Addition of fast division (recursive divrem only)

This commit is contained in:
czurnieden 2019-10-04 17:41:09 +02:00
parent 6378a90a70
commit 9edd185f66
14 changed files with 641 additions and 263 deletions

View File

@ -2327,6 +2327,139 @@ LBL_ERR:
}
/* Some larger values to test the fast division algorithm */
static int test_s_mp_div_recursive(void)
{
mp_int a, b, c_q, c_r, d_q, d_r;
int size, err;
if ((err = mp_init_multi(&a, &b, &c_q, &c_r, &d_q, &d_r, NULL)) != MP_OKAY) {
goto LBL_ERR;
}
for (size = MP_KARATSUBA_MUL_CUTOFF; size < 3 * MP_KARATSUBA_MUL_CUTOFF; size += 10) {
fprintf(stderr,"sizes = %d / %d\n", 10 * size, size);
/* Relation 10:1 */
if ((err = mp_rand(&a, 10 * size)) != MP_OKAY) {
goto LBL_ERR;
}
if ((err = mp_rand(&b, size)) != MP_OKAY) {
goto LBL_ERR;
}
if ((err = s_mp_div_recursive(&a, &b, &c_q, &c_r)) != MP_OKAY) {
goto LBL_ERR;
}
if ((err = s_mp_div_school(&a, &b, &d_q, &d_r)) != MP_OKAY) {
goto LBL_ERR;
}
if (mp_cmp(&c_q, &d_q) != MP_EQ) {
fprintf(stderr, "1. Recursive division failed at sizes %d / %d, wrong quotient\n",
10 * size, size);
goto LBL_ERR;
}
if (mp_cmp(&c_r, &d_r) != MP_EQ) {
fprintf(stderr, "1. Recursive division failed at sizes %d / %d, wrong remainder\n",
10 * size, size);
goto LBL_ERR;
}
fprintf(stderr,"sizes = %d / %d\n", 2 * size, size);
/* Relation 2:1 */
if ((err = mp_rand(&a, 2 * size)) != MP_OKAY) {
goto LBL_ERR;
}
if ((err = mp_rand(&b, size)) != MP_OKAY) {
goto LBL_ERR;
}
if ((err = s_mp_div_recursive(&a, &b, &c_q, &c_r)) != MP_OKAY) {
goto LBL_ERR;
}
if ((err = s_mp_div_school(&a, &b, &d_q, &d_r)) != MP_OKAY) {
goto LBL_ERR;
}
if (mp_cmp(&c_q, &d_q) != MP_EQ) {
fprintf(stderr, "2. Recursive division failed at sizes %d / %d, wrong quotient\n",
2 * size, size);
goto LBL_ERR;
}
if (mp_cmp(&c_r, &d_r) != MP_EQ) {
fprintf(stderr, "2. Recursive division failed at sizes %d / %d, wrong remainder\n",
2 * size, size);
goto LBL_ERR;
}
fprintf(stderr,"sizes = %d / %d\n", 3 * size, 2 * size);
/* Upper limit 3:2 */
if ((err = mp_rand(&a, 3 * size)) != MP_OKAY) {
goto LBL_ERR;
}
if ((err = mp_rand(&b, 2 * size)) != MP_OKAY) {
goto LBL_ERR;
}
if ((err = s_mp_div_recursive(&a, &b, &c_q, &c_r)) != MP_OKAY) {
goto LBL_ERR;
}
if ((err = s_mp_div_school(&a, &b, &d_q, &d_r)) != MP_OKAY) {
goto LBL_ERR;
}
if (mp_cmp(&c_q, &d_q) != MP_EQ) {
fprintf(stderr, "3. Recursive division failed at sizes %d / %d, wrong quotient\n",
3 * size, 2 * size);
goto LBL_ERR;
}
if (mp_cmp(&c_r, &d_r) != MP_EQ) {
fprintf(stderr, "3. Recursive division failed at sizes %d / %d, wrong remainder\n",
3 * size, 2 * size);
goto LBL_ERR;
}
}
mp_clear_multi(&a, &b, &c_q, &c_r, &d_q, &d_r, NULL);
return EXIT_SUCCESS;
LBL_ERR:
mp_clear_multi(&a, &b, &c_q, &c_r, &d_q, &d_r, NULL);
return EXIT_FAILURE;
}
static int test_s_mp_div_small(void)
{
mp_int a, b, c_q, c_r, d_q, d_r;
int size, err;
if ((err = mp_init_multi(&a, &b, &c_q, &c_r, &d_q, &d_r, NULL)) != MP_OKAY) {
goto LBL_ERR;
}
for (size = 1; size < MP_KARATSUBA_MUL_CUTOFF; size += 10) {
fprintf(stderr,"sizes = %d / %d\n", 2 * size, size);
/* Relation 10:1 */
if ((err = mp_rand(&a, 2 * size)) != MP_OKAY) {
goto LBL_ERR;
}
if ((err = mp_rand(&b, size)) != MP_OKAY) {
goto LBL_ERR;
}
if ((err = s_mp_div_small(&a, &b, &c_q, &c_r)) != MP_OKAY) {
goto LBL_ERR;
}
if ((err = s_mp_div_school(&a, &b, &d_q, &d_r)) != MP_OKAY) {
goto LBL_ERR;
}
if (mp_cmp(&c_q, &d_q) != MP_EQ) {
fprintf(stderr, "1. Small division failed at sizes %d / %d, wrong quotient\n",
2 * size, size);
goto LBL_ERR;
}
if (mp_cmp(&c_r, &d_r) != MP_EQ) {
fprintf(stderr, "1. Small division failed at sizes %d / %d, wrong remainder\n",
2 * size, size);
goto LBL_ERR;
}
}
mp_clear_multi(&a, &b, &c_q, &c_r, &d_q, &d_r, NULL);
return EXIT_SUCCESS;
LBL_ERR:
mp_clear_multi(&a, &b, &c_q, &c_r, &d_q, &d_r, NULL);
return EXIT_FAILURE;
}
static int test_mp_read_write_ubin(void)
{
@ -2500,6 +2633,8 @@ static int unit_tests(int argc, char **argv)
T1(mp_sqrt, MP_SQRT),
T1(mp_sqrtmod_prime, MP_SQRTMOD_PRIME),
T1(mp_xor, MP_XOR),
T2(s_mp_div_recursive, S_MP_DIV_RECURSIVE, S_MP_DIV_SCHOOL),
T2(s_mp_div_small, S_MP_DIV_SMALL, S_MP_DIV_SCHOOL),
T1(s_mp_balance_mul, S_MP_BALANCE_MUL),
T1(s_mp_karatsuba_mul, S_MP_KARATSUBA_MUL),
T1(s_mp_karatsuba_sqr, S_MP_KARATSUBA_SQR),

