the lost files from the last commit

This commit is contained in:
czurnieden 2018-05-04 00:01:45 +02:00 committed by Steffen Jaeckel
parent a218ddce9b
commit 44ccca75be
5 changed files with 763 additions and 0 deletions

35
bn_mp_get_bit.c Normal file
View File

@ -0,0 +1,35 @@
#include "tommath_private.h"
#ifdef BN_MP_GET_BIT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*/
/* Checks the bit at position b and returns MP_YES
if the bit is 1, MP_NO if it is 0 and MP_VAL
in case of error */
int mp_get_bit(const mp_int *a, int b)
{
int limb;
mp_digit bit, isset;
if (b < 0) {
return MP_VAL;
}
limb = b / DIGIT_BIT;
bit = (mp_digit)1 << ((mp_digit)b % DIGIT_BIT);
isset = a->dp[limb] & bit;
return (isset != 0) ? MP_YES : MP_NO;
}
#endif

139
bn_mp_kronecker.c Normal file
View File

@ -0,0 +1,139 @@
#include "tommath_private.h"
#ifdef BN_MP_KRONECKER_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*/
/*
Kronecker symbol (a|p)
Straightforward implementation of algorithm 1.4.10 in
Henri Cohen: "A Course in Computational Algebraic Number Theory"
@book{cohen2013course,
title={A course in computational algebraic number theory},
author={Cohen, Henri},
volume={138},
year={2013},
publisher={Springer Science \& Business Media}
}
*/
int mp_kronecker(const mp_int *a, const mp_int *p, int *c)
{
mp_int a1, p1, r;
int e = MP_OKAY;
int v, k;
const int table[8] = {0, 1, 0, -1, 0, -1, 0, 1};
if (mp_iszero(p)) {
if (a->used == 1 && a->dp[0] == 1) {
*c = 1;
return e;
} else {
*c = 0;
return e;
}
}
if (mp_iseven(a) && mp_iseven(p)) {
*c = 0;
return e;
}
if ((e = mp_init_copy(&a1, a)) != MP_OKAY) {
return e;
}
if ((e = mp_init_copy(&p1, p)) != MP_OKAY) {
goto LBL_KRON_0;
}
v = mp_cnt_lsb(&p1);
if ((e = mp_div_2d(&p1, v, &p1, NULL)) != MP_OKAY) {
goto LBL_KRON_1;
}
if ((v & 0x1) == 0) {
k = 1;
} else {
k = table[a->dp[0] & 7];
}
if (p1.sign == MP_NEG) {
p1.sign = MP_ZPOS;
if (a1.sign == MP_NEG) {
k = -k;
}
}
if ((e = mp_init(&r)) != MP_OKAY) {
goto LBL_KRON_1;
}
for (;;) {
if (mp_iszero(&a1)) {
if (mp_cmp_d(&p1, 1) == MP_EQ) {
*c = k;
goto LBL_KRON;
} else {
*c = 0;
goto LBL_KRON;
}
}
v = mp_cnt_lsb(&a1);
if ((e = mp_div_2d(&a1, v, &a1, NULL)) != MP_OKAY) {
goto LBL_KRON;
}
if ((v & 0x1) == 1) {
k = k * table[p1.dp[0] & 7];
}
if (a1.sign == MP_NEG) {
// compute k = (-1)^((a1)*(p1-1)/4) * k
// a1.dp[0] + 1 cannot overflow because the MSB
// of the type mp_digit is not set by definition
if ((a1.dp[0] + 1) & p1.dp[0] & 2u) {
k = -k;
}
} else {
// compute k = (-1)^((a1-1)*(p1-1)/4) * k
if (a1.dp[0] & p1.dp[0] & 2u) {
k = -k;
}
}
if ((e = mp_copy(&a1,&r)) != MP_OKAY) {
goto LBL_KRON;
}
r.sign = MP_ZPOS;
if ((e = mp_mod(&p1, &r, &a1)) != MP_OKAY) {
goto LBL_KRON;
}
if ((e = mp_copy(&r, &p1)) != MP_OKAY) {
goto LBL_KRON;
}
}
LBL_KRON:
mp_clear(&r);
LBL_KRON_0:
mp_clear(&a1);
LBL_KRON_1:
mp_clear(&p1);
return e;
}
#endif

