|
||||
__A1: mp_clear(&a1);
|
||||
return res;
|
||||
}
|
||||
|
||||
/* --> radix conversion <-- */
|
||||
/* reverse an array, used for radix code */
|
||||
static void reverse(unsigned char *s, int len)
|
||||
|
13
bn.h
13
bn.h
@ -21,6 +21,11 @@
|
||||
#include <ctype.h>
|
||||
#include <limits.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
|
||||
/* some default configurations.
|
||||
*
|
||||
* A "mp_digit" must be able to hold DIGIT_BIT + 1 bits
|
||||
@ -239,6 +244,9 @@ int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
|
||||
/* shortcut for square root */
|
||||
#define mp_sqrt(a, b) mp_n_root(a, 2, b)
|
||||
|
||||
/* computes the jacobi c = (a | n) (or Legendre if b is prime) */
|
||||
int mp_jacobi(mp_int *a, mp_int *n, int *c);
|
||||
|
||||
/* used to setup the Barrett reduction for a given modulus b */
|
||||
int mp_reduce_setup(mp_int *a, mp_int *b);
|
||||
|
||||
@ -280,5 +288,10 @@ int mp_radix_size(mp_int *a, int radix);
|
||||
#define mp_todecimal(M, S) mp_toradix((M), (S), 10)
|
||||
#define mp_tohex(M, S) mp_toradix((M), (S), 16)
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
|
21
bn.tex
21
bn.tex
@ -1,7 +1,7 @@
|
||||
\documentclass{article}
|
||||
\begin{document}
|
||||
|
||||
\title{LibTomMath v0.08 \\ A Free Multiple Precision Integer Library}
|
||||
\title{LibTomMath v0.09 \\ A Free Multiple Precision Integer Library}
|
||||
\author{Tom St Denis \\ tomstdenis@iahu.ca}
|
||||
\maketitle
|
||||
\newpage
|
||||
@ -23,8 +23,8 @@ LibTomMath was designed with the following goals in mind:
|
||||
\item Be written entirely in portable C.
|
||||
\end{enumerate}
|
||||
|
||||
All three goals have been achieved. Particularly the speed increase goal. For example, a 512-bit modular exponentiation is
|
||||
four times faster\footnote{On an Athlon XP with GCC 3.2} with LibTomMath compared to MPI.
|
||||
All three goals have been achieved. Particularly the speed increase goal. For example, a 512-bit modular exponentiation
|
||||
is eight times faster\footnote{On an Athlon XP with GCC 3.2} with LibTomMath compared to MPI.
|
||||
|
||||
Being compatible with MPI means that applications that already use it can be ported fairly quickly. Currently there are
|
||||
a few differences but there are many similarities. In fact the average MPI based application can be ported in under 15
|
||||
@ -51,9 +51,7 @@ with
|
||||
#include "bn.h"
|
||||
\end{verbatim}
|
||||
|
||||
Remove ``mpi.c'' from your project and replace it with ``bn.c''. Note that currently MPI has a few more functions than
|
||||
LibTomMath has (e.g. no square-root code and a few others). Those are planned for future releases. In the interim work
|
||||
arounds can be sought. Note that LibTomMath doesn't lack any functions required to build a cryptosystem.
|
||||
Remove ``mpi.c'' from your project and replace it with ``bn.c''.
|
||||
|
||||
\section{Programming with LibTomMath}
|
||||
|
||||
@ -278,6 +276,9 @@ int mp_lcm(mp_int *a, mp_int *b, mp_int *c);
|
||||
/* find the b'th root of a */
|
||||
int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
|
||||
|
||||
/* computes the jacobi c = (a | n) (or Legendre if b is prime) */
|
||||
int mp_jacobi(mp_int *a, mp_int *n, int *c);
|
||||
|
||||
/* d = a^b (mod c) */
|
||||
int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
|
||||
\end{verbatim}
|
||||
@ -444,6 +445,14 @@ requires $b$ multiplications and one division for a total work of $O(6N^2 \cdot
|
||||
If the input $a$ is negative and $b$ is even the function returns an error. Otherwise the function will return a root
|
||||
that has a sign that agrees with the sign of $a$.
|
||||
|
||||
\subsubsection{mp\_jacobi(mp\_int *a, mp\_int *n, int *c)}
|
||||
Computes $c = \left ( {a \over n} \right )$ or the Jacobi function of $(a, n)$ and stores the result in an integer addressed
|
||||
by $c$. Since the result of the Jacobi function $\left ( {a \over n} \right ) \in \lbrace -1, 0, 1 \rbrace$ it seemed
|
||||
natural to store the result in a simple C style \textbf{int}. If $n$ is prime then the Jacobi function produces
|
||||
the same results as the Legendre function\footnote{Source: Handbook of Applied Cryptography, pp. 73}. This means if
|
||||
$n$ is prime then $\left ( {a \over n} \right )$ is equal to $1$ if $a$ is a quadratic residue modulo $n$ or $-1$ if
|
||||
it is not.