View File

@ -852,6 +852,18 @@
RelativePath="s_mp_balance_mul.c"
>
</File>
<File
RelativePath="s_mp_div_recursive.c"
>
</File>
<File
RelativePath="s_mp_div_school.c"
>
</File>
<File
RelativePath="s_mp_div_small.c"
>
</File>
<File
RelativePath="s_mp_exptmod.c"
>

View File

@ -44,12 +44,12 @@ mp_reduce_2k_setup.o mp_reduce_2k_setup_l.o mp_reduce_is_2k.o mp_reduce_is_2k_l.
mp_root_u32.o mp_rshd.o mp_sbin_size.o mp_set.o mp_set_double.o mp_set_i32.o mp_set_i64.o mp_set_l.o \
mp_set_ll.o mp_set_u32.o mp_set_u64.o mp_set_ul.o mp_set_ull.o mp_shrink.o mp_signed_rsh.o mp_sqr.o \
mp_sqrmod.o mp_sqrt.o mp_sqrtmod_prime.o mp_sub.o mp_sub_d.o mp_submod.o mp_to_radix.o mp_to_sbin.o \
mp_to_ubin.o mp_ubin_size.o mp_unpack.o mp_xor.o mp_zero.o s_mp_add.o s_mp_balance_mul.o s_mp_exptmod.o \
s_mp_exptmod_fast.o s_mp_get_bit.o s_mp_invmod_fast.o s_mp_invmod_slow.o s_mp_karatsuba_mul.o \
s_mp_karatsuba_sqr.o s_mp_log.o s_mp_log_d.o s_mp_montgomery_reduce_fast.o s_mp_mul_digs.o \
s_mp_mul_digs_fast.o s_mp_mul_high_digs.o s_mp_mul_high_digs_fast.o s_mp_prime_is_divisible.o \
s_mp_rand_jenkins.o s_mp_rand_platform.o s_mp_reverse.o s_mp_sqr.o s_mp_sqr_fast.o s_mp_sub.o \
s_mp_toom_mul.o s_mp_toom_sqr.o
mp_to_ubin.o mp_ubin_size.o mp_unpack.o mp_xor.o mp_zero.o s_mp_add.o s_mp_balance_mul.o \
s_mp_div_recursive.o s_mp_div_school.o s_mp_div_small.o s_mp_exptmod.o s_mp_exptmod_fast.o s_mp_get_bit.o \
s_mp_invmod_fast.o s_mp_invmod_slow.o s_mp_karatsuba_mul.o s_mp_karatsuba_sqr.o s_mp_log.o s_mp_log_d.o \
s_mp_montgomery_reduce_fast.o s_mp_mul_digs.o s_mp_mul_digs_fast.o s_mp_mul_high_digs.o \
s_mp_mul_high_digs_fast.o s_mp_prime_is_divisible.o s_mp_rand_jenkins.o s_mp_rand_platform.o \
s_mp_reverse.o s_mp_sqr.o s_mp_sqr_fast.o s_mp_sub.o s_mp_toom_mul.o s_mp_toom_sqr.o
#END_INS