48
bn_mp_mul_si.c Normal file
View File

@ -0,0 +1,48 @@
#include "tommath_private.h"
#ifdef BN_MP_MUL_SI_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*/
// multiply bigint a with int d and put the result in c
// Like mp_mul_d() but with a signed long as the small input
int mp_mul_si(const mp_int *a, long d, mp_int *c)
{
mp_int t;
int err;
if ((err = mp_init(&t)) != MP_OKAY) {
return err;
}
if (d < 0) {
d = -d;
}
// mp_digit might be smaller than a long, which excludes
// the use of mp_mul_d() here.
if ((err = mp_set_int(&t, (unsigned long) d)) != MP_OKAY) {
goto LBL_MPMULSI_ERR;
}
if ((err = mp_mul(a, &t, c)) != MP_OKAY) {
goto LBL_MPMULSI_ERR;
}
if (d < 0) {
c->sign = (a->sign == MP_NEG) ? MP_ZPOS: MP_NEG;
}
LBL_MPMULSI_ERR:
mp_clear(&t);
return err;
}
#endif

View File

@ -0,0 +1,183 @@
#include "tommath_private.h"
#ifdef BN_MP_PRIME_FROBENIUS_UNDERWOOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*/
#ifdef MP_8BIT
// floor of positive solution of
// (2^16)-1 = (a+4)*(2*a+5)
// TODO: that is too small, would have to use a bigint for a instead
// #define LTM_FROBENIUS_UNDERWOOD_A 177
#error "Frobenius test not usable with MP_8BIT"
#endif
// floor of positive solution of
// (2^31)-1 = (a+4)*(2*a+5)
// TODO: that might be too small
#define LTM_FROBENIUS_UNDERWOOD_A 32764
int mp_prime_frobenius_underwood(const mp_int *N, int *result)
{
mp_int T1z,T2z,Np1z,sz,tz;
int a, ap2, length, i, j, isset;
int e = MP_OKAY;
*result = MP_NO;
if ((e = mp_init_multi(&T1z,&T2z,&Np1z,&sz,&tz, NULL)) != MP_OKAY) {
goto LBL_FU_ERR;
}
for (a = 0; a < LTM_FROBENIUS_UNDERWOOD_A; a++) {
//TODO: That's ugly! No, really, it is!
if (a==2||a==4||a==7||a==8||a==10||a==14||a==18||a==23||a==26||a==28) {
continue;
}
// (32764^2 - 4) < 2^31, no bigint for >MP_8BIT needed)
if ((e = mp_set_int(&T1z,(unsigned long)a)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_sqr(&T1z,&T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_sub_d(&T1z,4,&T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_kronecker(&T1z, N, &j)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if (j == -1) {
break;
}
if (j == 0) {
// composite
goto LBL_FU_ERR;
}
}
if (a >= LTM_FROBENIUS_UNDERWOOD_A) {
e = MP_VAL;
goto LBL_FU_ERR;
}
// Composite if N and (a+4)*(2*a+5) are not coprime
if ((e = mp_set_int(&T1z, (unsigned long)((a+4)*(2*a+5)))) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_gcd(N,&T1z,&T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if (!(T1z.used == 1 && T1z.dp[0] == 1u)) {
goto LBL_FU_ERR;
}
ap2 = a + 2;
if ((e = mp_add_d(N,1u,&Np1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
mp_set(&sz,1u);
mp_set(&tz,2u);
length = mp_count_bits(&Np1z);
for (i = length - 2; i >= 0; i--) {
/*
temp = (sz*(a*sz+2*tz))%N;
tz = ((tz-sz)*(tz+sz))%N;
sz = temp;
*/
if ((e = mp_mul_2(&tz,&T2z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
// TODO: is this small saving worth the branch?
if (a != 0) {
if ((e = mp_mul_d(&sz,(mp_digit)a,&T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_add(&T1z,&T2z,&T2z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
}
if ((e = mp_mul(&T2z, &sz, &T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_sub(&tz, &sz, &T2z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_add(&sz, &tz, &sz)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_mul(&sz, &T2z, &tz)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_mod(&tz, N, &tz)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_mod(&T1z, N, &sz)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((isset = mp_get_bit(&Np1z,i)) == MP_VAL) {
e = isset;
goto LBL_FU_ERR;
}
if (isset == MP_YES) {
/*
temp = (a+2) * sz + tz
tz = 2 * tz - sz
sz = temp
*/
if (a == 0) {
if ((e = mp_mul_2(&sz,&T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
} else {
if ((e = mp_mul_d(&sz, (mp_digit) ap2, &T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
}
if ((e = mp_add(&T1z, &tz, &T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_mul_2(&tz, &T2z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_sub(&T2z, &sz, &tz)) != MP_OKAY) {
goto LBL_FU_ERR;
}
mp_exch(&sz,&T1z);
}
}
if ((e = mp_set_int(&T1z, (unsigned long)(2 * a + 5))) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_mod(&T1z,N,&T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if (mp_iszero(&sz) && (mp_cmp(&tz, &T1z) == MP_EQ)) {
*result = MP_YES;
goto LBL_FU_ERR;
}
LBL_FU_ERR:
mp_clear_multi(&T1z,&T2z,&Np1z,&sz,&tz, NULL);
return e;
}
#endif

