format with astyle (step 1)

This commit is contained in:
Francois Perrad 2017-08-30 19:07:12 +02:00
parent 71266b3eb9
commit 45771cc91c
101 changed files with 131 additions and 102 deletions

27
astylerc Normal file
View File

@ -0,0 +1,27 @@
# Artistic Style, see http://astyle.sourceforge.net/
# full documentation, see: http://astyle.sourceforge.net/astyle.html
#
# usage:
# astyle --options=astylerc *.[ch]
## Bracket Style Options
style=kr
## Tab Options
indent=spaces=3
## Bracket Modify Options
## Indentation Options
min-conditional-indent=0
## Padding Options
pad-header
unpad-paren
align-pointer=name
## Formatting Options
break-after-logical
max-code-length=120
convert-tabs
mode=c

View File

@ -21,7 +21,7 @@
* Based on slow invmod except this is optimized for the case where b is
* odd as per HAC Note 14.64 on pp. 610
*/
int fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c)
{
mp_int x, y, u, v, B, D;
int res, neg;

View File

@ -23,7 +23,7 @@
*
* Based on Algorithm 14.32 on pp.601 of HAC.
*/
int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
int fast_mp_montgomery_reduce(mp_int *x, mp_int *n, mp_digit rho)
{
int ix, res, olduse;
mp_word W[MP_WARRAY];

View File

@ -31,7 +31,7 @@
* Based on Algorithm 14.12 on pp.595 of HAC.
*
*/
int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
{
int olduse, res, pa, ix, iz;
mp_digit W[MP_WARRAY];

View File

@ -24,7 +24,7 @@
*
* Based on Algorithm 14.12 on pp.595 of HAC.
*/
int fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
{
int olduse, res, pa, ix, iz;
mp_digit W[MP_WARRAY];

View File

@ -25,7 +25,7 @@
After that loop you do the squares and add them in.
*/
int fast_s_mp_sqr (mp_int * a, mp_int * b)
int fast_s_mp_sqr(mp_int *a, mp_int *b)
{
int olduse, res, pa, ix, iz;
mp_digit W[MP_WARRAY], *tmpx;

View File

@ -20,7 +20,7 @@
* Simple algorithm which zeroes the int, grows it then just sets one bit
* as required.
*/
int mp_2expt (mp_int * a, int b)
int mp_2expt(mp_int *a, int b)
{
int res;

View File

@ -19,7 +19,7 @@
*
* Simple function copies the input and fixes the sign to positive
*/
int mp_abs (mp_int * a, mp_int * b)
int mp_abs(mp_int *a, mp_int *b)
{
int res;

View File

@ -16,7 +16,7 @@
*/
/* high level addition (handles signs) */
int mp_add (mp_int * a, mp_int * b, mp_int * c)
int mp_add(mp_int *a, mp_int *b, mp_int *c)
{
int sa, sb, res;

View File

@ -16,7 +16,7 @@
*/
/* single digit addition */
int mp_add_d (mp_int * a, mp_digit b, mp_int * c)
int mp_add_d(mp_int *a, mp_digit b, mp_int *c)
{
int res, ix, oldused;
mp_digit *tmpa, *tmpc, mu;

View File

@ -16,7 +16,7 @@
*/
/* d = a + b (mod c) */
int mp_addmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d)
{
int res;
mp_int t;

View File

@ -16,7 +16,7 @@
*/
/* AND two ints together */
int mp_and (mp_int * a, mp_int * b, mp_int * c)
int mp_and(mp_int *a, mp_int *b, mp_int *c)
{
int res, ix, px;
mp_int t, *x;

View File

@ -22,7 +22,7 @@
* Typically very fast. Also fixes the sign if there
* are no more leading digits
*/
void mp_clamp (mp_int * a)
void mp_clamp(mp_int *a)
{
/* decrease used while the most significant digit is
* zero.