View File

@ -47,12 +47,12 @@ mp_reduce_2k_setup.o mp_reduce_2k_setup_l.o mp_reduce_is_2k.o mp_reduce_is_2k_l.
mp_root_u32.o mp_rshd.o mp_sbin_size.o mp_set.o mp_set_double.o mp_set_i32.o mp_set_i64.o mp_set_l.o \
mp_set_ll.o mp_set_u32.o mp_set_u64.o mp_set_ul.o mp_set_ull.o mp_shrink.o mp_signed_rsh.o mp_sqr.o \
mp_sqrmod.o mp_sqrt.o mp_sqrtmod_prime.o mp_sub.o mp_sub_d.o mp_submod.o mp_to_radix.o mp_to_sbin.o \
mp_to_ubin.o mp_ubin_size.o mp_unpack.o mp_xor.o mp_zero.o s_mp_add.o s_mp_balance_mul.o s_mp_exptmod.o \
s_mp_exptmod_fast.o s_mp_get_bit.o s_mp_invmod_fast.o s_mp_invmod_slow.o s_mp_karatsuba_mul.o \
s_mp_karatsuba_sqr.o s_mp_log.o s_mp_log_d.o s_mp_montgomery_reduce_fast.o s_mp_mul_digs.o \
s_mp_mul_digs_fast.o s_mp_mul_high_digs.o s_mp_mul_high_digs_fast.o s_mp_prime_is_divisible.o \
s_mp_rand_jenkins.o s_mp_rand_platform.o s_mp_reverse.o s_mp_sqr.o s_mp_sqr_fast.o s_mp_sub.o \
s_mp_toom_mul.o s_mp_toom_sqr.o
mp_to_ubin.o mp_ubin_size.o mp_unpack.o mp_xor.o mp_zero.o s_mp_add.o s_mp_balance_mul.o \
s_mp_div_recursive.o s_mp_div_school.o s_mp_div_small.o s_mp_exptmod.o s_mp_exptmod_fast.o s_mp_get_bit.o \
s_mp_invmod_fast.o s_mp_invmod_slow.o s_mp_karatsuba_mul.o s_mp_karatsuba_sqr.o s_mp_log.o s_mp_log_d.o \
s_mp_montgomery_reduce_fast.o s_mp_mul_digs.o s_mp_mul_digs_fast.o s_mp_mul_high_digs.o \
s_mp_mul_high_digs_fast.o s_mp_prime_is_divisible.o s_mp_rand_jenkins.o s_mp_rand_platform.o \
s_mp_reverse.o s_mp_sqr.o s_mp_sqr_fast.o s_mp_sub.o s_mp_toom_mul.o s_mp_toom_sqr.o
HEADERS_PUB=tommath.h
HEADERS=tommath_private.h tommath_class.h tommath_superclass.h tommath_cutoffs.h $(HEADERS_PUB)

View File

@ -39,12 +39,12 @@ mp_reduce_2k_setup.obj mp_reduce_2k_setup_l.obj mp_reduce_is_2k.obj mp_reduce_is
mp_root_u32.obj mp_rshd.obj mp_sbin_size.obj mp_set.obj mp_set_double.obj mp_set_i32.obj mp_set_i64.obj mp_set_l.obj \
mp_set_ll.obj mp_set_u32.obj mp_set_u64.obj mp_set_ul.obj mp_set_ull.obj mp_shrink.obj mp_signed_rsh.obj mp_sqr.obj \
mp_sqrmod.obj mp_sqrt.obj mp_sqrtmod_prime.obj mp_sub.obj mp_sub_d.obj mp_submod.obj mp_to_radix.obj mp_to_sbin.obj \
mp_to_ubin.obj mp_ubin_size.obj mp_unpack.obj mp_xor.obj mp_zero.obj s_mp_add.obj s_mp_balance_mul.obj s_mp_exptmod.obj \
s_mp_exptmod_fast.obj s_mp_get_bit.obj s_mp_invmod_fast.obj s_mp_invmod_slow.obj s_mp_karatsuba_mul.obj \
s_mp_karatsuba_sqr.obj s_mp_log.obj s_mp_log_d.obj s_mp_montgomery_reduce_fast.obj s_mp_mul_digs.obj \
s_mp_mul_digs_fast.obj s_mp_mul_high_digs.obj s_mp_mul_high_digs_fast.obj s_mp_prime_is_divisible.obj \
s_mp_rand_jenkins.obj s_mp_rand_platform.obj s_mp_reverse.obj s_mp_sqr.obj s_mp_sqr_fast.obj s_mp_sub.obj \
s_mp_toom_mul.obj s_mp_toom_sqr.obj
mp_to_ubin.obj mp_ubin_size.obj mp_unpack.obj mp_xor.obj mp_zero.obj s_mp_add.obj s_mp_balance_mul.obj \
s_mp_div_recursive.obj s_mp_div_school.obj s_mp_div_small.obj s_mp_exptmod.obj s_mp_exptmod_fast.obj s_mp_get_bit.obj \
s_mp_invmod_fast.obj s_mp_invmod_slow.obj s_mp_karatsuba_mul.obj s_mp_karatsuba_sqr.obj s_mp_log.obj s_mp_log_d.obj \
s_mp_montgomery_reduce_fast.obj s_mp_mul_digs.obj s_mp_mul_digs_fast.obj s_mp_mul_high_digs.obj \
s_mp_mul_high_digs_fast.obj s_mp_prime_is_divisible.obj s_mp_rand_jenkins.obj s_mp_rand_platform.obj \
s_mp_reverse.obj s_mp_sqr.obj s_mp_sqr_fast.obj s_mp_sub.obj s_mp_toom_mul.obj s_mp_toom_sqr.obj
HEADERS_PUB=tommath.h
HEADERS=tommath_private.h tommath_class.h tommath_superclass.h tommath_cutoffs.h $(HEADERS_PUB)