View File

@ -0,0 +1,358 @@
#include "tommath_private.h"
#ifdef BN_MP_PRIME_STRONG_LUCAS_SELFRIDGE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*/
#ifdef MP_8BIT
#error "BPSW test not for MP_8BIT yet"
#endif
/*
Strong Lucas-Selfridge test.
returns MP_YES if it is a strong L-S prime, MP_NO if it is composite
Code ported from Thomas Ray Nicely's implementation of the BPSW test
at http://www.trnicely.net/misc/bpsw.html
Freeware copyright (C) 2016 Thomas R. Nicely <http://www.trnicely.net>.
Released into the public domain by the author, who disclaims any legal
liability arising from its use
The multi-line comments are made by Thomas R. Nicely and are copied verbatim.
Single-line comments are by the code-portist.
(If that name sounds familiar, he is the guy who found the fdiv bug in the
Pentium (P5x, I think) Intel processor)
*/
int mp_prime_strong_lucas_selfridge(const mp_int *a, int *result)
{
// TODO: choose better variable names! "Dz" and "dz"? Really?
mp_int Dz, gcd, Np1, dz, Uz, Vz, U2mz, V2mz, Qmz, Q2mz, Qkdz, T1z, T2z, T3z, T4z, Q2kdz;
// TODO: Some of them need the full 32 bit, hence the (temporary) exclusion of MP_8BIT
int32_t D, Ds, J, sign, P, Q, r, s, u, Nbits;
int e = MP_OKAY;
int isset;
*result = MP_NO;
/*
Find the first element D in the sequence {5, -7, 9, -11, 13, ...}
such that Jacobi(D,N) = -1 (Selfridge's algorithm). Theory
indicates that, if N is not a perfect square, D will "nearly
always" be "small." Just in case, an overflow trap for D is
included.
*/
D = 5;
sign = 1;
if ((e = mp_init_multi(&Dz, &gcd, &Np1, &dz, &Uz, &Vz, &U2mz, &V2mz, &Qmz, &Q2mz, &Qkdz, &T1z, &T2z, &T3z, &T4z, &Q2kdz,
NULL)) != MP_OKAY) {
return e;
}
for (;;) {
Ds = sign * D;
sign = -sign;
if ((e = mp_set_int(&Dz,(unsigned long) D)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_gcd(a, &Dz, &gcd)) != MP_OKAY) {
goto LBL_LS_ERR;
}
/* if 1 < GCD < N then N is composite with factor "D", and
Jacobi(D,N) is technically undefined (but often returned
as zero). */
if ((gcd.used > 1 || gcd.dp[0] > 1) && mp_cmp(&gcd,a) == MP_LT) {
goto LBL_LS_ERR;
}
if ((e = mp_kronecker(&Dz, a, &J)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if (J < 0) {
break;
}
D += 2;
if (D > INT_MAX - 2) {
e = MP_VAL;
goto LBL_LS_ERR;
}
}
P = 1; /* Selfridge's choice */
Q = (1 - Ds) / 4; /* Required so D = P*P - 4*Q */
/* NOTE: The conditions (a) N does not divide Q, and
(b) D is square-free or not a perfect square, are included by
some authors; e.g., "Prime numbers and computer methods for
factorization," Hans Riesel (2nd ed., 1994, Birkhauser, Boston),
p. 130. For this particular application of Lucas sequences,
these conditions were found to be immaterial. */
/* Now calculate N - Jacobi(D,N) = N + 1 (even), and calculate the
odd positive integer d and positive integer s for which
N + 1 = 2^s*d (similar to the step for N - 1 in Miller's test).
The strong Lucas-Selfridge test then returns N as a strong
Lucas probable prime (slprp) if any of the following
conditions is met: U_d=0, V_d=0, V_2d=0, V_4d=0, V_8d=0,
V_16d=0, ..., etc., ending with V_{2^(s-1)*d}=V_{(N+1)/2}=0
(all equalities mod N). Thus d is the highest index of U that
must be computed (since V_2m is independent of U), compared
to U_{N+1} for the standard Lucas-Selfridge test; and no
index of V beyond (N+1)/2 is required, just as in the
standard Lucas-Selfridge test. However, the quantity Q^d must