View File

@ -16,7 +16,7 @@
*/
/* clear one (frees) */
void mp_clear (mp_int * a)
void mp_clear(mp_int *a)
{
int i;

View File

@ -16,7 +16,7 @@
*/
/* compare two ints (signed)*/
int mp_cmp (mp_int * a, mp_int * b)
int mp_cmp(mp_int *a, mp_int *b)
{
/* compare based on sign */
if (a->sign != b->sign) {

View File

@ -16,7 +16,7 @@
*/
/* compare a digit */
int mp_cmp_d(mp_int * a, mp_digit b)
int mp_cmp_d(mp_int *a, mp_digit b)
{
/* compare based on sign */
if (a->sign == MP_NEG) {

View File

@ -16,7 +16,7 @@
*/
/* compare maginitude of two ints (unsigned) */
int mp_cmp_mag (mp_int * a, mp_int * b)
int mp_cmp_mag(mp_int *a, mp_int *b)
{
int n;
mp_digit *tmpa, *tmpb;

View File

@ -16,7 +16,7 @@
*/
/* copy, b = a */
int mp_copy (mp_int * a, mp_int * b)
int mp_copy(mp_int *a, mp_int *b)
{
int res, n;

View File

@ -16,7 +16,7 @@
*/
/* returns the number of bits in an int */
int mp_count_bits (mp_int * a)
int mp_count_bits(mp_int *a)
{
int r;
mp_digit q;

View File

@ -18,7 +18,7 @@
#ifdef BN_MP_DIV_SMALL
/* slower bit-bang division... also smaller */
int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d)
{
mp_int ta, tb, tq, q;
int res, n, n2;

View File

@ -16,7 +16,7 @@
*/
/* b = a/2 */
int mp_div_2(mp_int * a, mp_int * b)
int mp_div_2(mp_int *a, mp_int *b)
{
int x, res, oldused;

View File

@ -16,7 +16,7 @@
*/
/* shift right by a certain bit count (store quotient in c, optional remainder in d) */
int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
int mp_div_2d(mp_int *a, int b, mp_int *c, mp_int *d)
{
mp_digit D, r, rr;
int x, res;

View File

@ -16,7 +16,7 @@
*/
/* divide by three (based on routine from MPI and the GMP manual) */
int mp_div_3 (mp_int * a, mp_int *c, mp_digit * d)
int mp_div_3(mp_int *a, mp_int *c, mp_digit *d)
{
mp_int q;
mp_word w, t;

View File

@ -34,7 +34,7 @@ static int s_is_power_of_two(mp_digit b, int *p)
}
/* single digit division (based on routine from MPI) */
int mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d)
{
mp_int q;
mp_word w;

View File

@ -29,7 +29,7 @@
*
* Input x must be in the range 0 <= x <= (n-1)**2
*/
int mp_dr_reduce (mp_int * x, mp_int * n, mp_digit k)
int mp_dr_reduce(mp_int *x, mp_int *n, mp_digit k)
{
int err, i, m;
mp_word r;

View File

@ -18,7 +18,7 @@
/* swap the elements of two integers, for cases where you can't simply swap the
* mp_int pointers around
*/
void mp_exch (mp_int * a, mp_int * b)
void mp_exch(mp_int *a, mp_int *b)
{
mp_int t;

View File

@ -18,8 +18,9 @@
/* based on gmp's mpz_export.
* see http://gmplib.org/manual/Integer-Import-and-Export.html
*/
int mp_export(void* rop, size_t* countp, int order, size_t size,
int endian, size_t nails, mp_int* op) {
int mp_export(void *rop, size_t *countp, int order, size_t size,
int endian, size_t nails, mp_int *op)
{
int result;
size_t odd_nails, nail_bytes, i, j, bits, count;
unsigned char odd_nail_mask;

View File

@ -16,7 +16,7 @@
*/
/* wrapper function for mp_expt_d_ex() */
int mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
int mp_expt_d(mp_int *a, mp_digit b, mp_int *c)
{
return mp_expt_d_ex(a, b, c, 0);
}

View File

@ -16,7 +16,7 @@
*/
/* calculate c = a**b using a square-multiply algorithm */
int mp_expt_d_ex (mp_int * a, mp_digit b, mp_int * c, int fast)
int mp_expt_d_ex(mp_int *a, mp_digit b, mp_int *c, int fast)
{
int res;
unsigned int x;

View File

@ -21,7 +21,7 @@
* embedded in the normal function but that wasted alot of stack space
* for nothing (since 99% of the time the Montgomery code would be called)
*/
int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
int mp_exptmod(mp_int *G, mp_int *X, mp_int *P, mp_int *Y)
{
int dr;

View File

@ -29,7 +29,7 @@
# define TAB_SIZE 256
#endif
int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int redmode)
{
mp_int M[TAB_SIZE], res;
mp_digit buf, mp;

View File

@ -16,7 +16,7 @@
*/
/* Greatest Common Divisor using the binary method */
int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
int mp_gcd(mp_int *a, mp_int *b, mp_int *c)
{
mp_int u, v;
int k, u_lsb, v_lsb, res;