|
||||
|
||||
\subsubsection{mp\_exptmod(mp\_int *a, mp\_int *b, mp\_int *c, mp\_int *d)}
|
||||
Computes $d = a^b \mbox{ (mod }c\mbox{)}$ using a sliding window $k$-ary exponentiation algorithm. For an $\alpha$-bit
|
||||
exponent it performs $\alpha$ squarings and at most $\lfloor \alpha/k \rfloor + k$ multiplications. The value of $k$ is
|
||||
|
@ -1,3 +1,8 @@
|
||||
Jan 6th, 2003
|
||||
v0.09 -- Updated the manual to reflect recent changes. :-)
|
||||
-- Added Jacobi function (mp_jacobi) to supplement the number theory side of the lib
|
||||
-- Added a Mersenne prime finder demo in ./etc/mersenne.c
|
||||
|
||||
Jan 2nd, 2003
|
||||
v0.08 -- Sped up the multipliers by moving the inner loop variables into a smaller scope
|
||||
-- Corrected a bunch of small "warnings"
|
||||
|
1
demo.c
1
demo.c
@ -94,7 +94,6 @@ int main(void)
|
||||
mp_init(&d);
|
||||
mp_init(&e);
|
||||
mp_init(&f);
|
||||
|
||||
|
||||
mp_read_radix(&a, "V//////////////////////////////////////////////////////////////////////////////////////", 64);
|
||||
mp_reduce_setup(&b, &a);
|
||||
|
@ -1 +1 @@
|
||||
CFLAGS += -I../ -Wall -W -O3 -fomit-frame-pointer -funroll-loops ../bn.c
|
||||
CFLAGS += -I../ -Wall -W -Wshadow -ansi -O3 -fomit-frame-pointer -funroll-loops ../bn.c
|
150
etc/mersenne.c
Normal file
150
etc/mersenne.c
Normal file
@ -0,0 +1,150 @@
|
||||
/* Finds Mersenne primes using the Lucas-Lehmer test
|
||||
*
|
||||
* Tom St Denis, tomstdenis@iahu.ca
|
||||
*/
|
||||
#include <time.h>
|
||||
#include <bn.h>
|
||||
|
||||
int is_mersenne(long s, int *pp)
|
||||
{
|
||||
mp_int n, u, mu;
|
||||
int res, k;
|
||||
long ss;
|
||||
|
||||
*pp = 0;
|
||||
|
||||
if ((res = mp_init(&n)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
if ((res = mp_init(&u)) != MP_OKAY) {
|
||||
goto __N;
|
||||
}
|
||||
|
||||
if ((res = mp_init(&mu)) != MP_OKAY) {
|
||||
goto __U;
|
||||
}
|
||||
|
||||
/* n = 2^s - 1 */
|
||||
mp_set(&n, 1);
|
||||
ss = s;
|
||||
while (ss--) {
|
||||
if ((res = mp_mul_2(&n, &n)) != MP_OKAY) {
|
||||
goto __MU;
|
||||
}
|
||||
}
|
||||
if ((res = mp_sub_d(&n, 1, &n)) != MP_OKAY) {
|
||||
goto __MU;
|
||||
}
|
||||
|
||||
/* setup mu */
|
||||
if ((res = mp_reduce_setup(&mu, &n)) != MP_OKAY) {
|
||||
goto __MU;
|
||||
}
|
||||
|
||||
/* set u=4 */
|
||||
mp_set(&u, 4);
|
||||
|
||||
/* for k=1 to s-2 do */
|
||||
for (k = 1; k <= s - 2; k++) {
|
||||
/* u = u^2 - 2 mod n */
|
||||
if ((res = mp_sqr(&u, &u)) != MP_OKAY) {
|
||||
goto __MU;
|
||||
}
|
||||
if ((res = mp_sub_d(&u, 2, &u)) != MP_OKAY) {
|
||||
goto __MU;
|
||||
}
|
||||
|
||||
/* make sure u is positive */
|
||||
if (u.sign == MP_NEG) {
|
||||
if ((res = mp_add(&u, &n, &u)) != MP_OKAY) {
|
||||
goto __MU;
|
||||
}
|
||||
}
|
||||
|
||||
/* reduce */
|
||||
if ((res = mp_reduce(&u, &n, &mu)) != MP_OKAY) {
|
||||
goto __MU;
|
||||
}
|
||||
}
|
||||
|
||||
/* if u == 0 then its prime */
|
||||
if (mp_iszero(&u) == 1) {
|
||||
*pp = 1;
|
||||
}
|
||||
|
||||
res = MP_OKAY;
|
||||
__MU: mp_clear(&mu);
|
||||
__U: mp_clear(&u);
|
||||
__N: mp_clear(&n);
|
||||
return res;
|
||||
}
|
||||
|
||||
