commit
99057f6759
906
demo/demo.c
906
demo/demo.c
File diff suppressed because it is too large
Load Diff
244
demo/timing.c
244
demo/timing.c
@ -19,7 +19,7 @@ uint64_t _tt;
|
||||
#endif
|
||||
|
||||
|
||||
void ndraw(mp_int * a, char *name)
|
||||
void ndraw(mp_int *a, char *name)
|
||||
{
|
||||
char buf[4096];
|
||||
|
||||
@ -28,7 +28,7 @@ void ndraw(mp_int * a, char *name)
|
||||
printf("%s\n", buf);
|
||||
}
|
||||
|
||||
static void draw(mp_int * a)
|
||||
static void draw(mp_int *a)
|
||||
{
|
||||
ndraw(a, "");
|
||||
}
|
||||
@ -52,12 +52,12 @@ static uint64_t TIMFUNC(void)
|
||||
{
|
||||
#if defined __GNUC__
|
||||
#if defined(__i386__) || defined(__x86_64__)
|
||||
/* version from http://www.mcs.anl.gov/~kazutomo/rdtsc.html
|
||||
* the old code always got a warning issued by gcc, clang did not complain...
|
||||
*/
|
||||
unsigned hi, lo;
|
||||
__asm__ __volatile__ ("rdtsc" : "=a"(lo), "=d"(hi));
|
||||
return ((uint64_t)lo)|( ((uint64_t)hi)<<32);
|
||||
/* version from http://www.mcs.anl.gov/~kazutomo/rdtsc.html
|
||||
* the old code always got a warning issued by gcc, clang did not complain...
|
||||
*/
|
||||
unsigned hi, lo;
|
||||
__asm__ __volatile__("rdtsc" : "=a"(lo), "=d"(hi));
|
||||
return ((uint64_t)lo)|(((uint64_t)hi)<<32);
|
||||
#else /* gcc-IA64 version */
|
||||
unsigned long result;
|
||||
__asm__ __volatile__("mov %0=ar.itc":"=r"(result)::"memory");
|
||||
@ -131,14 +131,14 @@ int main(void)
|
||||
rr = 0;
|
||||
tt = -1;
|
||||
do {
|
||||
gg = TIMFUNC();
|
||||
DO(mp_add(&a, &b, &c));
|
||||
gg = (TIMFUNC() - gg) >> 1;
|
||||
if (tt > gg)
|
||||
tt = gg;
|
||||
gg = TIMFUNC();
|
||||
DO(mp_add(&a, &b, &c));
|
||||
gg = (TIMFUNC() - gg) >> 1;
|
||||
if (tt > gg)
|
||||
tt = gg;
|
||||
} while (++rr < 100000);
|
||||
printf("Adding\t\t%4d-bit => %9" PRIu64 "/sec, %9" PRIu64 " cycles\n",
|
||||
mp_count_bits(&a), CLK_PER_SEC / tt, tt);
|
||||
mp_count_bits(&a), CLK_PER_SEC / tt, tt);
|
||||
FPRINTF(log, "%d %9" PRIu64 "\n", cnt * DIGIT_BIT, tt);
|
||||
FFLUSH(log);
|
||||
}
|
||||
@ -152,15 +152,15 @@ int main(void)
|
||||
rr = 0;
|
||||
tt = -1;
|
||||
do {
|
||||
gg = TIMFUNC();
|
||||
DO(mp_sub(&a, &b, &c));
|
||||
gg = (TIMFUNC() - gg) >> 1;
|
||||
if (tt > gg)
|
||||
tt = gg;
|
||||
gg = TIMFUNC();
|
||||
DO(mp_sub(&a, &b, &c));
|
||||
gg = (TIMFUNC() - gg) >> 1;
|
||||
if (tt > gg)
|
||||
tt = gg;
|
||||
} while (++rr < 100000);
|
||||
|
||||
printf("Subtracting\t\t%4d-bit => %9" PRIu64 "/sec, %9" PRIu64 " cycles\n",
|
||||
mp_count_bits(&a), CLK_PER_SEC / tt, tt);
|
||||
mp_count_bits(&a), CLK_PER_SEC / tt, tt);
|
||||
FPRINTF(log, "%d %9" PRIu64 "\n", cnt * DIGIT_BIT, tt);
|
||||
FFLUSH(log);
|
||||
}
|
||||
@ -182,42 +182,42 @@ int main(void)
|
||||
|
||||
log = FOPEN((ix == 0) ? "logs/mult.log" : (ix == 1) ? "logs/mult_kara.log" : "logs/mult_toom.log", "w");
|
||||
for (cnt = 4; cnt <= 10240 / DIGIT_BIT; cnt += 2) {
|
||||
SLEEP;
|
||||
mp_rand(&a, cnt);
|
||||
mp_rand(&b, cnt);
|
||||
rr = 0;
|
||||
tt = -1;
|
||||
do {
|
||||
gg = TIMFUNC();
|
||||
DO(mp_mul(&a, &b, &c));
|
||||
gg = (TIMFUNC() - gg) >> 1;
|
||||
if (tt > gg)
|
||||
tt = gg;
|
||||
} while (++rr < 100);
|
||||
printf("Multiplying\t%4d-bit => %9" PRIu64 "/sec, %9" PRIu64 " cycles\n",
|
||||
mp_count_bits(&a), CLK_PER_SEC / tt, tt);
|
||||
FPRINTF(log, "%d %9" PRIu64 "\n", mp_count_bits(&a), tt);
|
||||
FFLUSH(log);
|
||||
SLEEP;
|
||||
mp_rand(&a, cnt);
|
||||
mp_rand(&b, cnt);
|
||||
rr = 0;
|
||||
tt = -1;
|
||||
do {
|
||||
gg = TIMFUNC();
|
||||
DO(mp_mul(&a, &b, &c));
|
||||
gg = (TIMFUNC() - gg) >> 1;
|
||||
if (tt > gg)
|
||||
tt = gg;
|
||||
} while (++rr < 100);
|
||||
printf("Multiplying\t%4d-bit => %9" PRIu64 "/sec, %9" PRIu64 " cycles\n",
|
||||
mp_count_bits(&a), CLK_PER_SEC / tt, tt);
|
||||
FPRINTF(log, "%d %9" PRIu64 "\n", mp_count_bits(&a), tt);
|
||||
FFLUSH(log);
|
||||
}
|
||||
FCLOSE(log);
|
||||
|
||||
log = FOPEN((ix == 0) ? "logs/sqr.log" : (ix == 1) ? "logs/sqr_kara.log" : "logs/sqr_toom.log", "w");
|
||||
for (cnt = 4; cnt <= 10240 / DIGIT_BIT; cnt += 2) {
|
||||
SLEEP;
|
||||
mp_rand(&a, cnt);
|
||||
rr = 0;
|
||||
tt = -1;
|
||||
do {
|
||||
gg = TIMFUNC();
|
||||
DO(mp_sqr(&a, &b));
|
||||
gg = (TIMFUNC() - gg) >> 1;
|
||||
if (tt > gg)
|
||||
tt = gg;
|
||||
} while (++rr < 100);
|
||||
printf("Squaring\t%4d-bit => %9" PRIu64 "/sec, %9" PRIu64 " cycles\n",
|
||||
mp_count_bits(&a), CLK_PER_SEC / tt, tt);
|
||||
FPRINTF(log, "%d %9" PRIu64 "\n", mp_count_bits(&a), tt);
|
||||
FFLUSH(log);
|
||||
SLEEP;
|
||||
mp_rand(&a, cnt);
|
||||
rr = 0;
|
||||
tt = -1;
|
||||
do {
|
||||
gg = TIMFUNC();
|
||||
DO(mp_sqr(&a, &b));
|
||||
gg = (TIMFUNC() - gg) >> 1;
|
||||
if (tt > gg)
|
||||
tt = gg;
|
||||
} while (++rr < 100);
|
||||
printf("Squaring\t%4d-bit => %9" PRIu64 "/sec, %9" PRIu64 " cycles\n",
|
||||
mp_count_bits(&a), CLK_PER_SEC / tt, tt);
|
||||
FPRINTF(log, "%d %9" PRIu64 "\n", mp_count_bits(&a), tt);
|
||||
FFLUSH(log);
|
||||
}
|
||||
FCLOSE(log);
|
||||
|
||||
@ -225,75 +225,75 @@ int main(void)
|
||||
|
||||
{
|
||||
char *primes[] = {
|
||||
/* 2K large moduli */
|
||||
"179769313486231590772930519078902473361797697894230657273430081157732675805500963132708477322407536021120113879871393357658789768814416622492847430639474124377767893424865485276302219601246094119453082952085005768838150682342462881473913110540827237163350510684586239334100047359817950870678242457666208137217",
|
||||
"32317006071311007300714876688669951960444102669715484032130345427524655138867890893197201411522913463688717960921898019494119559150490921095088152386448283120630877367300996091750197750389652106796057638384067568276792218642619756161838094338476170470581645852036305042887575891541065808607552399123930385521914333389668342420684974786564569494856176035326322058077805659331026192708460314150258592864177116725943603718461857357598351152301645904403697613233287231227125684710820209725157101726931323469678542580656697935045997268352998638099733077152121140120031150424541696791951097529546801429027668869927491725169",
|
||||
"1044388881413152506691752710716624382579964249047383780384233483283953907971557456848826811934997558340890106714439262837987573438185793607263236087851365277945956976543709998340361590134383718314428070011855946226376318839397712745672334684344586617496807908705803704071284048740118609114467977783598029006686938976881787785946905630190260940599579453432823469303026696443059025015972399867714215541693835559885291486318237914434496734087811872639496475100189041349008417061675093668333850551032972088269550769983616369411933015213796825837188091833656751221318492846368125550225998300412344784862595674492194617023806505913245610825731835380087608622102834270197698202313169017678006675195485079921636419370285375124784014907159135459982790513399611551794271106831134090584272884279791554849782954323534517065223269061394905987693002122963395687782878948440616007412945674919823050571642377154816321380631045902916136926708342856440730447899971901781465763473223850267253059899795996090799469201774624817718449867455659250178329070473119433165550807568221846571746373296884912819520317457002440926616910874148385078411929804522981857338977648103126085902995208257421855249796721729039744118165938433694823325696642096892124547425283",
|
||||
/* 2K moduli mersenne primes */
|
||||
"6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151",
|
||||
"531137992816767098689588206552468627329593117727031923199444138200403559860852242739162502265229285668889329486246501015346579337652707239409519978766587351943831270835393219031728127",
|
||||
"10407932194664399081925240327364085538615262247266704805319112350403608059673360298012239441732324184842421613954281007791383566248323464908139906605677320762924129509389220345773183349661583550472959420547689811211693677147548478866962501384438260291732348885311160828538416585028255604666224831890918801847068222203140521026698435488732958028878050869736186900714720710555703168729087",
|
||||
"1475979915214180235084898622737381736312066145333169775147771216478570297878078949377407337049389289382748507531496480477281264838760259191814463365330269540496961201113430156902396093989090226259326935025281409614983499388222831448598601834318536230923772641390209490231836446899608210795482963763094236630945410832793769905399982457186322944729636418890623372171723742105636440368218459649632948538696905872650486914434637457507280441823676813517852099348660847172579408422316678097670224011990280170474894487426924742108823536808485072502240519452587542875349976558572670229633962575212637477897785501552646522609988869914013540483809865681250419497686697771007",
|
||||
"259117086013202627776246767922441530941818887553125427303974923161874019266586362086201209516800483406550695241733194177441689509238807017410377709597512042313066624082916353517952311186154862265604547691127595848775610568757931191017711408826252153849035830401185072116424747461823031471398340229288074545677907941037288235820705892351068433882986888616658650280927692080339605869308790500409503709875902119018371991620994002568935113136548829739112656797303241986517250116412703509705427773477972349821676443446668383119322540099648994051790241624056519054483690809616061625743042361721863339415852426431208737266591962061753535748892894599629195183082621860853400937932839420261866586142503251450773096274235376822938649407127700846077124211823080804139298087057504713825264571448379371125032081826126566649084251699453951887789613650248405739378594599444335231188280123660406262468609212150349937584782292237144339628858485938215738821232393687046160677362909315071",
|
||||
"190797007524439073807468042969529173669356994749940177394741882673528979787005053706368049835514900244303495954950709725762186311224148828811920216904542206960744666169364221195289538436845390250168663932838805192055137154390912666527533007309292687539092257043362517857366624699975402375462954490293259233303137330643531556539739921926201438606439020075174723029056838272505051571967594608350063404495977660656269020823960825567012344189908927956646011998057988548630107637380993519826582389781888135705408653045219655801758081251164080554609057468028203308718724654081055323215860189611391296030471108443146745671967766308925858547271507311563765171008318248647110097614890313562856541784154881743146033909602737947385055355960331855614540900081456378659068370317267696980001187750995491090350108417050917991562167972281070161305972518044872048331306383715094854938415738549894606070722584737978176686422134354526989443028353644037187375385397838259511833166416134323695660367676897722287918773420968982326089026150031515424165462111337527431154890666327374921446276833564519776797633875503548665093914556482031482248883127023777039667707976559857333357013727342079099064400455741830654320379350833236245819348824064783585692924881021978332974949906122664421376034687815350484991",
|
||||
/* 2K large moduli */
|