View File

@ -16,7 +16,7 @@
*/
/* get the lower 32-bits of an mp_int */
unsigned long mp_get_int(mp_int * a)
unsigned long mp_get_int(mp_int *a)
{
int i;
mp_min_u32 res;

View File

@ -16,7 +16,7 @@
*/
/* get the lower unsigned long of an mp_int, platform dependent */
unsigned long mp_get_long(mp_int * a)
unsigned long mp_get_long(mp_int *a)
{
int i;
unsigned long res;

View File

@ -16,7 +16,7 @@
*/
/* get the lower unsigned long long of an mp_int, platform dependent */
unsigned long long mp_get_long_long (mp_int * a)
unsigned long long mp_get_long_long(mp_int *a)
{
int i;
unsigned long long res;

View File

@ -16,7 +16,7 @@
*/
/* grow as required */
int mp_grow (mp_int * a, int size)
int mp_grow(mp_int *a, int size)
{
int i;
mp_digit *tmp;

View File

@ -18,8 +18,9 @@
/* based on gmp's mpz_import.
* see http://gmplib.org/manual/Integer-Import-and-Export.html
*/
int mp_import(mp_int* rop, size_t count, int order, size_t size,
int endian, size_t nails, const void* op) {
int mp_import(mp_int *rop, size_t count, int order, size_t size,
int endian, size_t nails, const void *op)
{
int result;
size_t odd_nails, nail_bytes, i, j;
unsigned char odd_nail_mask;

View File

@ -16,7 +16,7 @@
*/
/* init a new mp_int */
int mp_init (mp_int * a)
int mp_init(mp_int *a)
{
int i;

View File

@ -16,7 +16,7 @@
*/
/* creates "a" then copies b into it */
int mp_init_copy (mp_int * a, mp_int * b)
int mp_init_copy(mp_int *a, mp_int *b)
{
int res;

View File

@ -16,7 +16,7 @@
*/
/* initialize and set a digit */
int mp_init_set (mp_int * a, mp_digit b)
int mp_init_set(mp_int *a, mp_digit b)
{
int err;
if ((err = mp_init(a)) != MP_OKAY) {

View File

@ -16,7 +16,7 @@
*/
/* initialize and set a digit */
int mp_init_set_int (mp_int * a, unsigned long b)
int mp_init_set_int(mp_int *a, unsigned long b)
{
int err;
if ((err = mp_init(a)) != MP_OKAY) {

View File

@ -16,7 +16,7 @@
*/
/* init an mp_init for a given size */
int mp_init_size (mp_int * a, int size)
int mp_init_size(mp_int *a, int size)
{
int x;

View File

@ -16,7 +16,7 @@
*/
/* hac 14.61, pp608 */
int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
int mp_invmod(mp_int *a, mp_int *b, mp_int *c)
{
/* b cannot be negative */
if ((b->sign == MP_NEG) || (mp_iszero(b) == MP_YES)) {

View File

@ -16,7 +16,7 @@
*/
/* hac 14.61, pp608 */
int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
int mp_invmod_slow(mp_int *a, mp_int *b, mp_int *c)
{
mp_int x, y, u, v, A, B, C, D;
int res;

View File

@ -20,7 +20,7 @@
* HAC is wrong here, as the special case of (0 | 1) is not
* handled correctly.
*/
int mp_jacobi (mp_int * a, mp_int * n, int *c)
int mp_jacobi(mp_int *a, mp_int *n, int *c)
{
mp_int a1, p1;
int k, s, r, res;

View File

@ -44,7 +44,7 @@
* Generally though the overhead of this method doesn't pay off
* until a certain size (N ~ 80) is reached.
*/
int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c)
{
mp_int x0, x1, y0, y1, t1, x0y0, x1y1;
int B, err;

View File

@ -22,7 +22,7 @@
* is essentially the same algorithm but merely
* tuned to perform recursive squarings.
*/
int mp_karatsuba_sqr (mp_int * a, mp_int * b)
int mp_karatsuba_sqr(mp_int *a, mp_int *b)
{
mp_int x0, x1, t1, t2, x0x0, x1x1;
int B, err;

View File

@ -16,7 +16,7 @@
*/
/* computes least common multiple as |a*b|/(a, b) */
int mp_lcm (mp_int * a, mp_int * b, mp_int * c)
int mp_lcm(mp_int *a, mp_int *b, mp_int *c)
{
int res;
mp_int t1, t2;