View File

@ -41,12 +41,12 @@ mp_reduce_2k_setup.o mp_reduce_2k_setup_l.o mp_reduce_is_2k.o mp_reduce_is_2k_l.
mp_root_u32.o mp_rshd.o mp_sbin_size.o mp_set.o mp_set_double.o mp_set_i32.o mp_set_i64.o mp_set_l.o \
mp_set_ll.o mp_set_u32.o mp_set_u64.o mp_set_ul.o mp_set_ull.o mp_shrink.o mp_signed_rsh.o mp_sqr.o \
mp_sqrmod.o mp_sqrt.o mp_sqrtmod_prime.o mp_sub.o mp_sub_d.o mp_submod.o mp_to_radix.o mp_to_sbin.o \
mp_to_ubin.o mp_ubin_size.o mp_unpack.o mp_xor.o mp_zero.o s_mp_add.o s_mp_balance_mul.o s_mp_exptmod.o \
s_mp_exptmod_fast.o s_mp_get_bit.o s_mp_invmod_fast.o s_mp_invmod_slow.o s_mp_karatsuba_mul.o \
s_mp_karatsuba_sqr.o s_mp_log.o s_mp_log_d.o s_mp_montgomery_reduce_fast.o s_mp_mul_digs.o \
s_mp_mul_digs_fast.o s_mp_mul_high_digs.o s_mp_mul_high_digs_fast.o s_mp_prime_is_divisible.o \
s_mp_rand_jenkins.o s_mp_rand_platform.o s_mp_reverse.o s_mp_sqr.o s_mp_sqr_fast.o s_mp_sub.o \
s_mp_toom_mul.o s_mp_toom_sqr.o
mp_to_ubin.o mp_ubin_size.o mp_unpack.o mp_xor.o mp_zero.o s_mp_add.o s_mp_balance_mul.o \
s_mp_div_recursive.o s_mp_div_school.o s_mp_div_small.o s_mp_exptmod.o s_mp_exptmod_fast.o s_mp_get_bit.o \
s_mp_invmod_fast.o s_mp_invmod_slow.o s_mp_karatsuba_mul.o s_mp_karatsuba_sqr.o s_mp_log.o s_mp_log_d.o \
s_mp_montgomery_reduce_fast.o s_mp_mul_digs.o s_mp_mul_digs_fast.o s_mp_mul_high_digs.o \
s_mp_mul_high_digs_fast.o s_mp_prime_is_divisible.o s_mp_rand_jenkins.o s_mp_rand_platform.o \
s_mp_reverse.o s_mp_sqr.o s_mp_sqr_fast.o s_mp_sub.o s_mp_toom_mul.o s_mp_toom_sqr.o
#END_INS

View File

@ -48,12 +48,12 @@ mp_reduce_2k_setup.o mp_reduce_2k_setup_l.o mp_reduce_is_2k.o mp_reduce_is_2k_l.
mp_root_u32.o mp_rshd.o mp_sbin_size.o mp_set.o mp_set_double.o mp_set_i32.o mp_set_i64.o mp_set_l.o \
mp_set_ll.o mp_set_u32.o mp_set_u64.o mp_set_ul.o mp_set_ull.o mp_shrink.o mp_signed_rsh.o mp_sqr.o \
mp_sqrmod.o mp_sqrt.o mp_sqrtmod_prime.o mp_sub.o mp_sub_d.o mp_submod.o mp_to_radix.o mp_to_sbin.o \
mp_to_ubin.o mp_ubin_size.o mp_unpack.o mp_xor.o mp_zero.o s_mp_add.o s_mp_balance_mul.o s_mp_exptmod.o \
s_mp_exptmod_fast.o s_mp_get_bit.o s_mp_invmod_fast.o s_mp_invmod_slow.o s_mp_karatsuba_mul.o \
s_mp_karatsuba_sqr.o s_mp_log.o s_mp_log_d.o s_mp_montgomery_reduce_fast.o s_mp_mul_digs.o \
s_mp_mul_digs_fast.o s_mp_mul_high_digs.o s_mp_mul_high_digs_fast.o s_mp_prime_is_divisible.o \
s_mp_rand_jenkins.o s_mp_rand_platform.o s_mp_reverse.o s_mp_sqr.o s_mp_sqr_fast.o s_mp_sub.o \
s_mp_toom_mul.o s_mp_toom_sqr.o
mp_to_ubin.o mp_ubin_size.o mp_unpack.o mp_xor.o mp_zero.o s_mp_add.o s_mp_balance_mul.o \
s_mp_div_recursive.o s_mp_div_school.o s_mp_div_small.o s_mp_exptmod.o s_mp_exptmod_fast.o s_mp_get_bit.o \
s_mp_invmod_fast.o s_mp_invmod_slow.o s_mp_karatsuba_mul.o s_mp_karatsuba_sqr.o s_mp_log.o s_mp_log_d.o \
s_mp_montgomery_reduce_fast.o s_mp_mul_digs.o s_mp_mul_digs_fast.o s_mp_mul_high_digs.o \
s_mp_mul_high_digs_fast.o s_mp_prime_is_divisible.o s_mp_rand_jenkins.o s_mp_rand_platform.o \
s_mp_reverse.o s_mp_sqr.o s_mp_sqr_fast.o s_mp_sub.o s_mp_toom_mul.o s_mp_toom_sqr.o
HEADERS_PUB=tommath.h
HEADERS=tommath_private.h tommath_class.h tommath_superclass.h tommath_cutoffs.h $(HEADERS_PUB)