||||
"179769313486231590772930519078902473361797697894230657273430081157732675805500963132708477322407536021120113879871393357658789768814416622492847430639474124377767893424865485276302219601246094119453082952085005768838150682342462881473913110540827237163350510684586239334100047359817950870678242457666208137217",
|
||||
"32317006071311007300714876688669951960444102669715484032130345427524655138867890893197201411522913463688717960921898019494119559150490921095088152386448283120630877367300996091750197750389652106796057638384067568276792218642619756161838094338476170470581645852036305042887575891541065808607552399123930385521914333389668342420684974786564569494856176035326322058077805659331026192708460314150258592864177116725943603718461857357598351152301645904403697613233287231227125684710820209725157101726931323469678542580656697935045997268352998638099733077152121140120031150424541696791951097529546801429027668869927491725169",
|
||||
"1044388881413152506691752710716624382579964249047383780384233483283953907971557456848826811934997558340890106714439262837987573438185793607263236087851365277945956976543709998340361590134383718314428070011855946226376318839397712745672334684344586617496807908705803704071284048740118609114467977783598029006686938976881787785946905630190260940599579453432823469303026696443059025015972399867714215541693835559885291486318237914434496734087811872639496475100189041349008417061675093668333850551032972088269550769983616369411933015213796825837188091833656751221318492846368125550225998300412344784862595674492194617023806505913245610825731835380087608622102834270197698202313169017678006675195485079921636419370285375124784014907159135459982790513399611551794271106831134090584272884279791554849782954323534517065223269061394905987693002122963395687782878948440616007412945674919823050571642377154816321380631045902916136926708342856440730447899971901781465763473223850267253059899795996090799469201774624817718449867455659250178329070473119433165550807568221846571746373296884912819520317457002440926616910874148385078411929804522981857338977648103126085902995208257421855249796721729039744118165938433694823325696642096892124547425283",
|
||||
/* 2K moduli mersenne primes */
|
||||
"6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151",
|
||||
"531137992816767098689588206552468627329593117727031923199444138200403559860852242739162502265229285668889329486246501015346579337652707239409519978766587351943831270835393219031728127",
|
||||
"10407932194664399081925240327364085538615262247266704805319112350403608059673360298012239441732324184842421613954281007791383566248323464908139906605677320762924129509389220345773183349661583550472959420547689811211693677147548478866962501384438260291732348885311160828538416585028255604666224831890918801847068222203140521026698435488732958028878050869736186900714720710555703168729087",
|
||||
"1475979915214180235084898622737381736312066145333169775147771216478570297878078949377407337049389289382748507531496480477281264838760259191814463365330269540496961201113430156902396093989090226259326935025281409614983499388222831448598601834318536230923772641390209490231836446899608210795482963763094236630945410832793769905399982457186322944729636418890623372171723742105636440368218459649632948538696905872650486914434637457507280441823676813517852099348660847172579408422316678097670224011990280170474894487426924742108823536808485072502240519452587542875349976558572670229633962575212637477897785501552646522609988869914013540483809865681250419497686697771007",
|
||||
"259117086013202627776246767922441530941818887553125427303974923161874019266586362086201209516800483406550695241733194177441689509238807017410377709597512042313066624082916353517952311186154862265604547691127595848775610568757931191017711408826252153849035830401185072116424747461823031471398340229288074545677907941037288235820705892351068433882986888616658650280927692080339605869308790500409503709875902119018371991620994002568935113136548829739112656797303241986517250116412703509705427773477972349821676443446668383119322540099648994051790241624056519054483690809616061625743042361721863339415852426431208737266591962061753535748892894599629195183082621860853400937932839420261866586142503251450773096274235376822938649407127700846077124211823080804139298087057504713825264571448379371125032081826126566649084251699453951887789613650248405739378594599444335231188280123660406262468609212150349937584782292237144339628858485938215738821232393687046160677362909315071",
|
||||
"190797007524439073807468042969529173669356994749940177394741882673528979787005053706368049835514900244303495954950709725762186311224148828811920216904542206960744666169364221195289538436845390250168663932838805192055137154390912666527533007309292687539092257043362517857366624699975402375462954490293259233303137330643531556539739921926201438606439020075174723029056838272505051571967594608350063404495977660656269020823960825567012344189908927956646011998057988548630107637380993519826582389781888135705408653045219655801758081251164080554609057468028203308718724654081055323215860189611391296030471108443146745671967766308925858547271507311563765171008318248647110097614890313562856541784154881743146033909602737947385055355960331855614540900081456378659068370317267696980001187750995491090350108417050917991562167972281070161305972518044872048331306383715094854938415738549894606070722584737978176686422134354526989443028353644037187375385397838259511833166416134323695660367676897722287918773420968982326089026150031515424165462111337527431154890666327374921446276833564519776797633875503548665093914556482031482248883127023777039667707976559857333357013727342079099064400455741830654320379350833236245819348824064783585692924881021978332974949906122664421376034687815350484991",
|
||||
|
||||
/* DR moduli */
|
||||
"14059105607947488696282932836518693308967803494693489478439861164411992439598399594747002144074658928593502845729752797260025831423419686528151609940203368612079",
|
||||
"101745825697019260773923519755878567461315282017759829107608914364075275235254395622580447400994175578963163918967182013639660669771108475957692810857098847138903161308502419410142185759152435680068435915159402496058513611411688900243039",
|
||||
"736335108039604595805923406147184530889923370574768772191969612422073040099331944991573923112581267542507986451953227192970402893063850485730703075899286013451337291468249027691733891486704001513279827771740183629161065194874727962517148100775228363421083691764065477590823919364012917984605619526140821797602431",
|
||||
"38564998830736521417281865696453025806593491967131023221754800625044118265468851210705360385717536794615180260494208076605798671660719333199513807806252394423283413430106003596332513246682903994829528690198205120921557533726473585751382193953592127439965050261476810842071573684505878854588706623484573925925903505747545471088867712185004135201289273405614415899438276535626346098904241020877974002916168099951885406379295536200413493190419727789712076165162175783",
|
||||
"542189391331696172661670440619180536749994166415993334151601745392193484590296600979602378676624808129613777993466242203025054573692562689251250471628358318743978285860720148446448885701001277560572526947619392551574490839286458454994488665744991822837769918095117129546414124448777033941223565831420390846864429504774477949153794689948747680362212954278693335653935890352619041936727463717926744868338358149568368643403037768649616778526013610493696186055899318268339432671541328195724261329606699831016666359440874843103020666106568222401047720269951530296879490444224546654729111504346660859907296364097126834834235287147",
|
||||
"1487259134814709264092032648525971038895865645148901180585340454985524155135260217788758027400478312256339496385275012465661575576202252063145698732079880294664220579764848767704076761853197216563262660046602703973050798218246170835962005598561669706844469447435461092542265792444947706769615695252256130901271870341005768912974433684521436211263358097522726462083917939091760026658925757076733484173202927141441492573799914240222628795405623953109131594523623353044898339481494120112723445689647986475279242446083151413667587008191682564376412347964146113898565886683139407005941383669325997475076910488086663256335689181157957571445067490187939553165903773554290260531009121879044170766615232300936675369451260747671432073394867530820527479172464106442450727640226503746586340279816318821395210726268291535648506190714616083163403189943334431056876038286530365757187367147446004855912033137386225053275419626102417236133948503",
|
||||
"1095121115716677802856811290392395128588168592409109494900178008967955253005183831872715423151551999734857184538199864469605657805519106717529655044054833197687459782636297255219742994736751541815269727940751860670268774903340296040006114013971309257028332849679096824800250742691718610670812374272414086863715763724622797509437062518082383056050144624962776302147890521249477060215148275163688301275847155316042279405557632639366066847442861422164832655874655824221577849928863023018366835675399949740429332468186340518172487073360822220449055340582568461568645259954873303616953776393853174845132081121976327462740354930744487429617202585015510744298530101547706821590188733515880733527449780963163909830077616357506845523215289297624086914545378511082534229620116563260168494523906566709418166011112754529766183554579321224940951177394088465596712620076240067370589036924024728375076210477267488679008016579588696191194060127319035195370137160936882402244399699172017835144537488486396906144217720028992863941288217185353914991583400421682751000603596655790990815525126154394344641336397793791497068253936771017031980867706707490224041075826337383538651825493679503771934836094655802776331664261631740148281763487765852746577808019633679",
|
||||
/* DR moduli */
|
||||
"14059105607947488696282932836518693308967803494693489478439861164411992439598399594747002144074658928593502845729752797260025831423419686528151609940203368612079",
|
||||
"101745825697019260773923519755878567461315282017759829107608914364075275235254395622580447400994175578963163918967182013639660669771108475957692810857098847138903161308502419410142185759152435680068435915159402496058513611411688900243039",
|
||||
"736335108039604595805923406147184530889923370574768772191969612422073040099331944991573923112581267542507986451953227192970402893063850485730703075899286013451337291468249027691733891486704001513279827771740183629161065194874727962517148100775228363421083691764065477590823919364012917984605619526140821797602431",
|
||||
"38564998830736521417281865696453025806593491967131023221754800625044118265468851210705360385717536794615180260494208076605798671660719333199513807806252394423283413430106003596332513246682903994829528690198205120921557533726473585751382193953592127439965050261476810842071573684505878854588706623484573925925903505747545471088867712185004135201289273405614415899438276535626346098904241020877974002916168099951885406379295536200413493190419727789712076165162175783",