be computed for use (if necessary) in the latter stages of
the test. The result is that the strong Lucas-Selfridge test
has a running time only slightly greater (order of 10 %) than
that of the standard Lucas-Selfridge test, while producing
only (roughly) 30 % as many pseudoprimes (and every strong
Lucas pseudoprime is also a standard Lucas pseudoprime). Thus
the evidence indicates that the strong Lucas-Selfridge test is
more effective than the standard Lucas-Selfridge test, and a
Baillie-PSW test based on the strong Lucas-Selfridge test
should be more reliable. */
if ((e = mp_add_d(a,1,&Np1)) != MP_OKAY) {
goto LBL_LS_ERR;
}
s = mp_cnt_lsb(&Np1);
// this should round towards zero because
// Thomas R. Nicely used GMP's mpz_tdiv_q_2exp()
// mp_div_2d() does that
if ((e = mp_div_2d(&Np1, s, &dz, NULL)) != MP_OKAY) {
goto LBL_LS_ERR;
}
/* We must now compute U_d and V_d. Since d is odd, the accumulated
values U and V are initialized to U_1 and V_1 (if the target
index were even, U and V would be initialized instead to U_0=0
and V_0=2). The values of U_2m and V_2m are also initialized to
U_1 and V_1; the FOR loop calculates in succession U_2 and V_2,
U_4 and V_4, U_8 and V_8, etc. If the corresponding bits
(1, 2, 3, ...) of t are on (the zero bit having been accounted
for in the initialization of U and V), these values are then
combined with the previous totals for U and V, using the
composition formulas for addition of indices. */
mp_set(&Uz, 1u); /* U=U_1 */
mp_set(&Vz, (mp_digit)P); /* V=V_1 */
mp_set(&U2mz, 1u); /* U_1 */
mp_set(&V2mz, (mp_digit)P); /* V_1 */
if (Q < 0) {
Q = -Q;
if ((e = mp_set_int(&Qmz, (unsigned long) Q)) != MP_OKAY) {
goto LBL_LS_ERR;
}
Qmz.sign = MP_NEG;
if ((e = mp_set_int(&Q2mz, (unsigned long)(2 * Q))) != MP_OKAY) {
goto LBL_LS_ERR;
}
Q2mz.sign = MP_NEG;
/* Initializes calculation of Q^d */
if ((e = mp_set_int(&Qkdz, (unsigned long) Q)) != MP_OKAY) {
goto LBL_LS_ERR;
}
Qkdz.sign = MP_NEG;
Q = -Q;
} else {
if ((e = mp_set_int(&Qmz, (unsigned long) Q)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_set_int(&Q2mz, (unsigned long)(2 * Q))) != MP_OKAY) {
goto LBL_LS_ERR;
}
/* Initializes calculation of Q^d */
if ((e = mp_set_int(&Qkdz, (unsigned long) Q)) != MP_OKAY) {
goto LBL_LS_ERR;
}
}
Nbits = mp_count_bits(&dz);
for (u = 1; u < Nbits; u++) { /* zero bit off, already accounted for */
/* Formulas for doubling of indices (carried out mod N). Note that
* the indices denoted as "2m" are actually powers of 2, specifically
* 2^(ul-1) beginning each loop and 2^ul ending each loop.
*
* U_2m = U_m*V_m
* V_2m = V_m*V_m - 2*Q^m
*/
if ((e = mp_mul(&U2mz,&V2mz,&U2mz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_mod(&U2mz,a,&U2mz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_sqr(&V2mz,&V2mz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_sub(&V2mz,&Q2mz,&V2mz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_mod(&V2mz,a,&V2mz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
/* Must calculate powers of Q for use in V_2m, also for Q^d later */
if ((e = mp_sqr(&Qmz,&Qmz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
/* prevents overflow */ // still necessary without a fixed prealloc'd mem.?
if ((e = mp_mod(&Qmz,a,&Qmz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_mul_2(&Qmz,&Q2mz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((isset = mp_get_bit(&dz,u)) == MP_VAL) {
e = isset;