225
mp_div.c
View File

@ -3,13 +3,8 @@
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#ifdef MP_DIV_SMALL
/* slower bit-bang division... also smaller */
mp_err mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d)
{
mp_int ta, tb, tq, q;
int n, n2;
mp_err err;
/* is divisor zero ? */
@ -17,7 +12,7 @@ mp_err mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d)
return MP_VAL;
}
/* if a < b then q=0, r = a */
/* if a < b then q = 0, r = a */
if (mp_cmp_mag(a, b) == MP_LT) {
if (d != NULL) {
err = mp_copy(a, d);
@ -30,221 +25,17 @@ mp_err mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d)
return err;
}
/* init our temps */
if ((err = mp_init_multi(&ta, &tb, &tq, &q, NULL)) != MP_OKAY) {
return err;
}
mp_set(&tq, 1uL);
n = mp_count_bits(a) - mp_count_bits(b);
if ((err = mp_abs(a, &ta)) != MP_OKAY) goto LBL_ERR;
if ((err = mp_abs(b, &tb)) != MP_OKAY) goto LBL_ERR;
if ((err = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) goto LBL_ERR;
if ((err = mp_mul_2d(&tq, n, &tq)) != MP_OKAY) goto LBL_ERR;
while (n-- >= 0) {
if (mp_cmp(&tb, &ta) != MP_GT) {
if ((err = mp_sub(&ta, &tb, &ta)) != MP_OKAY) goto LBL_ERR;
if ((err = mp_add(&q, &tq, &q)) != MP_OKAY) goto LBL_ERR;
}
if ((err = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) goto LBL_ERR;
if ((err = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY) goto LBL_ERR;
}
/* now q == quotient and ta == remainder */
n = a->sign;
n2 = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
if (c != NULL) {
mp_exch(c, &q);
c->sign = MP_IS_ZERO(c) ? MP_ZPOS : n2;
}
if (d != NULL) {
mp_exch(d, &ta);
d->sign = MP_IS_ZERO(d) ? MP_ZPOS : n;
}
LBL_ERR:
mp_clear_multi(&ta, &tb, &tq, &q, NULL);
return err;
}
#else
/* integer signed division.
* c*b + d == a [e.g. a/b, c=quotient, d=remainder]
* HAC pp.598 Algorithm 14.20
*
* Note that the description in HAC is horribly
* incomplete. For example, it doesn't consider
* the case where digits are removed from 'x' in
* the inner loop. It also doesn't consider the
* case that y has fewer than three digits, etc..
*
* The overall algorithm is as described as
* 14.20 from HAC but fixed to treat these cases.
*/
mp_err mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d)
{
mp_int q, x, y, t1, t2;
int n, t, i, norm;
mp_sign neg;
mp_err err;
/* is divisor zero ? */
if (MP_IS_ZERO(b)) {
return MP_VAL;
}
/* if a < b then q=0, r = a */
if (mp_cmp_mag(a, b) == MP_LT) {
if (d != NULL) {
err = mp_copy(a, d);
} else {
err = MP_OKAY;
}
if (c != NULL) {
mp_zero(c);
}
return err;
}
if ((err = mp_init_size(&q, a->used + 2)) != MP_OKAY) {
return err;
}
q.used = a->used + 2;
if ((err = mp_init(&t1)) != MP_OKAY) goto LBL_Q;
if ((err = mp_init(&t2)) != MP_OKAY) goto LBL_T1;
if ((err = mp_init_copy(&x, a)) != MP_OKAY) goto LBL_T2;
if ((err = mp_init_copy(&y, b)) != MP_OKAY) goto LBL_X;
/* fix the sign */
neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
x.sign = y.sign = MP_ZPOS;
/* normalize both x and y, ensure that y >= b/2, [b == 2**MP_DIGIT_BIT] */
norm = mp_count_bits(&y) % MP_DIGIT_BIT;
if (norm < (MP_DIGIT_BIT - 1)) {
norm = (MP_DIGIT_BIT - 1) - norm;
if ((err = mp_mul_2d(&x, norm, &x)) != MP_OKAY) goto LBL_Y;
if ((err = mp_mul_2d(&y, norm, &y)) != MP_OKAY) goto LBL_Y;
if (MP_HAS(S_MP_DIV_RECURSIVE)
&& (b->used > MP_KARATSUBA_MUL_CUTOFF)
&& (b->used <= ((a->used)/3*2))) {
err = s_mp_div_recursive(a, b, c, d);
} else if (MP_HAS(S_MP_DIV_SCHOOL)) {
err = s_mp_div_school(a, b, c, d);
} else {
norm = 0;
err = s_mp_div_small(a, b, c, d);
}
/* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
n = x.used - 1;
t = y.used - 1;
/* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
/* y = y*b**{n-t} */
if ((err = mp_lshd(&y, n - t)) != MP_OKAY) goto LBL_Y;
while (mp_cmp(&x, &y) != MP_LT) {
++(q.dp[n - t]);
if ((err = mp_sub(&x, &y, &x)) != MP_OKAY) goto LBL_Y;
}
/* reset y by shifting it back down */
mp_rshd(&y, n - t);
/* step 3. for i from n down to (t + 1) */
for (i = n; i >= (t + 1); i--) {
if (i > x.used) {
continue;
}
/* step 3.1 if xi == yt then set q{i-t-1} to b-1,
* otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
if (x.dp[i] == y.dp[t]) {
q.dp[(i - t) - 1] = ((mp_digit)1 << (mp_digit)MP_DIGIT_BIT) - (mp_digit)1;
} else {
mp_word tmp;
tmp = (mp_word)x.dp[i] << (mp_word)MP_DIGIT_BIT;
tmp |= (mp_word)x.dp[i - 1];
tmp /= (mp_word)y.dp[t];
if (tmp > (mp_word)MP_MASK) {
tmp = MP_MASK;
}
q.dp[(i - t) - 1] = (mp_digit)(tmp & (mp_word)MP_MASK);
}
/* while (q{i-t-1} * (yt * b + y{t-1})) >
xi * b**2 + xi-1 * b + xi-2
do q{i-t-1} -= 1;
*/
q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] + 1uL) & (mp_digit)MP_MASK;
do {
q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1uL) & (mp_digit)MP_MASK;
/* find left hand */
mp_zero(&t1);
t1.dp[0] = ((t - 1) < 0) ? 0u : y.dp[t - 1];
t1.dp[1] = y.dp[t];
t1.used = 2;
if ((err = mp_mul_d(&t1, q.dp[(i - t) - 1], &t1)) != MP_OKAY) goto LBL_Y;
/* find right hand */
t2.dp[0] = ((i - 2) < 0) ? 0u : x.dp[i - 2];
t2.dp[1] = x.dp[i - 1]; /* i >= 1 always holds */
t2.dp[2] = x.dp[i];
t2.used = 3;
} while (mp_cmp_mag(&t1, &t2) == MP_GT);
/* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
if ((err = mp_mul_d(&y, q.dp[(i - t) - 1], &t1)) != MP_OKAY) goto LBL_Y;
if ((err = mp_lshd(&t1, (i - t) - 1)) != MP_OKAY) goto LBL_Y;
if ((err = mp_sub(&x, &t1, &x)) != MP_OKAY) goto LBL_Y;
/* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
if (x.sign == MP_NEG) {
if ((err = mp_copy(&y, &t1)) != MP_OKAY) goto LBL_Y;
if ((err = mp_lshd(&t1, (i - t) - 1)) != MP_OKAY) goto LBL_Y;
if ((err = mp_add(&x, &t1, &x)) != MP_OKAY) goto LBL_Y;
q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1uL) & MP_MASK;
}
}
/* now q is the quotient and x is the remainder
* [which we have to normalize]
*/
/* get sign before writing to c */
x.sign = (x.used == 0) ? MP_ZPOS : a->sign;
if (c != NULL) {
mp_clamp(&q);
mp_exch(&q, c);
c->sign = neg;
}
if (d != NULL) {
if ((err = mp_div_2d(&x, norm, &x, NULL)) != MP_OKAY) goto LBL_Y;
mp_exch(&x, d);
}
err = MP_OKAY;
LBL_Y:
mp_clear(&y);
LBL_X:
mp_clear(&x);
LBL_T2:
mp_clear(&t2);
LBL_T1:
mp_clear(&t1);
LBL_Q:
mp_clear(&q);
return err;
}
#endif
#endif