|
||||
"542189391331696172661670440619180536749994166415993334151601745392193484590296600979602378676624808129613777993466242203025054573692562689251250471628358318743978285860720148446448885701001277560572526947619392551574490839286458454994488665744991822837769918095117129546414124448777033941223565831420390846864429504774477949153794689948747680362212954278693335653935890352619041936727463717926744868338358149568368643403037768649616778526013610493696186055899318268339432671541328195724261329606699831016666359440874843103020666106568222401047720269951530296879490444224546654729111504346660859907296364097126834834235287147",
|
||||
"1487259134814709264092032648525971038895865645148901180585340454985524155135260217788758027400478312256339496385275012465661575576202252063145698732079880294664220579764848767704076761853197216563262660046602703973050798218246170835962005598561669706844469447435461092542265792444947706769615695252256130901271870341005768912974433684521436211263358097522726462083917939091760026658925757076733484173202927141441492573799914240222628795405623953109131594523623353044898339481494120112723445689647986475279242446083151413667587008191682564376412347964146113898565886683139407005941383669325997475076910488086663256335689181157957571445067490187939553165903773554290260531009121879044170766615232300936675369451260747671432073394867530820527479172464106442450727640226503746586340279816318821395210726268291535648506190714616083163403189943334431056876038286530365757187367147446004855912033137386225053275419626102417236133948503",
|
||||
"1095121115716677802856811290392395128588168592409109494900178008967955253005183831872715423151551999734857184538199864469605657805519106717529655044054833197687459782636297255219742994736751541815269727940751860670268774903340296040006114013971309257028332849679096824800250742691718610670812374272414086863715763724622797509437062518082383056050144624962776302147890521249477060215148275163688301275847155316042279405557632639366066847442861422164832655874655824221577849928863023018366835675399949740429332468186340518172487073360822220449055340582568461568645259954873303616953776393853174845132081121976327462740354930744487429617202585015510744298530101547706821590188733515880733527449780963163909830077616357506845523215289297624086914545378511082534229620116563260168494523906566709418166011112754529766183554579321224940951177394088465596712620076240067370589036924024728375076210477267488679008016579588696191194060127319035195370137160936882402244399699172017835144537488486396906144217720028992863941288217185353914991583400421682751000603596655790990815525126154394344641336397793791497068253936771017031980867706707490224041075826337383538651825493679503771934836094655802776331664261631740148281763487765852746577808019633679",
|
||||
|
||||
/* generic unrestricted moduli */
|
||||
"17933601194860113372237070562165128350027320072176844226673287945873370751245439587792371960615073855669274087805055507977323024886880985062002853331424203",
|
||||
"2893527720709661239493896562339544088620375736490408468011883030469939904368086092336458298221245707898933583190713188177399401852627749210994595974791782790253946539043962213027074922559572312141181787434278708783207966459019479487",
|
||||
"347743159439876626079252796797422223177535447388206607607181663903045907591201940478223621722118173270898487582987137708656414344685816179420855160986340457973820182883508387588163122354089264395604796675278966117567294812714812796820596564876450716066283126720010859041484786529056457896367683122960411136319",
|
||||
"47266428956356393164697365098120418976400602706072312735924071745438532218237979333351774907308168340693326687317443721193266215155735814510792148768576498491199122744351399489453533553203833318691678263241941706256996197460424029012419012634671862283532342656309677173602509498417976091509154360039893165037637034737020327399910409885798185771003505320583967737293415979917317338985837385734747478364242020380416892056650841470869294527543597349250299539682430605173321029026555546832473048600327036845781970289288898317888427517364945316709081173840186150794397479045034008257793436817683392375274635794835245695887",
|
||||
"436463808505957768574894870394349739623346440601945961161254440072143298152040105676491048248110146278752857839930515766167441407021501229924721335644557342265864606569000117714935185566842453630868849121480179691838399545644365571106757731317371758557990781880691336695584799313313687287468894148823761785582982549586183756806449017542622267874275103877481475534991201849912222670102069951687572917937634467778042874315463238062009202992087620963771759666448266532858079402669920025224220613419441069718482837399612644978839925207109870840278194042158748845445131729137117098529028886770063736487420613144045836803985635654192482395882603511950547826439092832800532152534003936926017612446606135655146445620623395788978726744728503058670046885876251527122350275750995227",
|
||||
"11424167473351836398078306042624362277956429440521137061889702611766348760692206243140413411077394583180726863277012016602279290144126785129569474909173584789822341986742719230331946072730319555984484911716797058875905400999504305877245849119687509023232790273637466821052576859232452982061831009770786031785669030271542286603956118755585683996118896215213488875253101894663403069677745948305893849505434201763745232895780711972432011344857521691017896316861403206449421332243658855453435784006517202894181640562433575390821384210960117518650374602256601091379644034244332285065935413233557998331562749140202965844219336298970011513882564935538704289446968322281451907487362046511461221329799897350993370560697505809686438782036235372137015731304779072430260986460269894522159103008260495503005267165927542949439526272736586626709581721032189532726389643625590680105784844246152702670169304203783072275089194754889511973916207",
|
||||
"1214855636816562637502584060163403830270705000634713483015101384881871978446801224798536155406895823305035467591632531067547890948695117172076954220727075688048751022421198712032848890056357845974246560748347918630050853933697792254955890439720297560693579400297062396904306270145886830719309296352765295712183040773146419022875165382778007040109957609739589875590885701126197906063620133954893216612678838507540777138437797705602453719559017633986486649523611975865005712371194067612263330335590526176087004421363598470302731349138773205901447704682181517904064735636518462452242791676541725292378925568296858010151852326316777511935037531017413910506921922450666933202278489024521263798482237150056835746454842662048692127173834433089016107854491097456725016327709663199738238442164843147132789153725513257167915555162094970853584447993125488607696008169807374736711297007473812256272245489405898470297178738029484459690836250560495461579533254473316340608217876781986188705928270735695752830825527963838355419762516246028680280988020401914551825487349990306976304093109384451438813251211051597392127491464898797406789175453067960072008590614886532333015881171367104445044718144312416815712216611576221546455968770801413440778423979",
|
||||
NULL
|
||||
/* generic unrestricted moduli */
|
||||
"17933601194860113372237070562165128350027320072176844226673287945873370751245439587792371960615073855669274087805055507977323024886880985062002853331424203",
|
||||
"2893527720709661239493896562339544088620375736490408468011883030469939904368086092336458298221245707898933583190713188177399401852627749210994595974791782790253946539043962213027074922559572312141181787434278708783207966459019479487",
|
||||
"347743159439876626079252796797422223177535447388206607607181663903045907591201940478223621722118173270898487582987137708656414344685816179420855160986340457973820182883508387588163122354089264395604796675278966117567294812714812796820596564876450716066283126720010859041484786529056457896367683122960411136319",
|
||||
"47266428956356393164697365098120418976400602706072312735924071745438532218237979333351774907308168340693326687317443721193266215155735814510792148768576498491199122744351399489453533553203833318691678263241941706256996197460424029012419012634671862283532342656309677173602509498417976091509154360039893165037637034737020327399910409885798185771003505320583967737293415979917317338985837385734747478364242020380416892056650841470869294527543597349250299539682430605173321029026555546832473048600327036845781970289288898317888427517364945316709081173840186150794397479045034008257793436817683392375274635794835245695887",
|
||||
"436463808505957768574894870394349739623346440601945961161254440072143298152040105676491048248110146278752857839930515766167441407021501229924721335644557342265864606569000117714935185566842453630868849121480179691838399545644365571106757731317371758557990781880691336695584799313313687287468894148823761785582982549586183756806449017542622267874275103877481475534991201849912222670102069951687572917937634467778042874315463238062009202992087620963771759666448266532858079402669920025224220613419441069718482837399612644978839925207109870840278194042158748845445131729137117098529028886770063736487420613144045836803985635654192482395882603511950547826439092832800532152534003936926017612446606135655146445620623395788978726744728503058670046885876251527122350275750995227",
|
||||
"11424167473351836398078306042624362277956429440521137061889702611766348760692206243140413411077394583180726863277012016602279290144126785129569474909173584789822341986742719230331946072730319555984484911716797058875905400999504305877245849119687509023232790273637466821052576859232452982061831009770786031785669030271542286603956118755585683996118896215213488875253101894663403069677745948305893849505434201763745232895780711972432011344857521691017896316861403206449421332243658855453435784006517202894181640562433575390821384210960117518650374602256601091379644034244332285065935413233557998331562749140202965844219336298970011513882564935538704289446968322281451907487362046511461221329799897350993370560697505809686438782036235372137015731304779072430260986460269894522159103008260495503005267165927542949439526272736586626709581721032189532726389643625590680105784844246152702670169304203783072275089194754889511973916207",
|
||||