View File

@ -16,7 +16,7 @@
*/
/* shift left a certain amount of digits */
int mp_lshd (mp_int * a, int b)
int mp_lshd(mp_int *a, int b)
{
int x, res;

View File

@ -16,7 +16,7 @@
*/
/* c = a mod b, 0 <= c < b if b > 0, b < c <= 0 if b < 0 */
int mp_mod (mp_int * a, mp_int * b, mp_int * c)
int mp_mod(mp_int *a, mp_int *b, mp_int *c)
{
mp_int t;
int res;

View File

@ -16,7 +16,7 @@
*/
/* calc a value mod 2**b */
int mp_mod_2d (mp_int * a, int b, mp_int * c)
int mp_mod_2d(mp_int *a, int b, mp_int *c)
{
int x, res;

View File

@ -15,7 +15,7 @@
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
int mp_mod_d (mp_int * a, mp_digit b, mp_digit * c)
int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c)
{
return mp_div_d(a, b, NULL, c);
}

View File

@ -21,7 +21,7 @@
* The method is slightly modified to shift B unconditionally upto just under
* the leading bit of b. This saves alot of multiple precision shifting.
*/
int mp_montgomery_calc_normalization (mp_int * a, mp_int * b)
int mp_montgomery_calc_normalization(mp_int *a, mp_int *b)
{
int x, bits, res;

View File

@ -16,7 +16,7 @@
*/
/* computes xR**-1 == x (mod N) via Montgomery Reduction */
int mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
int mp_montgomery_reduce(mp_int *x, mp_int *n, mp_digit rho)
{
int ix, res, digs;
mp_digit mu;

View File

@ -16,7 +16,7 @@
*/
/* setups the montgomery reduction stuff */
int mp_montgomery_setup (mp_int * n, mp_digit * rho)
int mp_montgomery_setup(mp_int *n, mp_digit *rho)
{
mp_digit x, b;

View File

@ -16,7 +16,7 @@
*/
/* high level multiplication (handles sign) */
int mp_mul (mp_int * a, mp_int * b, mp_int * c)
int mp_mul(mp_int *a, mp_int *b, mp_int *c)
{
int res, neg;
neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;

View File

@ -16,7 +16,7 @@
*/
/* b = a*2 */
int mp_mul_2(mp_int * a, mp_int * b)
int mp_mul_2(mp_int *a, mp_int *b)
{
int x, res, oldused;

View File

@ -16,7 +16,7 @@
*/
/* shift left by a certain bit count */
int mp_mul_2d (mp_int * a, int b, mp_int * c)
int mp_mul_2d(mp_int *a, int b, mp_int *c)
{
mp_digit d;
int res;

View File

@ -16,7 +16,7 @@
*/
/* multiply by a digit */
int mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
int mp_mul_d(mp_int *a, mp_digit b, mp_int *c)
{
mp_digit u, *tmpa, *tmpc;
mp_word r;

View File

@ -16,7 +16,7 @@
*/
/* d = a * b (mod c) */
int mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d)
{
int res;
mp_int t;

View File

@ -18,7 +18,7 @@
/* wrapper function for mp_n_root_ex()
* computes c = (a)**(1/b) such that (c)**b <= a and (c+1)**b > a
*/
int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
int mp_n_root(mp_int *a, mp_digit b, mp_int *c)
{
return mp_n_root_ex(a, b, c, 0);
}

View File

@ -25,7 +25,7 @@
* each step involves a fair bit. This is not meant to
* find huge roots [square and cube, etc].
*/
int mp_n_root_ex (mp_int * a, mp_digit b, mp_int * c, int fast)
int mp_n_root_ex(mp_int *a, mp_digit b, mp_int *c, int fast)
{
mp_int t1, t2, t3;
int res, neg;

View File

@ -16,7 +16,7 @@
*/
/* b = -a */
int mp_neg (mp_int * a, mp_int * b)
int mp_neg(mp_int *a, mp_int *b)
{
int res;
if (a != b) {

View File

@ -16,7 +16,7 @@
*/
/* OR two ints together */
int mp_or (mp_int * a, mp_int * b, mp_int * c)
int mp_or(mp_int *a, mp_int *b, mp_int *c)
{
int res, ix, px;
mp_int t, *x;

View File

@ -23,7 +23,7 @@
*
* Sets result to 1 if the congruence holds, or zero otherwise.
*/
int mp_prime_fermat (mp_int * a, mp_int * b, int *result)
int mp_prime_fermat(mp_int *a, mp_int *b, int *result)
{
mp_int t;
int err;