/* square root of a long < 65536 */
|
||||
long i_sqrt(long x)
|
||||
{
|
||||
long x1, x2;
|
||||
|
||||
x2 = 16;
|
||||
do {
|
||||
x1 = x2;
|
||||
x2 = x1 - ((x1 * x1) - x)/(2*x1);
|
||||
} while (x1 != x2);
|
||||
|
||||
if (x1*x1 > x) {
|
||||
--x1;
|
||||
}
|
||||
|
||||
return x1;
|
||||
}
|
||||
|
||||
/* is the long prime by brute force */
|
||||
int isprime(long k)
|
||||
{
|
||||
long y, z;
|
||||
|
||||
y = i_sqrt(k);
|
||||
for (z = 2; z <= y; z++) {
|
||||
if ((k % z) == 0) return 0;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
int main(void)
|
||||
{
|
||||
int pp;
|
||||
long k;
|
||||
clock_t tt;
|
||||
|
||||
k = 3;
|
||||
|
||||
for (;;) {
|
||||
/* start time */
|
||||
tt = clock();
|
||||
|
||||
/* test if 2^k - 1 is prime */
|
||||
if (is_mersenne(k, &pp) != MP_OKAY) {
|
||||
printf("Whoa error\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (pp == 1) {
|
||||
/* count time */
|
||||
tt = clock() - tt;
|
||||
|
||||
/* display if prime */
|
||||
printf("2^%-5ld - 1 is prime, test took %ld ticks\n", k, tt);
|
||||
}
|
||||
|
||||
/* goto next odd exponent */
|
||||
k += 2;
|
||||
|
||||
/* but make sure its prime */
|
||||
while (isprime(k) == 0) {
|
||||
k += 2;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
@ -56,7 +56,7 @@ static mp_digit prime_digit()
|
||||
++y;
|
||||
next = (y+1)*(y+1);
|
||||
}
|
||||
|
||||
|
||||
/* loop if divisible by 3,5,7,11,13,17,19,23,29 */
|
||||
if ((r % 3) == 0) { x = 0; continue; }
|
||||
if ((r % 5) == 0) { x = 0; continue; }
|
||||
@ -138,7 +138,7 @@ int pprime(int k, mp_int *p, mp_int *q)
|
||||
|
||||
/* now loop making the single digit */
|
||||
while (mp_count_bits(&a) < k) {
|
||||
printf("prime is %4d bits left\r", k - mp_count_bits(&a)); fflush(stdout);
|
||||
printf("prime has %4d bits left\r", k - mp_count_bits(&a)); fflush(stdout);
|
||||
top:
|
||||
mp_set(&b, prime_digit());
|
||||
|
||||
|
6
makefile
6
makefile
@ -1,13 +1,13 @@
|
||||
CC = gcc
|
||||
CFLAGS += -Wall -W -O3 -fomit-frame-pointer -funroll-loops
|
||||
CFLAGS += -Wall -W -Wshadow -ansi -O3 -fomit-frame-pointer -funroll-loops
|
||||
|
||||
VERSION=0.08
|
||||
VERSION=0.09
|
||||
|
||||
default: test
|
||||
|
||||
test: bn.o demo.o
|
||||
$(CC) bn.o demo.o -o demo
|
||||
cd mtest ; gcc -O3 -fomit-frame-pointer -funroll-loops mtest.c -o mtest.exe -s
|
||||
cd mtest ; gcc $(CFLAGS) mtest.c -o mtest.exe -s
|
||||
|
||||
# builds the x86 demo
|
||||
test86:
|
||||
|
@ -41,7 +41,7 @@ void rand_num(mp_int *a)
|
||||
unsigned char buf[512];
|
||||
|
||||
top:
|
||||
size = 1 + ((fgetc(rng)*fgetc(rng)) % 32);
|
||||
size = 1 + ((fgetc(rng)*fgetc(rng)) % 96);
|
||||
buf[0] = (fgetc(rng)&1)?1:0;
|
||||
fread(buf+1, 1, size, rng);
|
||||
for (n = 0; n < size; n++) {
|
||||
@ -57,7 +57,7 @@ void rand_num2(mp_int *a)
|
||||
unsigned char buf[512];
|
||||
|
||||
top:
|
||||
size = 1 + ((fgetc(rng)*fgetc(rng)) % 32);
|
||||
size = 1 + ((fgetc(rng)*fgetc(rng)) % 96);
|
||||
buf[0] = (fgetc(rng)&1)?1:0;
|
||||
fread(buf+1, 1, size, rng);
|
||||
for (n = 0; n < size; n++) {
|
||||
|
Loading…
Reference in New Issue
Block a user