"1214855636816562637502584060163403830270705000634713483015101384881871978446801224798536155406895823305035467591632531067547890948695117172076954220727075688048751022421198712032848890056357845974246560748347918630050853933697792254955890439720297560693579400297062396904306270145886830719309296352765295712183040773146419022875165382778007040109957609739589875590885701126197906063620133954893216612678838507540777138437797705602453719559017633986486649523611975865005712371194067612263330335590526176087004421363598470302731349138773205901447704682181517904064735636518462452242791676541725292378925568296858010151852326316777511935037531017413910506921922450666933202278489024521263798482237150056835746454842662048692127173834433089016107854491097456725016327709663199738238442164843147132789153725513257167915555162094970853584447993125488607696008169807374736711297007473812256272245489405898470297178738029484459690836250560495461579533254473316340608217876781986188705928270735695752830825527963838355419762516246028680280988020401914551825487349990306976304093109384451438813251211051597392127491464898797406789175453067960072008590614886532333015881171367104445044718144312416815712216611576221546455968770801413440778423979",
|
||||
NULL
|
||||
};
|
||||
log = FOPEN("logs/expt.log", "w");
|
||||
logb = FOPEN("logs/expt_dr.log", "w");
|
||||
logc = FOPEN("logs/expt_2k.log", "w");
|
||||
logd = FOPEN("logs/expt_2kl.log", "w");
|
||||
for (n = 0; primes[n]; n++) {
|
||||
SLEEP;
|
||||
mp_read_radix(&a, primes[n], 10);
|
||||
mp_zero(&b);
|
||||
for (rr = 0; rr < (unsigned) mp_count_bits(&a); rr++) {
|
||||
mp_mul_2(&b, &b);
|
||||
b.dp[0] |= lbit();
|
||||
b.used += 1;
|
||||
}
|
||||
mp_sub_d(&a, 1, &c);
|
||||
mp_mod(&b, &c, &b);
|
||||
mp_set(&c, 3);
|
||||
rr = 0;
|
||||
tt = -1;
|
||||
do {
|
||||
gg = TIMFUNC();
|
||||
DO(mp_exptmod(&c, &b, &a, &d));
|
||||
gg = (TIMFUNC() - gg) >> 1;
|
||||
if (tt > gg)
|
||||
tt = gg;
|
||||
} while (++rr < 10);
|
||||
mp_sub_d(&a, 1, &e);
|
||||
mp_sub(&e, &b, &b);
|
||||
mp_exptmod(&c, &b, &a, &e); /* c^(p-1-b) mod a */
|
||||
mp_mulmod(&e, &d, &a, &d); /* c^b * c^(p-1-b) == c^p-1 == 1 */
|
||||
if (mp_cmp_d(&d, 1)) {
|
||||
printf("Different (%d)!!!\n", mp_count_bits(&a));
|
||||
draw(&d);
|
||||
exit(0);
|
||||
}
|
||||
printf("Exponentiating\t%4d-bit => %9" PRIu64 "/sec, %9" PRIu64 " cycles\n",
|
||||
mp_count_bits(&a), CLK_PER_SEC / tt, tt);
|
||||
FPRINTF(n < 4 ? logd : (n < 9) ? logc : (n < 16) ? logb : log,
|
||||
"%d %9" PRIu64 "\n", mp_count_bits(&a), tt);
|
||||
SLEEP;
|
||||
mp_read_radix(&a, primes[n], 10);
|
||||
mp_zero(&b);
|
||||
for (rr = 0; rr < (unsigned) mp_count_bits(&a); rr++) {
|
||||
mp_mul_2(&b, &b);
|
||||
b.dp[0] |= lbit();
|
||||
b.used += 1;
|
||||
}
|
||||
mp_sub_d(&a, 1, &c);
|
||||
mp_mod(&b, &c, &b);
|
||||
mp_set(&c, 3);
|
||||
rr = 0;
|
||||
tt = -1;
|
||||
do {
|
||||
gg = TIMFUNC();
|
||||
DO(mp_exptmod(&c, &b, &a, &d));
|
||||
gg = (TIMFUNC() - gg) >> 1;
|
||||
if (tt > gg)
|
||||
tt = gg;
|
||||
} while (++rr < 10);
|
||||
mp_sub_d(&a, 1, &e);
|
||||
mp_sub(&e, &b, &b);
|
||||
mp_exptmod(&c, &b, &a, &e); /* c^(p-1-b) mod a */
|
||||
mp_mulmod(&e, &d, &a, &d); /* c^b * c^(p-1-b) == c^p-1 == 1 */
|
||||
if (mp_cmp_d(&d, 1)) {
|
||||
printf("Different (%d)!!!\n", mp_count_bits(&a));
|
||||
draw(&d);
|
||||
exit(0);
|
||||
}
|
||||
printf("Exponentiating\t%4d-bit => %9" PRIu64 "/sec, %9" PRIu64 " cycles\n",
|
||||
mp_count_bits(&a), CLK_PER_SEC / tt, tt);
|
||||
FPRINTF(n < 4 ? logd : (n < 9) ? logc : (n < 16) ? logb : log,
|
||||
"%d %9" PRIu64 "\n", mp_count_bits(&a), tt);
|
||||
}
|
||||
}
|
||||
FCLOSE(log);
|
||||
@ -308,26 +308,26 @@ int main(void)
|
||||
mp_rand(&b, cnt);
|
||||
|
||||
do {
|
||||
mp_add_d(&b, 1, &b);
|
||||
mp_gcd(&a, &b, &c);
|
||||
mp_add_d(&b, 1, &b);
|
||||
mp_gcd(&a, &b, &c);
|
||||
} while (mp_cmp_d(&c, 1) != MP_EQ);
|
||||
|
||||
rr = 0;
|
||||
tt = -1;
|
||||
do {
|
||||
gg = TIMFUNC();
|
||||
DO(mp_invmod(&b, &a, &c));
|
||||
gg = (TIMFUNC() - gg) >> 1;
|
||||
if (tt > gg)
|
||||
tt = gg;
|
||||
gg = TIMFUNC();
|
||||
DO(mp_invmod(&b, &a, &c));
|
||||
gg = (TIMFUNC() - gg) >> 1;
|
||||
if (tt > gg)
|
||||
tt = gg;
|
||||
} while (++rr < 1000);
|
||||
mp_mulmod(&b, &c, &a, &d);
|
||||
if (mp_cmp_d(&d, 1) != MP_EQ) {
|
||||
printf("Failed to invert\n");
|
||||
return 0;
|
||||
printf("Failed to invert\n");
|
||||
return 0;
|
||||
}
|
||||
printf("Inverting mod\t%4d-bit => %9" PRIu64 "/sec, %9" PRIu64 " cycles\n",
|
||||
mp_count_bits(&a), CLK_PER_SEC / tt, tt);
|
||||
mp_count_bits(&a), CLK_PER_SEC / tt, tt);
|
||||
FPRINTF(log, "%d %9" PRIu64 "\n", cnt * DIGIT_BIT, tt);
|
||||
}
|
||||
FCLOSE(log);
|
||||
|
@ -12,18 +12,18 @@ int main(void)
|
||||
FILE *out;
|
||||
clock_t t1;
|
||||
mp_digit z;
|
||||
|
||||
|
||||
mp_init_multi(&q, &p, NULL);
|
||||
|
||||
|
||||
out = fopen("2kprime.1", "w");
|
||||
for (x = 0; x < (int)(sizeof(sizes) / sizeof(sizes[0])); x++) {
|
||||
top:
|
||||
mp_2expt(&q, sizes[x]);
|
||||
mp_add_d(&q, 3, &q);
|
||||
z = -3;
|
||||
|
||||
t1 = clock();
|
||||
for(;;) {
|
||||
top:
|
||||
mp_2expt(&q, sizes[x]);
|
||||
mp_add_d(&q, 3, &q);
|
||||
z = -3;
|
||||
|
||||
t1 = clock();
|
||||
for (;;) {
|
||||
mp_sub_d(&q, 4, &q);
|
||||
z += 4;
|
||||
|
||||
@ -31,13 +31,14 @@ int main(void)
|
||||
printf("No primes of size %d found\n", sizes[x]);
|
||||
break;
|
||||
}
|
||||
|
||||
if (clock() - t1 > CLOCKS_PER_SEC) {
|
||||
printf("."); fflush(stdout);
|
||||
|
||||
if (clock() - t1 > CLOCKS_PER_SEC) {
|
||||
printf(".");
|
||||
fflush(stdout);
|
||||
// sleep((clock() - t1 + CLOCKS_PER_SEC/2)/CLOCKS_PER_SEC);
|
||||
t1 = clock();
|
||||
}
|
||||
|
||||
|
||||
/* quick test on q */
|
||||
mp_prime_is_prime(&q, 1, &y);
|
||||
if (y == 0) {
|
||||
@ -59,25 +60,21 @@ int main(void)
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
if (y == 0) {
|
||||
++sizes[x];
|
||||
goto top;
|
||||
}
|
||||
|
||||
mp_toradix(&q, buf, 10);
|
||||
printf("\n\n%d-bits (k = %lu) = %s\n", sizes[x], z, buf);
|
||||
fprintf(out, "%d-bits (k = %lu) = %s\n", sizes[x], z, buf); fflush(out);
|
||||
}
|
||||
|
||||
if (y == 0) {
|
||||
++sizes[x];
|
||||
goto top;
|
||||
}
|
||||
|
||||
mp_toradix(&q, buf, 10);
|
||||
printf("\n\n%d-bits (k = %lu) = %s\n", sizes[x], z, buf);
|
||||
fprintf(out, "%d-bits (k = %lu) = %s\n", sizes[x], z, buf);
|
||||
fflush(out);
|
||||
}
|
||||
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
|
@ -2,63 +2,67 @@
|
||||
#include <tommath.h>
|
||||
|
||||
int sizes[] = { 1+256/DIGIT_BIT, 1+512/DIGIT_BIT, 1+768/DIGIT_BIT, 1+1024/DIGIT_BIT, 1+2048/DIGIT_BIT, 1+4096/DIGIT_BIT };
|
||||
|
||||
int main(void)
|
||||
{
|
||||
int res, x, y;
|
||||
char buf[4096];
|
||||
FILE *out;
|
||||
mp_int a, b;
|
||||
|
||||
|
||||
mp_init(&a);
|
||||
mp_init(&b);
|
||||
|
||||
|
||||
out = fopen("drprimes.txt", "w");
|
||||
for (x = 0; x < (int)(sizeof(sizes)/sizeof(sizes[0])); x++) {
|
||||
top:
|
||||
printf("Seeking a %d-bit safe prime\n", sizes[x] * DIGIT_BIT);
|
||||
mp_grow(&a, sizes[x]);
|
||||
mp_zero(&a);
|
||||
for (y = 1; y < sizes[x]; y++) {
|
||||
a.dp[y] = MP_MASK;
|
||||
}
|
||||
|
||||
/* make a DR modulus */
|
||||
a.dp[0] = -1;
|
||||
a.used = sizes[x];
|
||||
|
||||
/* now loop */
|
||||
res = 0;
|
||||
for (;;) {
|
||||
a.dp[0] += 4;
|
||||
if (a.dp[0] >= MP_MASK) break;
|
||||
mp_prime_is_prime(&a, 1, &res);
|
||||
if (res == 0) continue;
|
||||
printf("."); fflush(stdout);
|
||||
mp_sub_d(&a, 1, &b);
|
||||
mp_div_2(&b, &b);
|
||||
mp_prime_is_prime(&b, 3, &res);
|
||||
if (res == 0) continue;
|
||||
mp_prime_is_prime(&a, 3, &res);
|
||||
if (res == 1) break;
|
||||
}
|
||||
|
||||
if (res != 1) {
|
||||
printf("Error not DR modulus\n"); sizes[x] += 1; goto top;
|
||||
} else {
|
||||
mp_toradix(&a, buf, 10);
|
||||
printf("\n\np == %s\n\n", buf);
|
||||
fprintf(out, "%d-bit prime:\np == %s\n\n", mp_count_bits(&a), buf); fflush(out);
|
||||
}
|
||||
top:
|
||||
printf("Seeking a %d-bit safe prime\n", sizes[x] * DIGIT_BIT);
|
||||
mp_grow(&a, sizes[x]);
|
||||
mp_zero(&a);
|
||||
for (y = 1; y < sizes[x]; y++) {
|
||||
a.dp[y] = MP_MASK;
|
||||
}
|
||||
|
||||
/* make a DR modulus */
|
||||
a.dp[0] = -1;
|
||||
a.used = sizes[x];
|
||||
|
||||
/* now loop */
|
||||
res = 0;
|
||||
for (;;) {
|
||||
a.dp[0] += 4;
|
||||
if (a.dp[0] >= MP_MASK) break;
|
||||
mp_prime_is_prime(&a, 1, &res);
|
||||
if (res == 0) continue;
|
||||
printf(".");
|
||||
fflush(stdout);
|
||||
mp_sub_d(&a, 1, &b);
|
||||
mp_div_2(&b, &b);
|
||||
mp_prime_is_prime(&b, 3, &res);
|
||||
if (res == 0) continue;
|
||||
mp_prime_is_prime(&a, 3, &res);
|
||||
if (res == 1) break;
|
||||
}
|
||||
|
||||
if (res != 1) {
|
||||
printf("Error not DR modulus\n");
|
||||
sizes[x] += 1;
|
||||
goto top;
|
||||
} else {
|
||||
mp_toradix(&a, buf, 10);
|
||||
printf("\n\np == %s\n\n", buf);
|
||||
fprintf(out, "%d-bit prime:\np == %s\n\n", mp_count_bits(&a), buf);
|
||||
fflush(out);
|
||||
}
|
||||
}
|
||||
fclose(out);
|
||||
|
||||
|
||||
mp_clear(&a);
|
||||
mp_clear(&b);
|
||||
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
||||
|
192
etc/mersenne.c
192
etc/mersenne.c
@ -1,142 +1,140 @@
|
||||
/* Finds Mersenne primes using the Lucas-Lehmer test
|
||||
/* Finds Mersenne primes using the Lucas-Lehmer test
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com
|
||||
*/
|
||||
#include <time.h>
|
||||
#include <tommath.h>
|
||||
|
||||
int
|
||||
is_mersenne (long s, int *pp)
|
||||
int is_mersenne(long s, int *pp)
|
||||
{
|
||||
mp_int n, u;
|
||||
int res, k;
|
||||
|
||||
*pp = 0;
|
||||
mp_int n, u;
|
||||
int res, k;
|
||||
|
||||
if ((res = mp_init (&n)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
*pp = 0;
|
||||
|
||||
if ((res = mp_init (&u)) != MP_OKAY) {
|
||||
goto LBL_N;
|
||||
}
|
||||
if ((res = mp_init(&n)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
/* n = 2^s - 1 */
|
||||
if ((res = mp_2expt(&n, s)) != MP_OKAY) {
|
||||
goto LBL_MU;
|
||||
}
|
||||
if ((res = mp_sub_d (&n, 1, &n)) != MP_OKAY) {
|
||||
goto LBL_MU;
|
||||
}
|
||||
if ((res = mp_init(&u)) != MP_OKAY) {
|
||||
goto LBL_N;
|
||||
}
|
||||
|
||||
/* set u=4 */
|
||||
mp_set (&u, 4);
|
||||
|
||||
/* for k=1 to s-2 do */
|
||||
for (k = 1; k <= s - 2; k++) {
|
||||
/* u = u^2 - 2 mod n */
|
||||
if ((res = mp_sqr (&u, &u)) != MP_OKAY) {
|
||||
/* n = 2^s - 1 */
|
||||
if ((res = mp_2expt(&n, s)) != MP_OKAY) {
|
||||
goto LBL_MU;
|
||||
}
|
||||
if ((res = mp_sub_d (&u, 2, &u)) != MP_OKAY) {
|
||||
}
|
||||
if ((res = mp_sub_d(&n, 1, &n)) != MP_OKAY) {
|
||||
goto LBL_MU;
|
||||
}
|
||||
}
|
||||
|
||||
/* make sure u is positive */
|
||||
while (u.sign == MP_NEG) {
|
||||
if ((res = mp_add (&u, &n, &u)) != MP_OKAY) {
|
||||
/* set u=4 */
|
||||
mp_set(&u, 4);
|
||||
|
||||
/* for k=1 to s-2 do */
|
||||
for (k = 1; k <= s - 2; k++) {
|
||||
/* u = u^2 - 2 mod n */
|
||||
if ((res = mp_sqr(&u, &u)) != MP_OKAY) {
|
||||
goto LBL_MU;
|
||||
}
|
||||
if ((res = mp_sub_d(&u, 2, &u)) != MP_OKAY) {
|
||||
goto LBL_MU;
|
||||
}
|
||||
}
|
||||
|
||||
/* reduce */
|
||||
if ((res = mp_reduce_2k (&u, &n, 1)) != MP_OKAY) {
|
||||
goto LBL_MU;
|
||||
}
|
||||
}
|
||||
/* make sure u is positive */
|
||||
while (u.sign == MP_NEG) {
|
||||
if ((res = mp_add(&u, &n, &u)) != MP_OKAY) {
|
||||
goto LBL_MU;
|
||||
}
|
||||
}
|
||||
|
||||
/* if u == 0 then its prime */
|
||||
if (mp_iszero (&u) == 1) {
|
||||
mp_prime_is_prime(&n, 8, pp);