182
s_mp_div_recursive.c Normal file
View File

@ -0,0 +1,182 @@
#include "tommath_private.h"
#ifdef S_MP_DIV_RECURSIVE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/*
Direct implementation of algorithms 1.8 "RecursiveDivRem" and 1.9 "UnbalancedDivision"
from:
Brent, Richard P., and Paul Zimmermann. "Modern computer arithmetic"
Vol. 18. Cambridge University Press, 2010
Available online at https://arxiv.org/pdf/1004.4710
pages 19ff. in the above online document.
*/
static mp_err s_mp_recursion(const mp_int *a, const mp_int *b, mp_int *q, mp_int *r)
{
mp_err err;
int m, k;
mp_int A1, A2, B1, B0, Q1, Q0, R1, R0, t;
m = a->used - b->used;
if (m < MP_KARATSUBA_MUL_CUTOFF) {
return s_mp_div_school(a, b, q, r);
}
if ((err = mp_init_multi(&A1, &A2, &B1, &B0, &Q1, &Q0, &R1, &R0, &t, NULL)) != MP_OKAY) {
goto LBL_ERR;
}
/* k = floor(m/2) */
k = m/2;
/* B1 = b / beta^k, B0 = b % beta^k*/
if ((err = mp_div_2d(b, k * MP_DIGIT_BIT, &B1, &B0)) != MP_OKAY) goto LBL_ERR;
/* (Q1, R1) = RecursiveDivRem(A / beta^(2k), B1) */
if ((err = mp_div_2d(a, 2*k * MP_DIGIT_BIT, &A1, &t)) != MP_OKAY) goto LBL_ERR;
if ((err = s_mp_recursion(&A1, &B1, &Q1, &R1)) != MP_OKAY) goto LBL_ERR;
/* A1 = (R1 * beta^(2k)) + (A % beta^(2k)) - (Q1 * B0 * beta^k) */
if ((err = mp_lshd(&R1, 2*k)) != MP_OKAY) goto LBL_ERR;
if ((err = mp_add(&R1, &t, &A1)) != MP_OKAY) goto LBL_ERR;
if ((err = mp_mul(&Q1, &B0, &t)) != MP_OKAY) goto LBL_ERR;
if ((err = mp_lshd(&t, k)) != MP_OKAY) goto LBL_ERR;
if ((err = mp_sub(&A1, &t, &A1)) != MP_OKAY) goto LBL_ERR;
/* while A1 < 0 do Q1 = Q1 - 1, A1 = A1 + (beta^k * B) */
if ((err = mp_mul_2d(b, k * MP_DIGIT_BIT, &t)) != MP_OKAY) goto LBL_ERR;
while (mp_cmp_d(&A1, 0) == MP_LT) {
if ((err = mp_decr(&Q1)) != MP_OKAY) goto LBL_ERR;
if ((err = mp_add(&A1, &t, &A1)) != MP_OKAY) goto LBL_ERR;
}
/* (Q0, R0) = RecursiveDivRem(A1 / beta^(k), B1) */
if ((err = mp_div_2d(&A1, k * MP_DIGIT_BIT, &A1, &t)) != MP_OKAY) goto LBL_ERR;
if ((err = s_mp_recursion(&A1, &B1, &Q0, &R0)) != MP_OKAY) goto LBL_ERR;
/* A2 = (R0*beta^k) + (A1 % beta^k) - (Q0*B0) */
if ((err = mp_lshd(&R0, k)) != MP_OKAY) goto LBL_ERR;
if ((err = mp_add(&R0, &t, &A2)) != MP_OKAY) goto LBL_ERR;
if ((err = mp_mul(&Q0, &B0, &t)) != MP_OKAY) goto LBL_ERR;
if ((err = mp_sub(&A2, &t, &A2)) != MP_OKAY) goto LBL_ERR;
/* while A2 < 0 do Q0 = Q0 - 1, A2 = A2 + B */
while (mp_cmp_d(&A2, 0) == MP_LT) {
if ((err = mp_decr(&Q0)) != MP_OKAY) goto LBL_ERR;
if ((err = mp_add(&A2, b, &A2)) != MP_OKAY) goto LBL_ERR;
}
/* return q = (Q1*beta^k) + Q0, r = A2 */
if (q != NULL) {
if ((err = mp_lshd(&Q1, k)) != MP_OKAY) goto LBL_ERR;
if ((err = mp_add(&Q1, &Q0, q)) != MP_OKAY) goto LBL_ERR;
}
if (r != NULL) {
if ((err = mp_copy(&A2, r)) != MP_OKAY) goto LBL_ERR;