View File

@ -20,7 +20,7 @@
*
* sets result to 0 if not, 1 if yes
*/
int mp_prime_is_divisible (mp_int * a, int *result)
int mp_prime_is_divisible(mp_int *a, int *result)
{
int err, ix;
mp_digit res;

View File

@ -22,7 +22,7 @@
*
* Sets result to 1 if probably prime, 0 otherwise
*/
int mp_prime_is_prime (mp_int * a, int t, int *result)
int mp_prime_is_prime(mp_int *a, int t, int *result)
{
mp_int b;
int ix, err, res;

View File

@ -22,7 +22,7 @@
* Randomly the chance of error is no more than 1/4 and often
* very much lower.
*/
int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result)
{
mp_int n1, y, r;
int s, j, err;

View File

@ -16,7 +16,7 @@
*/
/* returns size of ASCII reprensentation */
int mp_radix_size (mp_int * a, int radix, int *size)
int mp_radix_size(mp_int *a, int radix, int *size)
{
int res, digs;
mp_int t;

View File

@ -41,7 +41,7 @@ static mp_digit s_gen_random(void)
return d;
}
int mp_rand (mp_int * a, int digits)
int mp_rand(mp_int *a, int digits)
{
int res;
mp_digit d;

View File

@ -16,7 +16,7 @@
*/
/* read a string [ASCII] in a given radix */
int mp_read_radix (mp_int * a, const char *str, int radix)
int mp_read_radix(mp_int *a, const char *str, int radix)
{
int y, res, neg;
char ch;

View File

@ -16,7 +16,7 @@
*/
/* read signed bin, big endian, first byte is 0==positive or 1==negative */
int mp_read_signed_bin (mp_int * a, const unsigned char *b, int c)
int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c)
{
int res;

View File

@ -16,7 +16,7 @@
*/
/* reads a unsigned char array, assumes the msb is stored first [big endian] */
int mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c)
int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c)
{
int res;

View File

@ -19,7 +19,7 @@
* precomputed via mp_reduce_setup.
* From HAC pp.604 Algorithm 14.42
*/
int mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
int mp_reduce(mp_int *x, mp_int *m, mp_int *mu)
{
mp_int q;
int res, um = m->used;

View File

@ -18,7 +18,7 @@
/* pre-calculate the value required for Barrett reduction
* For a given modulus "b" it calulates the value required in "a"
*/
int mp_reduce_setup (mp_int * a, mp_int * b)
int mp_reduce_setup(mp_int *a, mp_int *b)
{
int res;

View File

@ -16,7 +16,7 @@
*/
/* shift right a certain amount of digits */
void mp_rshd (mp_int * a, int b)
void mp_rshd(mp_int *a, int b)
{
int x;

View File

@ -16,7 +16,7 @@
*/
/* set to a digit */
void mp_set (mp_int * a, mp_digit b)
void mp_set(mp_int *a, mp_digit b)
{
mp_zero(a);
a->dp[0] = b & MP_MASK;

View File

@ -16,7 +16,7 @@
*/
/* set a 32-bit const */
int mp_set_int (mp_int * a, unsigned long b)
int mp_set_int(mp_int *a, unsigned long b)
{
int x, res;

View File

@ -16,7 +16,7 @@
*/
/* shrink a bignum */
int mp_shrink (mp_int * a)
int mp_shrink(mp_int *a)
{
mp_digit *tmp;
int used = 1;

View File

@ -16,7 +16,7 @@
*/
/* get the size for an signed equivalent */
int mp_signed_bin_size (mp_int * a)
int mp_signed_bin_size(mp_int *a)
{
return 1 + mp_unsigned_bin_size(a);
}

View File

@ -16,7 +16,7 @@
*/
/* computes b = a*a */
int mp_sqr (mp_int * a, mp_int * b)
int mp_sqr(mp_int *a, mp_int *b)
{
int res;

View File

@ -16,7 +16,7 @@
*/
/* c = a * a (mod b) */
int mp_sqrmod (mp_int * a, mp_int * b, mp_int * c)
int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c)
{
int res;
mp_int t;

View File

@ -16,7 +16,7 @@
*/
/* high level subtraction (handles signs) */
int mp_sub (mp_int * a, mp_int * b, mp_int * c)
int mp_sub(mp_int *a, mp_int *b, mp_int *c)
{
int sa, sb, res;