|
||||
if (*pp != 1) printf("FAILURE\n");
|
||||
}
|
||||
/* reduce */
|
||||
if ((res = mp_reduce_2k(&u, &n, 1)) != MP_OKAY) {
|
||||
goto LBL_MU;
|
||||
}
|
||||
}
|
||||
|
||||
res = MP_OKAY;
|
||||
LBL_MU:mp_clear (&u);
|
||||
LBL_N:mp_clear (&n);
|
||||
return res;
|
||||
/* if u == 0 then its prime */
|
||||
if (mp_iszero(&u) == 1) {
|
||||
mp_prime_is_prime(&n, 8, pp);
|
||||
if (*pp != 1) printf("FAILURE\n");
|
||||
}
|
||||
|
||||
res = MP_OKAY;
|
||||
LBL_MU:
|
||||
mp_clear(&u);
|
||||
LBL_N:
|
||||
mp_clear(&n);
|
||||
return res;
|
||||
}
|
||||
|
||||
/* square root of a long < 65536 */
|
||||
long
|
||||
i_sqrt (long x)
|
||||
long i_sqrt(long x)
|
||||
{
|
||||
long x1, x2;
|
||||
long x1, x2;
|
||||
|
||||
x2 = 16;
|
||||
do {
|
||||
x1 = x2;
|
||||
x2 = x1 - ((x1 * x1) - x) / (2 * x1);
|
||||
} while (x1 != x2);
|
||||
x2 = 16;
|
||||
do {
|
||||
x1 = x2;
|
||||
x2 = x1 - ((x1 * x1) - x) / (2 * x1);
|
||||
} while (x1 != x2);
|
||||
|
||||
if (x1 * x1 > x) {
|
||||
--x1;
|
||||
}
|
||||
if (x1 * x1 > x) {
|
||||
--x1;
|
||||
}
|
||||
|
||||
return x1;
|
||||
return x1;
|
||||
}
|
||||
|
||||
/* is the long prime by brute force */
|
||||
int
|
||||
isprime (long k)
|
||||
int isprime(long k)
|
||||
{
|
||||
long y, z;
|
||||
long y, z;
|
||||
|
||||
y = i_sqrt (k);
|
||||
for (z = 2; z <= y; z++) {
|
||||
if ((k % z) == 0)
|
||||
return 0;
|
||||
}
|
||||
return 1;
|
||||
y = i_sqrt(k);
|
||||
for (z = 2; z <= y; z++) {
|
||||
if ((k % z) == 0)
|
||||
return 0;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
int
|
||||
main (void)
|
||||
int main(void)
|
||||
{
|
||||
int pp;
|
||||
long k;
|
||||
clock_t tt;
|
||||
int pp;
|
||||
long k;
|
||||
clock_t tt;
|
||||
|
||||
k = 3;
|
||||
k = 3;
|
||||
|
||||
for (;;) {
|
||||
/* start time */
|
||||
tt = clock ();
|
||||
for (;;) {
|
||||
/* start time */
|
||||
tt = clock();
|
||||
|
||||
/* test if 2^k - 1 is prime */
|
||||
if (is_mersenne (k, &pp) != MP_OKAY) {
|
||||
printf ("Whoa error\n");
|
||||
return -1;
|
||||
}
|
||||
/* test if 2^k - 1 is prime */
|
||||
if (is_mersenne(k, &pp) != MP_OKAY) {
|
||||
printf("Whoa error\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (pp == 1) {
|
||||
/* count time */
|
||||
tt = clock () - tt;
|
||||
if (pp == 1) {
|
||||
/* count time */
|
||||
tt = clock() - tt;
|
||||
|
||||
/* display if prime */
|
||||
printf ("2^%-5ld - 1 is prime, test took %ld ticks\n", k, tt);
|
||||
}
|
||||
/* display if prime */
|
||||
printf("2^%-5ld - 1 is prime, test took %ld ticks\n", k, tt);
|
||||
}
|
||||
|
||||
/* goto next odd exponent */
|
||||
k += 2;
|
||||
|
||||
/* but make sure its prime */
|
||||
while (isprime (k) == 0) {
|
||||
/* goto next odd exponent */
|
||||
k += 2;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
|
||||
/* but make sure its prime */
|
||||
while (isprime(k) == 0) {
|
||||
k += 2;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
|
58
etc/mont.c
58
etc/mont.c
@ -12,39 +12,35 @@ int main(void)
|
||||
|
||||
/* loop through various sizes */
|
||||
for (x = 4; x < 256; x++) {
|
||||
printf("DIGITS == %3ld...", x); fflush(stdout);
|
||||
|
||||
/* make up the odd modulus */
|
||||
mp_rand(&modulus, x);
|
||||
modulus.dp[0] |= 1;
|
||||
|
||||
/* now find the R value */
|
||||
mp_montgomery_calc_normalization(&R, &modulus);
|
||||
mp_montgomery_setup(&modulus, &mp);
|
||||
|
||||
/* now run through a bunch tests */
|
||||
for (y = 0; y < 1000; y++) {
|
||||
mp_rand(&p, x/2); /* p = random */
|
||||
mp_mul(&p, &R, &pp); /* pp = R * p */
|
||||
mp_montgomery_reduce(&pp, &modulus, mp);
|
||||
|
||||
/* should be equal to p */
|
||||
if (mp_cmp(&pp, &p) != MP_EQ) {
|
||||
printf("FAILURE!\n");
|
||||
exit(-1);
|
||||
}
|
||||
}
|
||||
printf("PASSED\n");
|
||||
}
|
||||
|
||||
return 0;
|
||||
printf("DIGITS == %3ld...", x);
|
||||
fflush(stdout);
|
||||
|
||||
/* make up the odd modulus */
|
||||
mp_rand(&modulus, x);
|
||||
modulus.dp[0] |= 1;
|
||||
|
||||
/* now find the R value */
|
||||
mp_montgomery_calc_normalization(&R, &modulus);
|
||||
mp_montgomery_setup(&modulus, &mp);
|
||||
|
||||
/* now run through a bunch tests */
|
||||
for (y = 0; y < 1000; y++) {
|
||||
mp_rand(&p, x/2); /* p = random */
|
||||
mp_mul(&p, &R, &pp); /* pp = R * p */
|
||||
mp_montgomery_reduce(&pp, &modulus, mp);
|
||||
|
||||
/* should be equal to p */
|
||||
if (mp_cmp(&pp, &p) != MP_EQ) {
|
||||
printf("FAILURE!\n");
|
||||
exit(-1);
|
||||
}
|
||||
}
|
||||
printf("PASSED\n");
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
||||
|
595
etc/pprime.c
595
etc/pprime.c
@ -11,140 +11,145 @@ int n_prime;
|
||||
FILE *primes;
|
||||
|
||||
/* fast square root */
|
||||
static mp_digit
|
||||
i_sqrt (mp_word x)
|
||||
static mp_digit i_sqrt(mp_word x)
|
||||
{
|
||||
mp_word x1, x2;
|
||||
mp_word x1, x2;
|
||||
|
||||
x2 = x;
|
||||
do {
|
||||
x1 = x2;
|
||||
x2 = x1 - ((x1 * x1) - x) / (2 * x1);
|
||||
} while (x1 != x2);
|
||||
x2 = x;
|
||||
do {
|
||||
x1 = x2;
|
||||
x2 = x1 - ((x1 * x1) - x) / (2 * x1);
|
||||
} while (x1 != x2);
|
||||
|
||||
if (x1 * x1 > x) {
|
||||
--x1;
|
||||
}
|
||||
if (x1 * x1 > x) {
|
||||
--x1;
|
||||
}
|
||||
|
||||
return x1;
|
||||
return x1;
|
||||
}
|
||||
|
||||
|
||||
/* generates a prime digit */
|
||||
static void gen_prime (void)
|
||||
static void gen_prime(void)
|
||||
{
|
||||
mp_digit r, x, y, next;
|
||||
FILE *out;
|
||||
mp_digit r, x, y, next;
|
||||
FILE *out;
|
||||
|
||||
out = fopen("pprime.dat", "wb");
|
||||
out = fopen("pprime.dat", "wb");
|
||||
|
||||
/* write first set of primes */
|
||||
r = 3; fwrite(&r, 1, sizeof(mp_digit), out);
|
||||
r = 5; fwrite(&r, 1, sizeof(mp_digit), out);
|
||||
r = 7; fwrite(&r, 1, sizeof(mp_digit), out);
|
||||
r = 11; fwrite(&r, 1, sizeof(mp_digit), out);
|
||||
r = 13; fwrite(&r, 1, sizeof(mp_digit), out);
|
||||
r = 17; fwrite(&r, 1, sizeof(mp_digit), out);
|
||||
r = 19; fwrite(&r, 1, sizeof(mp_digit), out);
|
||||
r = 23; fwrite(&r, 1, sizeof(mp_digit), out);
|
||||
r = 29; fwrite(&r, 1, sizeof(mp_digit), out);
|
||||
r = 31; fwrite(&r, 1, sizeof(mp_digit), out);
|
||||
/* write first set of primes */
|
||||
/* *INDENT-OFF* */
|
||||
r = 3; fwrite(&r, 1, sizeof(mp_digit), out);
|
||||
r = 5; fwrite(&r, 1, sizeof(mp_digit), out);
|
||||
r = 7; fwrite(&r, 1, sizeof(mp_digit), out);
|
||||
r = 11; fwrite(&r, 1, sizeof(mp_digit), out);
|
||||
r = 13; fwrite(&r, 1, sizeof(mp_digit), out);
|
||||
r = 17; fwrite(&r, 1, sizeof(mp_digit), out);
|
||||
r = 19; fwrite(&r, 1, sizeof(mp_digit), out);
|
||||
r = 23; fwrite(&r, 1, sizeof(mp_digit), out);
|
||||
r = 29; fwrite(&r, 1, sizeof(mp_digit), out);
|
||||
r = 31; fwrite(&r, 1, sizeof(mp_digit), out);
|
||||
/* *INDENT-ON* */
|
||||
|
||||
/* get square root, since if 'r' is composite its factors must be < than this */
|
||||
y = i_sqrt (r);
|
||||
next = (y + 1) * (y + 1);
|
||||
/* get square root, since if 'r' is composite its factors must be < than this */
|
||||
y = i_sqrt(r);
|
||||
next = (y + 1) * (y + 1);
|
||||
|
||||
for (;;) {
|
||||
do {
|
||||
r += 2; /* next candidate */
|
||||
r &= MP_MASK;
|
||||
if (r < 31) break;
|
||||
for (;;) {
|
||||
do {
|
||||
r += 2; /* next candidate */
|
||||
r &= MP_MASK;
|
||||
if (r < 31) break;
|
||||
|
||||
/* update sqrt ? */
|
||||
if (next <= r) {
|
||||
++y;
|
||||
next = (y + 1) * (y + 1);
|
||||
}
|
||||
/* update sqrt ? */
|
||||
if (next <= r) {
|
||||
++y;
|
||||
next = (y + 1) * (y + 1);
|
||||
}
|
||||
|
||||
/* loop if divisible by 3,5,7,11,13,17,19,23,29 */
|
||||
if ((r % 3) == 0) {
|
||||
x = 0;
|
||||
continue;
|
||||
}
|
||||
if ((r % 5) == 0) {
|
||||
x = 0;
|
||||
continue;
|
||||
}
|
||||
if ((r % 7) == 0) {
|
||||
x = 0;
|
||||
continue;
|
||||
}
|
||||
if ((r % 11) == 0) {
|
||||
x = 0;
|
||||
continue;
|
||||
}
|
||||
if ((r % 13) == 0) {
|
||||
x = 0;
|
||||
continue;
|
||||
}
|
||||
if ((r % 17) == 0) {
|
||||
x = 0;
|
||||
continue;
|
||||
}
|
||||
if ((r % 19) == 0) {
|
||||
x = 0;
|
||||
continue;
|
||||
}
|
||||
if ((r % 23) == 0) {
|
||||
x = 0;
|
||||
continue;
|
||||
}
|
||||
if ((r % 29) == 0) {
|
||||
x = 0;
|
||||
continue;
|
||||
}
|
||||
/* loop if divisible by 3,5,7,11,13,17,19,23,29 */
|
||||
if ((r % 3) == 0) {
|
||||
x = 0;
|
||||
continue;
|
||||
}
|
||||
if ((r % 5) == 0) {
|
||||
x = 0;
|
||||
continue;
|
||||
}
|
||||
if ((r % 7) == 0) {
|
||||
x = 0;
|
||||
continue;
|
||||
}
|
||||
if ((r % 11) == 0) {
|
||||
x = 0;
|
||||
continue;
|
||||
}
|
||||
if ((r % 13) == 0) {
|
||||
x = 0;
|
||||
continue;
|
||||
}
|
||||
if ((r % 17) == 0) {
|
||||
x = 0;
|
||||
continue;
|
||||
}
|
||||
if ((r % 19) == 0) {
|
||||
x = 0;
|
||||
continue;
|
||||
}
|
||||
if ((r % 23) == 0) {
|
||||
x = 0;
|
||||
continue;
|
||||
}
|
||||
if ((r % 29) == 0) {
|
||||
x = 0;
|
||||
continue;
|
||||
}
|
||||
|
||||
/* now check if r is divisible by x + k={1,7,11,13,17,19,23,29} */
|
||||
for (x = 30; x <= y; x += 30) {
|
||||
if ((r % (x + 1)) == 0) {
|
||||
x = 0;
|
||||
break;
|
||||
/* now check if r is divisible by x + k={1,7,11,13,17,19,23,29} */
|
||||
for (x = 30; x <= y; x += 30) {
|
||||
if ((r % (x + 1)) == 0) {
|
||||
x = 0;
|
||||
break;
|
||||
}
|
||||
if ((r % (x + 7)) == 0) {
|
||||
x = 0;
|
||||
break;
|
||||
}
|
||||
if ((r % (x + 11)) == 0) {
|
||||
x = 0;
|
||||
break;
|
||||
}
|
||||
if ((r % (x + 13)) == 0) {
|
||||
x = 0;
|
||||
break;
|
||||
}
|
||||
if ((r % (x + 17)) == 0) {
|
||||
x = 0;
|
||||
break;
|
||||
}
|
||||
if ((r % (x + 19)) == 0) {
|
||||
x = 0;
|
||||
break;
|
||||
}
|
||||
if ((r % (x + 23)) == 0) {
|
||||
x = 0;
|
||||
break;
|
||||
}
|
||||
if ((r % (x + 29)) == 0) {
|
||||
x = 0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
} while (x == 0);
|
||||
if (r > 31) {
|
||||
fwrite(&r, 1, sizeof(mp_digit), out);
|
||||
printf("%9d\r", r);
|
||||
fflush(stdout);
|
||||
}
|
||||
if ((r % (x + 7)) == 0) {
|
||||
x = 0;
|
||||
break;
|
||||
}
|
||||
if ((r % (x + 11)) == 0) {
|
||||
x = 0;
|
||||
break;
|
||||
}
|
||||
if ((r % (x + 13)) == 0) {
|
||||
x = 0;
|
||||
break;
|
||||
}
|
||||
if ((r % (x + 17)) == 0) {
|
||||
x = 0;
|
||||
break;
|
||||
}
|
||||
if ((r % (x + 19)) == 0) {
|
||||
x = 0;
|
||||
break;
|
||||
}
|
||||
if ((r % (x + 23)) == 0) {
|
||||
x = 0;
|
||||
break;
|
||||
}
|
||||
if ((r % (x + 29)) == 0) {
|
||||
x = 0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
} while (x == 0);
|
||||
if (r > 31) { fwrite(&r, 1, sizeof(mp_digit), out); printf("%9d\r", r); fflush(stdout); }
|
||||
if (r < 31) break;
|
||||
}
|
||||
if (r < 31) break;
|
||||
}
|
||||
|
||||
fclose(out);
|
||||
fclose(out);
|
||||
}
|
||||
|
||||
void load_tab(void)
|
||||
@ -171,228 +176,234 @@ mp_digit prime_digit(void)
|
||||
|
||||
|
||||
/* makes a prime of at least k bits */
|
||||
int
|
||||
pprime (int k, int li, mp_int * p, mp_int * q)
|
||||
int pprime(int k, int li, mp_int *p, mp_int *q)
|
||||
{
|
||||
mp_int a, b, c, n, x, y, z, v;
|
||||
int res, ii;
|
||||