}
LBL_ERR:
mp_clear_multi(&A1, &A2, &B1, &B0, &Q1, &Q0, &R1, &R0, &t, NULL);
return err;
}
mp_err s_mp_div_recursive(const mp_int *a, const mp_int *b, mp_int *q, mp_int *r)
{
int j, m, n, sigma;
mp_err err;
mp_sign neg;
mp_digit msb_b, msb;
mp_int A, B, Q, Q1, R, A_div, A_mod;
if ((err = mp_init_multi(&A, &B, &Q, &Q1, &R, &A_div, &A_mod, NULL)) != MP_OKAY) {
goto LBL_ERR;
}
/* most significant bit of a limb */
/* assumes MP_DIGIT_MAX < (sizeof(mp_digit) * CHAR_BIT) */
msb = (MP_DIGIT_MAX + (mp_digit)(1)) >> 1;
/*
Method to compute sigma shamelessly stolen from
J. Burnikel and J. Ziegler, "Fast recursive division", Research Report
MPI-I-98-1-022, Max-Planck-Institut fuer Informatik, Saarbruecken, Germany,
October 1998. (available online)
Vid. section 2.3.
*/
m = MP_KARATSUBA_MUL_CUTOFF;
while (m <= b->used) {
m <<= 1;
}
j = (b->used + m - 1) / m;
n = j * m;
sigma = MP_DIGIT_BIT * (n - b->used);
msb_b = b->dp[b->used - 1];
while (msb_b < msb) {
sigma++;
msb_b <<= 1;
}
/* Use that sigma to normalize B */
if ((err = mp_mul_2d(b, sigma, &B)) != MP_OKAY) {
goto LBL_ERR;
}
if ((err = mp_mul_2d(a, sigma, &A)) != MP_OKAY) {
goto LBL_ERR;
}
/* fix the sign */
neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
A.sign = B.sign = MP_ZPOS;
/*
If the magnitude of "A" is not more more than twice that of "B" we can work
on them directly, otherwise we need to work at "A" in chunks
*/
n = B.used;
m = A.used - B.used;
/* Q = 0 */
mp_zero(&Q);
while (m > n) {
/* (q, r) = RecursveDivRem(A / (beta^(m-n)), B) */
j = (m - n) * MP_DIGIT_BIT;
if ((err = mp_div_2d(&A, j, &A_div, &A_mod)) != MP_OKAY) goto LBL_ERR;
if ((err = s_mp_recursion(&A_div, &B, &Q1, &R)) != MP_OKAY) goto LBL_ERR;
/* Q = (Q*beta!(n)) + q */
if ((err = mp_mul_2d(&Q, n * MP_DIGIT_BIT, &Q)) != MP_OKAY) goto LBL_ERR;
if ((err = mp_add(&Q, &Q1, &Q)) != MP_OKAY) goto LBL_ERR;
/* A = (r * beta^(m-n)) + (A % beta^(m-n))*/
if ((err = mp_mul_2d(&R, (m - n) * MP_DIGIT_BIT, &R)) != MP_OKAY) goto LBL_ERR;
if ((err = mp_add(&R, &A_mod, &A)) != MP_OKAY) goto LBL_ERR;
/* m = m - n */
m = m - n;
}
/* (q, r) = RecursveDivRem(A, B) */
if ((err = s_mp_recursion(&A, &B, &Q1, &R)) != MP_OKAY) goto LBL_ERR;
/* Q = (Q * beta^m) + q, R = r */
if ((err = mp_mul_2d(&Q, m * MP_DIGIT_BIT, &Q)) != MP_OKAY) goto LBL_ERR;
if ((err = mp_add(&Q, &Q1, &Q)) != MP_OKAY) goto LBL_ERR;
/* get sign before writing to c */
Q.sign = (Q.used == 0) ? MP_ZPOS : a->sign;
if (q != NULL) {
mp_exch(&Q, q);
q->sign = neg;
}
if (r != NULL) {
/* de-normalize the remainder */
if ((err = mp_div_2d(&R, sigma, &R, NULL)) != MP_OKAY) goto LBL_ERR;
mp_exch(&R, r);
}
LBL_ERR:
mp_clear_multi(&A, &B, &Q, &Q1, &R, &A_div, &A_mod, NULL);
return err;
}
#endif