View File

@ -16,7 +16,7 @@
*/
/* single digit subtraction */
int mp_sub_d (mp_int * a, mp_digit b, mp_int * c)
int mp_sub_d(mp_int *a, mp_digit b, mp_int *c)
{
mp_digit *tmpa, *tmpc, mu;
int res, ix, oldused;

View File

@ -16,7 +16,7 @@
*/
/* d = a - b (mod c) */
int mp_submod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d)
{
int res;
mp_int t;

View File

@ -16,7 +16,7 @@
*/
/* store in signed [big endian] format */
int mp_to_signed_bin (mp_int * a, unsigned char *b)
int mp_to_signed_bin(mp_int *a, unsigned char *b)
{
int res;

View File

@ -16,7 +16,7 @@
*/
/* store in signed [big endian] format */
int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen)
int mp_to_signed_bin_n(mp_int *a, unsigned char *b, unsigned long *outlen)
{
if (*outlen < (unsigned long)mp_signed_bin_size(a)) {
return MP_VAL;

View File

@ -16,7 +16,7 @@
*/
/* store in unsigned [big endian] format */
int mp_to_unsigned_bin (mp_int * a, unsigned char *b)
int mp_to_unsigned_bin(mp_int *a, unsigned char *b)
{
int x, res;
mp_int t;

View File

@ -16,7 +16,7 @@
*/
/* store in unsigned [big endian] format */
int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen)
int mp_to_unsigned_bin_n(mp_int *a, unsigned char *b, unsigned long *outlen)
{
if (*outlen < (unsigned long)mp_unsigned_bin_size(a)) {
return MP_VAL;

View File

@ -16,7 +16,7 @@
*/
/* stores a bignum as a ASCII string in a given radix (2..64) */
int mp_toradix (mp_int * a, char *str, int radix)
int mp_toradix(mp_int *a, char *str, int radix)
{
int res, digs;
mp_int t;

View File

@ -19,7 +19,7 @@
*
* Stores upto maxlen-1 chars and always a NULL byte
*/
int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen)
int mp_toradix_n(mp_int *a, char *str, int radix, int maxlen)
{
int res, digs;
mp_int t;

View File

@ -16,7 +16,7 @@
*/
/* get the size for an unsigned equivalent */
int mp_unsigned_bin_size (mp_int * a)
int mp_unsigned_bin_size(mp_int *a)
{
int size = mp_count_bits(a);
return (size / 8) + (((size & 7) != 0) ? 1 : 0);

View File

@ -16,7 +16,7 @@
*/
/* XOR two ints together */
int mp_xor (mp_int * a, mp_int * b, mp_int * c)
int mp_xor(mp_int *a, mp_int *b, mp_int *c)
{
int res, ix, px;
mp_int t, *x;

View File

@ -16,7 +16,7 @@
*/
/* set to zero */
void mp_zero (mp_int * a)
void mp_zero(mp_int *a)
{
int n;
mp_digit *tmp;

View File

@ -16,7 +16,7 @@
*/
/* reverse an array, used for radix code */
void bn_reverse (unsigned char *s, int len)
void bn_reverse(unsigned char *s, int len)
{
int ix, iy;
unsigned char t;

View File

@ -16,7 +16,7 @@
*/
/* low level addition, based on HAC pp.594, Algorithm 14.7 */
int s_mp_add (mp_int * a, mp_int * b, mp_int * c)
int s_mp_add(mp_int *a, mp_int *b, mp_int *c)
{
mp_int *x;
int olduse, res, min, max;

View File

@ -20,7 +20,7 @@
# define TAB_SIZE 256
#endif
int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
int s_mp_exptmod(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int redmode)
{
mp_int M[TAB_SIZE], res, mu;
mp_digit buf;

View File

@ -19,7 +19,7 @@
* HAC pp. 595, Algorithm 14.12 Modified so you can control how
* many digits of output are created.
*/
int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
{
mp_int t;
int res, pa, pb, ix, iy;

View File

@ -18,7 +18,7 @@
/* multiplies |a| * |b| and does not compute the lower digs digits
* [meant to get the higher part of the product]
*/
int s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
{
mp_int t;
int res, pa, pb, ix, iy;

View File

@ -16,7 +16,7 @@
*/
/* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
int s_mp_sqr (mp_int * a, mp_int * b)
int s_mp_sqr(mp_int *a, mp_int *b)
{
mp_int t;
int res, ix, iy, pa;

Some files were not shown because too many files have changed in this diff Show More