static const mp_digit bases[] = { 2, 3, 5, 7, 11, 13, 17, 19 };
|
||||
mp_int a, b, c, n, x, y, z, v;
|
||||
int res, ii;
|
||||
static const mp_digit bases[] = { 2, 3, 5, 7, 11, 13, 17, 19 };
|
||||
|
||||
/* single digit ? */
|
||||
if (k <= (int) DIGIT_BIT) {
|
||||
mp_set (p, prime_digit ());
|
||||
return MP_OKAY;
|
||||
}
|
||||
/* single digit ? */
|
||||
if (k <= (int) DIGIT_BIT) {
|
||||
mp_set(p, prime_digit());
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
if ((res = mp_init (&c)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
if ((res = mp_init(&c)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
if ((res = mp_init (&v)) != MP_OKAY) {
|
||||
goto LBL_C;
|
||||
}
|
||||
if ((res = mp_init(&v)) != MP_OKAY) {
|
||||
goto LBL_C;
|
||||
}
|
||||
|
||||
/* product of first 50 primes */
|
||||
if ((res =
|
||||
mp_read_radix (&v,
|
||||
"19078266889580195013601891820992757757219839668357012055907516904309700014933909014729740190",
|
||||
10)) != MP_OKAY) {
|
||||
goto LBL_V;
|
||||
}
|
||||
/* product of first 50 primes */
|
||||
if ((res =
|
||||
mp_read_radix(&v,
|
||||
"19078266889580195013601891820992757757219839668357012055907516904309700014933909014729740190",
|
||||
10)) != MP_OKAY) {
|
||||
goto LBL_V;
|
||||
}
|
||||
|
||||
if ((res = mp_init (&a)) != MP_OKAY) {
|
||||
goto LBL_V;
|
||||
}
|
||||
if ((res = mp_init(&a)) != MP_OKAY) {
|
||||
goto LBL_V;
|
||||
}
|
||||
|
||||
/* set the prime */
|
||||
mp_set (&a, prime_digit ());
|
||||
/* set the prime */
|
||||
mp_set(&a, prime_digit());
|
||||
|
||||
if ((res = mp_init (&b)) != MP_OKAY) {
|
||||
goto LBL_A;
|
||||
}
|
||||
if ((res = mp_init(&b)) != MP_OKAY) {
|
||||
goto LBL_A;
|
||||
}
|
||||
|
||||
if ((res = mp_init (&n)) != MP_OKAY) {
|
||||
goto LBL_B;
|
||||
}
|
||||
if ((res = mp_init(&n)) != MP_OKAY) {
|
||||
goto LBL_B;
|
||||
}
|
||||
|
||||
if ((res = mp_init (&x)) != MP_OKAY) {
|
||||
goto LBL_N;
|
||||
}
|
||||
if ((res = mp_init(&x)) != MP_OKAY) {
|
||||
goto LBL_N;
|
||||
}
|
||||
|
||||
if ((res = mp_init (&y)) != MP_OKAY) {
|
||||
goto LBL_X;
|
||||
}
|
||||
if ((res = mp_init(&y)) != MP_OKAY) {
|
||||
goto LBL_X;
|
||||
}
|
||||
|
||||
if ((res = mp_init (&z)) != MP_OKAY) {
|
||||
goto LBL_Y;
|
||||
}
|
||||
if ((res = mp_init(&z)) != MP_OKAY) {
|
||||
goto LBL_Y;
|
||||
}
|
||||
|
||||
/* now loop making the single digit */
|
||||
while (mp_count_bits (&a) < k) {
|
||||
fprintf (stderr, "prime has %4d bits left\r", k - mp_count_bits (&a));
|
||||
fflush (stderr);
|
||||
top:
|
||||
mp_set (&b, prime_digit ());
|
||||
/* now loop making the single digit */
|
||||
while (mp_count_bits(&a) < k) {
|
||||
fprintf(stderr, "prime has %4d bits left\r", k - mp_count_bits(&a));
|
||||
fflush(stderr);
|
||||
top:
|
||||
mp_set(&b, prime_digit());
|
||||
|
||||
/* now compute z = a * b * 2 */
|
||||
if ((res = mp_mul (&a, &b, &z)) != MP_OKAY) { /* z = a * b */
|
||||
goto LBL_Z;
|
||||
}
|
||||
|
||||
if ((res = mp_copy (&z, &c)) != MP_OKAY) { /* c = a * b */
|
||||
goto LBL_Z;
|
||||
}
|
||||
|
||||
if ((res = mp_mul_2 (&z, &z)) != MP_OKAY) { /* z = 2 * a * b */
|
||||
goto LBL_Z;
|
||||
}
|
||||
|
||||
/* n = z + 1 */
|
||||
if ((res = mp_add_d (&z, 1, &n)) != MP_OKAY) { /* n = z + 1 */
|
||||
goto LBL_Z;
|
||||
}
|
||||
|
||||
/* check (n, v) == 1 */
|
||||
if ((res = mp_gcd (&n, &v, &y)) != MP_OKAY) { /* y = (n, v) */
|
||||
goto LBL_Z;
|
||||
}
|
||||
|
||||
if (mp_cmp_d (&y, 1) != MP_EQ)
|
||||
goto top;
|
||||
|
||||
/* now try base x=bases[ii] */
|
||||
for (ii = 0; ii < li; ii++) {
|
||||
mp_set (&x, bases[ii]);
|
||||
|
||||
/* compute x^a mod n */
|
||||
if ((res = mp_exptmod (&x, &a, &n, &y)) != MP_OKAY) { /* y = x^a mod n */
|
||||
goto LBL_Z;
|
||||
/* now compute z = a * b * 2 */
|
||||
if ((res = mp_mul(&a, &b, &z)) != MP_OKAY) { /* z = a * b */
|
||||
goto LBL_Z;
|
||||
}
|
||||
|
||||
/* if y == 1 loop */
|
||||
if (mp_cmp_d (&y, 1) == MP_EQ)
|
||||
continue;
|
||||
|
||||
/* now x^2a mod n */
|
||||
if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) { /* y = x^2a mod n */
|
||||
goto LBL_Z;
|
||||
if ((res = mp_copy(&z, &c)) != MP_OKAY) { /* c = a * b */
|
||||
goto LBL_Z;
|
||||
}
|
||||
|
||||
if (mp_cmp_d (&y, 1) == MP_EQ)
|
||||
continue;
|
||||
|
||||
/* compute x^b mod n */
|
||||
if ((res = mp_exptmod (&x, &b, &n, &y)) != MP_OKAY) { /* y = x^b mod n */
|
||||
goto LBL_Z;
|
||||
if ((res = mp_mul_2(&z, &z)) != MP_OKAY) { /* z = 2 * a * b */
|
||||
goto LBL_Z;
|
||||
}
|
||||
|
||||
/* if y == 1 loop */
|
||||
if (mp_cmp_d (&y, 1) == MP_EQ)
|
||||
continue;
|
||||
|
||||
/* now x^2b mod n */
|
||||
if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) { /* y = x^2b mod n */
|
||||
goto LBL_Z;
|
||||
/* n = z + 1 */
|
||||
if ((res = mp_add_d(&z, 1, &n)) != MP_OKAY) { /* n = z + 1 */
|
||||
goto LBL_Z;
|
||||
}
|
||||
|
||||
if (mp_cmp_d (&y, 1) == MP_EQ)
|
||||
continue;
|
||||
|
||||
/* compute x^c mod n == x^ab mod n */
|
||||
if ((res = mp_exptmod (&x, &c, &n, &y)) != MP_OKAY) { /* y = x^ab mod n */
|
||||
goto LBL_Z;
|
||||
/* check (n, v) == 1 */
|
||||
if ((res = mp_gcd(&n, &v, &y)) != MP_OKAY) { /* y = (n, v) */
|
||||
goto LBL_Z;
|
||||
}
|
||||
|
||||
/* if y == 1 loop */
|
||||
if (mp_cmp_d (&y, 1) == MP_EQ)
|
||||
continue;
|
||||
if (mp_cmp_d(&y, 1) != MP_EQ)
|
||||
goto top;
|
||||
|
||||
/* now compute (x^c mod n)^2 */
|
||||
if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) { /* y = x^2ab mod n */
|
||||
goto LBL_Z;
|
||||
/* now try base x=bases[ii] */
|
||||
for (ii = 0; ii < li; ii++) {
|
||||
mp_set(&x, bases[ii]);
|
||||
|
||||
/* compute x^a mod n */
|
||||
if ((res = mp_exptmod(&x, &a, &n, &y)) != MP_OKAY) { /* y = x^a mod n */
|
||||
goto LBL_Z;
|
||||
}
|
||||
|
||||
/* if y == 1 loop */
|
||||
if (mp_cmp_d(&y, 1) == MP_EQ)
|
||||
continue;
|
||||
|
||||
/* now x^2a mod n */
|
||||
if ((res = mp_sqrmod(&y, &n, &y)) != MP_OKAY) { /* y = x^2a mod n */
|
||||
goto LBL_Z;
|
||||
}
|
||||
|
||||
if (mp_cmp_d(&y, 1) == MP_EQ)
|
||||
continue;
|
||||
|
||||
/* compute x^b mod n */
|
||||
if ((res = mp_exptmod(&x, &b, &n, &y)) != MP_OKAY) { /* y = x^b mod n */
|
||||
goto LBL_Z;
|
||||
}
|
||||
|
||||
/* if y == 1 loop */
|
||||
if (mp_cmp_d(&y, 1) == MP_EQ)
|
||||
continue;
|
||||
|
||||
/* now x^2b mod n */
|
||||
if ((res = mp_sqrmod(&y, &n, &y)) != MP_OKAY) { /* y = x^2b mod n */
|
||||
goto LBL_Z;
|
||||
}
|
||||
|
||||
if (mp_cmp_d(&y, 1) == MP_EQ)
|
||||
continue;
|
||||
|
||||
/* compute x^c mod n == x^ab mod n */
|
||||
if ((res = mp_exptmod(&x, &c, &n, &y)) != MP_OKAY) { /* y = x^ab mod n */
|
||||
goto LBL_Z;
|
||||
}
|
||||
|
||||
/* if y == 1 loop */
|
||||
if (mp_cmp_d(&y, 1) == MP_EQ)
|
||||
continue;
|
||||
|
||||
/* now compute (x^c mod n)^2 */
|
||||
if ((res = mp_sqrmod(&y, &n, &y)) != MP_OKAY) { /* y = x^2ab mod n */
|
||||
goto LBL_Z;
|
||||
}
|
||||
|
||||
/* y should be 1 */
|
||||
if (mp_cmp_d(&y, 1) != MP_EQ)
|
||||
continue;
|
||||
break;
|
||||
}
|
||||
|
||||
/* y should be 1 */
|
||||
if (mp_cmp_d (&y, 1) != MP_EQ)
|
||||
continue;
|
||||
break;
|
||||
}
|
||||
/* no bases worked? */
|
||||
if (ii == li)
|
||||
goto top;
|
||||
|
||||
/* no bases worked? */
|
||||
if (ii == li)
|
||||
goto top;
|
||||
{
|
||||
char buf[4096];
|
||||
|
||||
{
|
||||
char buf[4096];
|
||||
mp_toradix(&n, buf, 10);
|
||||
printf("Certificate of primality for:\n%s\n\n", buf);
|
||||
mp_toradix(&a, buf, 10);
|
||||
printf("A == \n%s\n\n", buf);
|
||||
mp_toradix(&b, buf, 10);
|
||||
printf("B == \n%s\n\nG == %d\n", buf, bases[ii]);
|
||||
printf("----------------------------------------------------------------\n");
|
||||
}
|
||||
|
||||
mp_toradix(&n, buf, 10);
|
||||
printf("Certificate of primality for:\n%s\n\n", buf);
|
||||
mp_toradix(&a, buf, 10);
|
||||
printf("A == \n%s\n\n", buf);
|
||||
mp_toradix(&b, buf, 10);
|
||||
printf("B == \n%s\n\nG == %d\n", buf, bases[ii]);
|
||||
printf("----------------------------------------------------------------\n");
|
||||
}
|
||||
/* a = n */
|
||||
mp_copy(&n, &a);
|
||||
}
|
||||
|
||||
/* a = n */
|
||||
mp_copy (&n, &a);
|
||||
}
|
||||
/* get q to be the order of the large prime subgroup */
|
||||
mp_sub_d(&n, 1, q);
|
||||
mp_div_2(q, q);
|
||||
mp_div(q, &b, q, NULL);
|
||||
|
||||
/* get q to be the order of the large prime subgroup */
|
||||
mp_sub_d (&n, 1, q);
|
||||
mp_div_2 (q, q);
|
||||
mp_div (q, &b, q, NULL);
|
||||
mp_exch(&n, p);
|
||||
|
||||
mp_exch (&n, p);
|
||||
|
||||
res = MP_OKAY;
|
||||
LBL_Z:mp_clear (&z);
|
||||
LBL_Y:mp_clear (&y);
|
||||
LBL_X:mp_clear (&x);
|
||||
LBL_N:mp_clear (&n);
|
||||
LBL_B:mp_clear (&b);
|
||||
LBL_A:mp_clear (&a);
|
||||
LBL_V:mp_clear (&v);
|
||||
LBL_C:mp_clear (&c);
|
||||
return res;
|
||||
res = MP_OKAY;
|
||||
LBL_Z:
|
||||
mp_clear(&z);
|
||||
LBL_Y:
|
||||
mp_clear(&y);
|
||||
LBL_X:
|
||||
mp_clear(&x);
|
||||
LBL_N:
|
||||
mp_clear(&n);
|
||||
LBL_B:
|
||||
mp_clear(&b);
|
||||
LBL_A:
|
||||
mp_clear(&a);
|
||||
LBL_V:
|
||||
mp_clear(&v);
|
||||
LBL_C:
|
||||
mp_clear(&c);
|
||||
return res;
|
||||
}
|
||||
|
||||
|
||||
int
|
||||
main (void)
|
||||
int main(void)
|
||||
{
|
||||
mp_int p, q;
|
||||
char buf[4096];
|
||||
int k, li;
|
||||
clock_t t1;
|
||||
mp_int p, q;
|
||||
char buf[4096];
|
||||
int k, li;
|
||||
clock_t t1;
|
||||
|
||||
srand (time (NULL));
|
||||
load_tab();
|
||||
srand(time(NULL));
|
||||
load_tab();
|
||||
|
||||
printf ("Enter # of bits: \n");
|
||||
fgets (buf, sizeof (buf), stdin);
|
||||
sscanf (buf, "%d", &k);
|
||||
printf("Enter # of bits: \n");
|
||||
fgets(buf, sizeof(buf), stdin);
|
||||
sscanf(buf, "%d", &k);
|
||||
|
||||
printf ("Enter number of bases to try (1 to 8):\n");
|
||||
fgets (buf, sizeof (buf), stdin);
|
||||
sscanf (buf, "%d", &li);
|
||||
printf("Enter number of bases to try (1 to 8):\n");
|
||||
fgets(buf, sizeof(buf), stdin);
|
||||
sscanf(buf, "%d", &li);
|
||||
|
||||
|
||||
mp_init (&p);
|
||||
mp_init (&q);
|
||||
mp_init(&p);
|
||||
mp_init(&q);
|
||||
|
||||
t1 = clock ();
|
||||
pprime (k, li, &p, &q);
|
||||
t1 = clock () - t1;
|
||||
t1 = clock();
|
||||
pprime(k, li, &p, &q);
|
||||
t1 = clock() - t1;
|
||||
|
||||
printf ("\n\nTook %ld ticks, %d bits\n", t1, mp_count_bits (&p));
|
||||
printf("\n\nTook %ld ticks, %d bits\n", t1, mp_count_bits(&p));
|
||||
|
||||
mp_toradix (&p, buf, 10);
|
||||
printf ("P == %s\n", buf);
|
||||
mp_toradix (&q, buf, 10);
|
||||
printf ("Q == %s\n", buf);
|
||||
mp_toradix(&p, buf, 10);
|
||||
printf("P == %s\n", buf);
|
||||
mp_toradix(&q, buf, 10);
|
||||
printf("Q == %s\n", buf);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
|
171
etc/tune.c
171
etc/tune.c
@ -14,44 +14,46 @@
|
||||
#ifndef X86_TIMER
|
||||
|
||||
/* RDTSC from Scott Duplichan */
|
||||
static uint64_t TIMFUNC (void)
|
||||
{
|
||||
#if defined __GNUC__
|
||||
#if defined(__i386__) || defined(__x86_64__)
|
||||
/* version from http://www.mcs.anl.gov/~kazutomo/rdtsc.html
|
||||
* the old code always got a warning issued by gcc, clang did not complain...