goto LBL_LS_ERR;
}
if (isset == MP_YES) {
/* Formulas for addition of indices (carried out mod N);
*
* U_(m+n) = (U_m*V_n + U_n*V_m)/2
* V_(m+n) = (V_m*V_n + D*U_m*U_n)/2
*
* Be careful with division by 2 (mod N)!
*/
if ((e = mp_mul(&U2mz,&Vz,&T1z)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_mul(&Uz,&V2mz,&T2z)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_mul(&V2mz,&Vz,&T3z)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_mul(&U2mz,&Uz,&T4z)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_mul_si(&T4z,(long)Ds,&T4z)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_add(&T1z,&T2z,&Uz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if (mp_isodd(&Uz)) {
if ((e = mp_add(&Uz,a,&Uz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
}
// This should round towards negative infinity because
// Thomas R. Nicely used GMP's mpz_fdiv_q_2exp().
// But mp_div_2() does not do so, it is truncating instead.
if ((e = mp_div_2(&Uz,&Uz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if (Uz.sign == MP_NEG && mp_isodd(&Uz)) {
if ((e = mp_sub_d(&Uz,1,&Uz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
}
if ((e = mp_add(&T3z,&T4z,&Vz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if (mp_isodd(&Vz)) {
if ((e = mp_add(&Vz,a,&Vz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
}
if ((e = mp_div_2(&Vz,&Vz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if (Vz.sign == MP_NEG) {
if ((e = mp_sub_d(&Vz,1,&Vz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
}
if ((e = mp_mod(&Uz,a,&Uz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_mod(&Vz,a,&Vz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
/* Calculating Q^d for later use */
if ((e = mp_mul(&Qkdz,&Qmz,&Qkdz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_mod(&Qkdz,a,&Qkdz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
}
}
/* If U_d or V_d is congruent to 0 mod N, then N is a prime or a
strong Lucas pseudoprime. */
if (mp_iszero(&Uz) || mp_iszero(&Vz)) {
*result = MP_YES;
goto LBL_LS_ERR;
}
/* NOTE: Ribenboim ("The new book of prime number records," 3rd ed.,
1995/6) omits the condition V0 on p.142, but includes it on
p. 130. The condition is NECESSARY; otherwise the test will
return false negatives---e.g., the primes 29 and 2000029 will be
returned as composite. */
/* Otherwise, we must compute V_2d, V_4d, V_8d, ..., V_{2^(s-1)*d}
by repeated use of the formula V_2m = V_m*V_m - 2*Q^m. If any of
these are congruent to 0 mod N, then N is a prime or a strong
Lucas pseudoprime. */
/* Initialize 2*Q^(d*2^r) for V_2m */
if ((e = mp_mul_2(&Qkdz,&Q2kdz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
for (r = 1; r < s; r++) {
if ((e = mp_sqr(&Vz,&Vz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_sub(&Vz,&Q2kdz,&Vz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_mod(&Vz,a,&Vz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if (mp_iszero(&Vz)) {
*result = MP_YES;
goto LBL_LS_ERR;
}
/* Calculate Q^{d*2^r} for next r (final iteration irrelevant). */
if (r < s - 1) {
if ((e = mp_sqr(&Qkdz,&Qkdz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_mod(&Qkdz,a,&Qkdz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_mul_2(&Qkdz,&Q2kdz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
}
}
LBL_LS_ERR:
mp_clear_multi(&Dz, &gcd, &Np1, &Uz, &Vz, &U2mz, &V2mz, &Qmz, &Q2mz, &Qkdz, &T1z, &T2z, &T3z, &T4z, &Q2kdz, NULL);
return e;
}
#endif