|
||||
*/
|
||||
unsigned hi, lo;
|
||||
__asm__ __volatile__ ("rdtsc" : "=a"(lo), "=d"(hi));
|
||||
return ((uint64_t)lo)|( ((uint64_t)hi)<<32);
|
||||
#else /* gcc-IA64 version */
|
||||
unsigned long result;
|
||||
__asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
|
||||
while (__builtin_expect ((int) result == -1, 0))
|
||||
__asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
|
||||
return result;
|
||||
#endif
|
||||
static uint64_t TIMFUNC(void)
|
||||
{
|
||||
# if defined __GNUC__
|
||||
# if defined(__i386__) || defined(__x86_64__)
|
||||
/* version from http://www.mcs.anl.gov/~kazutomo/rdtsc.html
|
||||
* the old code always got a warning issued by gcc, clang did not complain...
|
||||
*/
|
||||
unsigned hi, lo;
|
||||
__asm__ __volatile__("rdtsc" : "=a"(lo), "=d"(hi));
|
||||
return ((uint64_t)lo)|(((uint64_t)hi)<<32);
|
||||
# else /* gcc-IA64 version */
|
||||
unsigned long result;
|
||||
__asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
|
||||
while (__builtin_expect((int) result == -1, 0))
|
||||
__asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
|
||||
return result;
|
||||
# endif
|
||||
|
||||
// Microsoft and Intel Windows compilers
|
||||
#elif defined _M_IX86
|
||||
__asm rdtsc
|
||||
#elif defined _M_AMD64
|
||||
return __rdtsc ();
|
||||
#elif defined _M_IA64
|
||||
#if defined __INTEL_COMPILER
|
||||
#include <ia64intrin.h>
|
||||
#endif
|
||||
return __getReg (3116);
|
||||
#else
|
||||
#error need rdtsc function for this build
|
||||
#endif
|
||||
}
|
||||
# elif defined _M_IX86
|
||||
__asm rdtsc
|
||||
# elif defined _M_AMD64
|
||||
return __rdtsc();
|
||||
# elif defined _M_IA64
|
||||
# if defined __INTEL_COMPILER
|
||||
# include <ia64intrin.h>
|
||||
# endif
|
||||
return __getReg(3116);
|
||||
# else
|
||||
# error need rdtsc function for this build
|
||||
# endif
|
||||
}
|
||||
|
||||
|
||||
/* *INDENT-OFF* */
|
||||
/* generic ISO C timer */
|
||||
uint64_t LBL_T;
|
||||
void t_start(void) { LBL_T = TIMFUNC(); }
|
||||
uint64_t t_read(void) { return TIMFUNC() - LBL_T; }
|
||||
/* *INDENT-ON* */
|
||||
|
||||
#else
|
||||
extern void t_start(void);
|
||||
@ -60,85 +62,84 @@ extern uint64_t t_read(void);
|
||||
|
||||
uint64_t time_mult(int size, int s)
|
||||
{
|
||||
unsigned long x;
|
||||
mp_int a, b, c;
|
||||
uint64_t t1;
|
||||
unsigned long x;
|
||||
mp_int a, b, c;
|
||||
uint64_t t1;
|
||||
|
||||
mp_init (&a);
|
||||
mp_init (&b);
|
||||
mp_init (&c);
|
||||
mp_init(&a);
|
||||
mp_init(&b);
|
||||
mp_init(&c);
|
||||
|
||||
mp_rand (&a, size);
|
||||
mp_rand (&b, size);
|
||||
mp_rand(&a, size);
|
||||
mp_rand(&b, size);
|
||||
|
||||
if (s == 1) {
|
||||
if (s == 1) {
|
||||
KARATSUBA_MUL_CUTOFF = size;
|
||||
} else {
|
||||
} else {
|
||||
KARATSUBA_MUL_CUTOFF = 100000;
|
||||
}
|
||||
}
|
||||
|
||||
t_start();
|
||||
for (x = 0; x < TIMES; x++) {
|
||||
t_start();
|
||||
for (x = 0; x < TIMES; x++) {
|
||||
mp_mul(&a,&b,&c);
|
||||
}
|
||||
t1 = t_read();
|
||||
mp_clear (&a);
|
||||
mp_clear (&b);
|
||||
mp_clear (&c);
|
||||
return t1;
|
||||
}
|
||||
t1 = t_read();
|
||||
mp_clear(&a);
|
||||
mp_clear(&b);
|
||||
mp_clear(&c);
|
||||
return t1;
|
||||
}
|
||||
|
||||
uint64_t time_sqr(int size, int s)
|
||||
{
|
||||
unsigned long x;
|
||||
mp_int a, b;
|
||||
uint64_t t1;
|
||||
unsigned long x;
|
||||
mp_int a, b;
|
||||
uint64_t t1;
|
||||
|
||||
mp_init (&a);
|
||||
mp_init (&b);
|
||||
mp_init(&a);
|
||||
mp_init(&b);
|
||||
|
||||
mp_rand (&a, size);
|
||||
mp_rand(&a, size);
|
||||
|
||||
if (s == 1) {
|
||||
if (s == 1) {
|
||||
KARATSUBA_SQR_CUTOFF = size;
|
||||
} else {
|
||||
} else {
|
||||
KARATSUBA_SQR_CUTOFF = 100000;
|
||||
}
|
||||
}
|
||||
|
||||
t_start();
|
||||
for (x = 0; x < TIMES; x++) {
|
||||
t_start();
|
||||
for (x = 0; x < TIMES; x++) {
|
||||
mp_sqr(&a,&b);
|
||||
}
|
||||
t1 = t_read();
|
||||
mp_clear (&a);
|
||||
mp_clear (&b);
|
||||
return t1;
|
||||
}
|
||||
t1 = t_read();
|
||||
mp_clear(&a);
|
||||
mp_clear(&b);
|
||||
return t1;
|
||||
}
|
||||
|
||||
int
|
||||
main (void)
|
||||
int main(void)
|
||||
{
|
||||
uint64_t t1, t2;
|
||||
int x, y;
|
||||
uint64_t t1, t2;
|
||||
int x, y;
|
||||
|
||||
for (x = 8; ; x += 2) {
|
||||
t1 = time_mult(x, 0);
|
||||
t2 = time_mult(x, 1);
|
||||
printf("%d: %9llu %9llu, %9llu\n", x, t1, t2, t2 - t1);
|
||||
if (t2 < t1) break;
|
||||
}
|
||||
y = x;
|
||||
for (x = 8; ; x += 2) {
|
||||
t1 = time_mult(x, 0);
|
||||
t2 = time_mult(x, 1);
|
||||
printf("%d: %9llu %9llu, %9llu\n", x, t1, t2, t2 - t1);
|
||||
if (t2 < t1) break;
|
||||
}
|
||||
y = x;
|
||||
|
||||
for (x = 8; ; x += 2) {
|
||||
t1 = time_sqr(x, 0);
|
||||
t2 = time_sqr(x, 1);
|
||||
printf("%d: %9llu %9llu, %9llu\n", x, t1, t2, t2 - t1);
|
||||
if (t2 < t1) break;
|
||||
}
|
||||
printf("KARATSUBA_MUL_CUTOFF = %d\n", y);
|
||||
printf("KARATSUBA_SQR_CUTOFF = %d\n", x);
|
||||
for (x = 8; ; x += 2) {
|
||||
t1 = time_sqr(x, 0);
|
||||
t2 = time_sqr(x, 1);
|
||||
printf("%d: %9llu %9llu, %9llu\n", x, t1, t2, t2 - t1);
|
||||
if (t2 < t1) break;
|
||||
}
|
||||
printf("KARATSUBA_MUL_CUTOFF = %d\n", y);
|
||||
printf("KARATSUBA_SQR_CUTOFF = %d\n", x);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
|
2
makefile
2
makefile
@ -147,4 +147,4 @@ perlcritic:
|
||||
perlcritic *.pl
|
||||
|
||||
astyle:
|
||||
astyle --options=astylerc $(OBJECTS:.o=.c)
|
||||
astyle --options=astylerc $(OBJECTS:.o=.c) tommath*.h demo/*.c etc/*.c mtest/mtest.c
|
||||
|
443
mtest/mtest.c
443
mtest/mtest.c
@ -59,12 +59,12 @@ void rand_num(mp_int *a)
|
||||
#else
|
||||
sz = 1;
|
||||
while (sz < (unsigned)size) {
|
||||
buf[sz] = getRandChar();
|
||||
++sz;
|
||||
buf[sz] = getRandChar();
|
||||
++sz;
|
||||
}
|
||||
#endif
|
||||
if (sz != (unsigned)size) {
|
||||
fprintf(stderr, "\nWarning: fread failed\n\n");
|
||||
fprintf(stderr, "\nWarning: fread failed\n\n");
|
||||
}
|
||||
while (buf[1] == 0) buf[1] = getRandChar();
|
||||
mp_read_raw(a, buf, 1+size);
|
||||
@ -83,12 +83,12 @@ void rand_num2(mp_int *a)
|
||||
#else
|
||||
sz = 1;
|
||||
while (sz < (unsigned)size) {
|
||||
buf[sz] = getRandChar();
|
||||
++sz;
|
||||
buf[sz] = getRandChar();
|
||||
++sz;
|
||||
}
|
||||
#endif
|
||||
if (sz != (unsigned)size) {
|
||||
fprintf(stderr, "\nWarning: fread failed\n\n");
|
||||
fprintf(stderr, "\nWarning: fread failed\n\n");
|
||||
}
|
||||
while (buf[1] == 0) buf[1] = getRandChar();
|
||||
mp_read_raw(a, buf, 1+size);
|
||||
@ -113,38 +113,37 @@ int main(int argc, char *argv[])
|
||||
mp_init(&e);
|
||||
|
||||
if (argc > 1) {
|
||||
max = strtol(argv[1], NULL, 0);
|
||||
if (max < 0) {
|
||||
if (max > -64) {
|
||||
max = (1 << -(max)) + 1;
|
||||
} else {
|
||||
max = 1;
|
||||
}
|
||||
} else if (max == 0) {
|
||||
max = 1;
|
||||
}
|
||||
}
|
||||
else {
|
||||
max = 0;
|
||||
max = strtol(argv[1], NULL, 0);
|
||||
if (max < 0) {
|
||||
if (max > -64) {
|
||||
max = (1 << -(max)) + 1;
|
||||
} else {
|
||||
max = 1;
|
||||
}
|
||||
} else if (max == 0) {
|
||||
max = 1;
|
||||
}
|
||||
} else {
|
||||
max = 0;
|
||||
}
|
||||
|
||||
|
||||
/* initial (2^n - 1)^2 testing, makes sure the comba multiplier works [it has the new carry code] */
|
||||
/*
|
||||
mp_set(&a, 1);
|
||||
for (n = 1; n < 8192; n++) {
|
||||
mp_mul(&a, &a, &c);
|
||||
printf("mul\n");
|
||||
mp_to64(&a, buf);
|
||||
printf("%s\n%s\n", buf, buf);
|
||||
mp_to64(&c, buf);
|
||||
printf("%s\n", buf);
|
||||
/*
|
||||
mp_set(&a, 1);
|
||||
for (n = 1; n < 8192; n++) {
|
||||
mp_mul(&a, &a, &c);
|
||||
printf("mul\n");
|
||||
mp_to64(&a, buf);
|
||||
printf("%s\n%s\n", buf, buf);
|
||||
mp_to64(&c, buf);
|
||||
printf("%s\n", buf);
|
||||
|
||||
mp_add_d(&a, 1, &a);
|
||||
mp_mul_2(&a, &a);
|
||||
mp_sub_d(&a, 1, &a);
|
||||
}
|
||||
*/
|
||||
mp_add_d(&a, 1, &a);
|
||||
mp_mul_2(&a, &a);
|
||||
mp_sub_d(&a, 1, &a);
|
||||
}
|
||||
*/
|
||||
|
||||
#ifdef LTM_MTEST_REAL_RAND
|
||||
rng = fopen("/dev/urandom", "rb");
|
||||
@ -170,198 +169,198 @@ int main(int argc, char *argv[])
|
||||
t1 = clock();
|
||||
}
|
||||
#endif
|
||||
n = getRandChar() % 15;
|
||||
n = getRandChar() % 15;
|
||||
|
||||
if (max != 0) {
|
||||
--max;
|
||||
if (max == 0)
|
||||
n = 255;
|
||||
}
|
||||
if (max != 0) {
|
||||
--max;
|
||||
if (max == 0)
|
||||
n = 255;
|
||||
}
|
||||
|
||||
if (n == 0) {
|
||||
/* add tests */
|
||||
rand_num(&a);
|
||||
rand_num(&b);
|
||||
mp_add(&a, &b, &c);
|
||||
printf("add\n");
|
||||
mp_to64(&a, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&c, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 1) {
|
||||
/* sub tests */
|
||||
rand_num(&a);
|
||||
rand_num(&b);
|
||||
mp_sub(&a, &b, &c);
|
||||
printf("sub\n");
|
||||
mp_to64(&a, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&c, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 2) {
|
||||
/* mul tests */
|
||||
rand_num(&a);
|
||||
rand_num(&b);
|
||||
mp_mul(&a, &b, &c);
|
||||
printf("mul\n");
|
||||
mp_to64(&a, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&c, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 3) {
|
||||
/* div tests */
|
||||
rand_num(&a);
|
||||
rand_num(&b);
|
||||
mp_div(&a, &b, &c, &d);
|
||||
printf("div\n");
|
||||
mp_to64(&a, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&c, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&d, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 4) {
|
||||
/* sqr tests */
|
||||
rand_num(&a);
|
||||
mp_sqr(&a, &b);
|
||||
printf("sqr\n");
|
||||
mp_to64(&a, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 5) {
|
||||
/* mul_2d test */
|
||||
rand_num(&a);
|
||||
mp_copy(&a, &b);
|
||||
n = getRandChar() & 63;
|
||||
mp_mul_2d(&b, n, &b);
|
||||
mp_to64(&a, buf);
|
||||
printf("mul2d\n");
|
||||
printf("%s\n", buf);
|
||||
printf("%d\n", n);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 6) {
|
||||
/* div_2d test */
|
||||
rand_num(&a);
|
||||
mp_copy(&a, &b);
|
||||
n = getRandChar() & 63;
|
||||
mp_div_2d(&b, n, &b, NULL);
|
||||
mp_to64(&a, buf);
|
||||
printf("div2d\n");
|
||||
printf("%s\n", buf);
|
||||
printf("%d\n", n);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 7) {
|
||||
/* gcd test */
|
||||
rand_num(&a);
|
||||
rand_num(&b);
|
||||
a.sign = MP_ZPOS;
|
||||
b.sign = MP_ZPOS;
|
||||
mp_gcd(&a, &b, &c);
|
||||
printf("gcd\n");
|
||||
mp_to64(&a, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&c, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 8) {
|
||||
/* lcm test */
|
||||
rand_num(&a);
|
||||
rand_num(&b);
|
||||
a.sign = MP_ZPOS;
|
||||
b.sign = MP_ZPOS;
|
||||
mp_lcm(&a, &b, &c);
|
||||
printf("lcm\n");
|
||||
mp_to64(&a, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&c, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 9) {
|
||||
/* exptmod test */
|
||||
rand_num2(&a);
|
||||
rand_num2(&b);
|
||||
rand_num2(&c);
|
||||
if (n == 0) {
|
||||
/* add tests */
|
||||
rand_num(&a);
|
||||
rand_num(&b);
|
||||
mp_add(&a, &b, &c);
|
||||
printf("add\n");
|
||||
mp_to64(&a, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&c, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 1) {
|
||||
/* sub tests */
|
||||
rand_num(&a);
|
||||
rand_num(&b);
|
||||
mp_sub(&a, &b, &c);
|
||||
printf("sub\n");
|
||||
mp_to64(&a, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&c, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 2) {
|
||||
/* mul tests */
|
||||
rand_num(&a);
|
||||
rand_num(&b);
|
||||
mp_mul(&a, &b, &c);
|
||||
printf("mul\n");
|
||||
mp_to64(&a, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&c, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 3) {
|
||||
/* div tests */
|
||||
rand_num(&a);
|
||||
rand_num(&b);
|
||||
mp_div(&a, &b, &c, &d);
|
||||
printf("div\n");
|
||||
mp_to64(&a, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&c, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&d, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 4) {
|
||||
/* sqr tests */
|
||||
rand_num(&a);
|
||||
mp_sqr(&a, &b);
|
||||
printf("sqr\n");
|
||||
mp_to64(&a, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 5) {
|
||||
/* mul_2d test */
|
||||
rand_num(&a);
|
||||
mp_copy(&a, &b);
|
||||
n = getRandChar() & 63;
|
||||
mp_mul_2d(&b, n, &b);
|
||||
mp_to64(&a, buf);
|
||||
printf("mul2d\n");
|
||||
printf("%s\n", buf);
|
||||
printf("%d\n", n);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 6) {
|
||||
/* div_2d test */
|
||||
rand_num(&a);
|
||||
mp_copy(&a, &b);
|
||||
n = getRandChar() & 63;
|
||||
mp_div_2d(&b, n, &b, NULL);
|
||||
mp_to64(&a, buf);
|
||||
printf("div2d\n");
|
||||
printf("%s\n", buf);
|
||||
printf("%d\n", n);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 7) {
|
||||
/* gcd test */
|
||||
rand_num(&a);
|
||||
rand_num(&b);
|
||||
a.sign = MP_ZPOS;
|
||||
b.sign = MP_ZPOS;
|
||||
mp_gcd(&a, &b, &c);
|
||||
printf("gcd\n");
|
||||
mp_to64(&a, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&c, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 8) {
|
||||
/* lcm test */
|
||||
rand_num(&a);
|
||||
rand_num(&b);
|
||||
a.sign = MP_ZPOS;
|
||||
b.sign = MP_ZPOS;
|
||||
mp_lcm(&a, &b, &c);
|
||||
printf("lcm\n");
|
||||
mp_to64(&a, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&c, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 9) {
|
||||
/* exptmod test */
|
||||
rand_num2(&a);
|
||||
rand_num2(&b);
|
||||
rand_num2(&c);
|
||||
// if (c.dp[0]&1) mp_add_d(&c, 1, &c);
|
||||
a.sign = b.sign = c.sign = 0;
|
||||
mp_exptmod(&a, &b, &c, &d);
|
||||
printf("expt\n");
|
||||
mp_to64(&a, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&c, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&d, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 10) {
|
||||
/* invmod test */
|
||||
do {
|
||||
rand_num2(&a);
|
||||
rand_num2(&b);
|
||||
b.sign = MP_ZPOS;
|
||||
a.sign = MP_ZPOS;
|
||||
mp_gcd(&a, &b, &c);
|
||||
} while (mp_cmp_d(&c, 1) != 0 || mp_cmp_d(&b, 1) == 0);
|
||||
mp_invmod(&a, &b, &c);
|
||||
printf("invmod\n");
|
||||
mp_to64(&a, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&c, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 11) {
|
||||
rand_num(&a);
|
||||
mp_mul_2(&a, &a);
|
||||
mp_div_2(&a, &b);
|
||||
printf("div2\n");
|
||||
mp_to64(&a, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 12) {
|
||||
rand_num2(&a);
|
||||
mp_mul_2(&a, &b);
|
||||
printf("mul2\n");
|
||||
mp_to64(&a, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 13) {
|
||||
rand_num2(&a);
|
||||
tmp = abs(rand()) & THE_MASK;
|
||||
mp_add_d(&a, tmp, &b);
|
||||
printf("add_d\n");
|
||||
mp_to64(&a, buf);
|
||||
printf("%s\n%d\n", buf, tmp);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 14) {
|
||||
rand_num2(&a);
|
||||
tmp = abs(rand()) & THE_MASK;
|
||||
mp_sub_d(&a, tmp, &b);
|
||||
printf("sub_d\n");
|
||||
mp_to64(&a, buf);
|
||||
printf("%s\n%d\n", buf, tmp);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 255) {
|
||||
printf("exit\n");
|
||||
break;
|
||||
}
|
||||
a.sign = b.sign = c.sign = 0;
|
||||
mp_exptmod(&a, &b, &c, &d);
|
||||
printf("expt\n");
|
||||
mp_to64(&a, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&c, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&d, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 10) {
|
||||
/* invmod test */
|
||||
do {
|
||||
rand_num2(&a);
|
||||
rand_num2(&b);
|
||||
b.sign = MP_ZPOS;
|
||||
a.sign = MP_ZPOS;
|
||||
mp_gcd(&a, &b, &c);
|
||||
} while (mp_cmp_d(&c, 1) != 0 || mp_cmp_d(&b, 1) == 0);
|
||||
mp_invmod(&a, &b, &c);
|
||||
printf("invmod\n");
|
||||
mp_to64(&a, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&c, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 11) {
|
||||
rand_num(&a);
|
||||
mp_mul_2(&a, &a);
|
||||
mp_div_2(&a, &b);
|
||||
printf("div2\n");
|
||||
mp_to64(&a, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 12) {
|
||||
rand_num2(&a);
|
||||
mp_mul_2(&a, &b);
|
||||
printf("mul2\n");
|
||||
mp_to64(&a, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 13) {
|
||||
rand_num2(&a);
|
||||
tmp = abs(rand()) & THE_MASK;
|
||||
mp_add_d(&a, tmp, &b);
|
||||
printf("add_d\n");
|
||||
mp_to64(&a, buf);
|
||||
printf("%s\n%d\n", buf, tmp);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 14) {
|
||||
rand_num2(&a);
|
||||
tmp = abs(rand()) & THE_MASK;
|
||||
mp_sub_d(&a, tmp, &b);
|
||||
printf("sub_d\n");
|
||||
mp_to64(&a, buf);
|
||||
printf("%s\n%d\n", buf, tmp);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 255) {
|
||||
printf("exit\n");
|
||||
break;
|
||||
}
|
||||
|
||||
}
|
||||
#ifdef LTM_MTEST_REAL_RAND
|
||||
|
Loading…
Reference in New Issue
Block a user