158
s_mp_div_school.c Normal file
View File

@ -0,0 +1,158 @@
#include "tommath_private.h"
#ifdef S_MP_DIV_SCHOOL_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* integer signed division.
* c*b + d == a [e.g. a/b, c=quotient, d=remainder]
* HAC pp.598 Algorithm 14.20
*
* Note that the description in HAC is horribly
* incomplete. For example, it doesn't consider
* the case where digits are removed from 'x' in
* the inner loop. It also doesn't consider the
* case that y has fewer than three digits, etc..
*
* The overall algorithm is as described as
* 14.20 from HAC but fixed to treat these cases.
*/
mp_err s_mp_div_school(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d)
{
mp_int q, x, y, t1, t2;
int n, t, i, norm;
mp_sign neg;
mp_err err;
if ((err = mp_init_size(&q, a->used + 2)) != MP_OKAY) {
return err;
}
q.used = a->used + 2;
if ((err = mp_init(&t1)) != MP_OKAY) goto LBL_Q;
if ((err = mp_init(&t2)) != MP_OKAY) goto LBL_T1;
if ((err = mp_init_copy(&x, a)) != MP_OKAY) goto LBL_T2;
if ((err = mp_init_copy(&y, b)) != MP_OKAY) goto LBL_X;
/* fix the sign */
neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
x.sign = y.sign = MP_ZPOS;
/* normalize both x and y, ensure that y >= b/2, [b == 2**MP_DIGIT_BIT] */
norm = mp_count_bits(&y) % MP_DIGIT_BIT;
if (norm < (MP_DIGIT_BIT - 1)) {
norm = (MP_DIGIT_BIT - 1) - norm;
if ((err = mp_mul_2d(&x, norm, &x)) != MP_OKAY) goto LBL_Y;
if ((err = mp_mul_2d(&y, norm, &y)) != MP_OKAY) goto LBL_Y;
} else {
norm = 0;
}
/* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
n = x.used - 1;
t = y.used - 1;
/* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
/* y = y*b**{n-t} */
if ((err = mp_lshd(&y, n - t)) != MP_OKAY) goto LBL_Y;
while (mp_cmp(&x, &y) != MP_LT) {
++(q.dp[n - t]);
if ((err = mp_sub(&x, &y, &x)) != MP_OKAY) goto LBL_Y;
}
/* reset y by shifting it back down */
mp_rshd(&y, n - t);
/* step 3. for i from n down to (t + 1) */
for (i = n; i >= (t + 1); i--) {
if (i > x.used) {
continue;
}
/* step 3.1 if xi == yt then set q{i-t-1} to b-1,
* otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
if (x.dp[i] == y.dp[t]) {
q.dp[(i - t) - 1] = ((mp_digit)1 << (mp_digit)MP_DIGIT_BIT) - (mp_digit)1;
} else {
mp_word tmp;
tmp = (mp_word)x.dp[i] << (mp_word)MP_DIGIT_BIT;
tmp |= (mp_word)x.dp[i - 1];
tmp /= (mp_word)y.dp[t];
if (tmp > (mp_word)MP_MASK) {
tmp = MP_MASK;
}
q.dp[(i - t) - 1] = (mp_digit)(tmp & (mp_word)MP_MASK);
}
/* while (q{i-t-1} * (yt * b + y{t-1})) >
xi * b**2 + xi-1 * b + xi-2
do q{i-t-1} -= 1;
*/
q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] + 1uL) & (mp_digit)MP_MASK;
do {
q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1uL) & (mp_digit)MP_MASK;
/* find left hand */
mp_zero(&t1);
t1.dp[0] = ((t - 1) < 0) ? 0u : y.dp[t - 1];
t1.dp[1] = y.dp[t];
t1.used = 2;
if ((err = mp_mul_d(&t1, q.dp[(i - t) - 1], &t1)) != MP_OKAY) goto LBL_Y;
/* find right hand */
t2.dp[0] = ((i - 2) < 0) ? 0u : x.dp[i - 2];
t2.dp[1] = x.dp[i - 1]; /* i >= 1 always holds */
t2.dp[2] = x.dp[i];
t2.used = 3;
} while (mp_cmp_mag(&t1, &t2) == MP_GT);
/* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
if ((err = mp_mul_d(&y, q.dp[(i - t) - 1], &t1)) != MP_OKAY) goto LBL_Y;
if ((err = mp_lshd(&t1, (i - t) - 1)) != MP_OKAY) goto LBL_Y;
if ((err = mp_sub(&x, &t1, &x)) != MP_OKAY) goto LBL_Y;
/* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
if (x.sign == MP_NEG) {
if ((err = mp_copy(&y, &t1)) != MP_OKAY) goto LBL_Y;
if ((err = mp_lshd(&t1, (i - t) - 1)) != MP_OKAY) goto LBL_Y;
if ((err = mp_add(&x, &t1, &x)) != MP_OKAY) goto LBL_Y;
q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1uL) & MP_MASK;
}
}
/* now q is the quotient and x is the remainder
* [which we have to normalize]
*/
/* get sign before writing to c */
x.sign = (x.used == 0) ? MP_ZPOS : a->sign;
if (c != NULL) {
mp_clamp(&q);
mp_exch(&q, c);
c->sign = neg;
}
if (d != NULL) {
if ((err = mp_div_2d(&x, norm, &x, NULL)) != MP_OKAY) goto LBL_Y;
mp_exch(&x, d);
}
err = MP_OKAY;
LBL_Y:
mp_clear(&y);
LBL_X:
mp_clear(&x);
LBL_T2:
mp_clear(&t2);
LBL_T1:
mp_clear(&t1);
LBL_Q:
mp_clear(&q);
return err;
}
#endif

51
s_mp_div_small.c Normal file
View File

@ -0,0 +1,51 @@
#include "tommath_private.h"
#ifdef S_MP_DIV_SMALL_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* slower bit-bang division... also smaller */
mp_err s_mp_div_small(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d)
{
mp_int ta, tb, tq, q;
int n;
mp_sign sign;
mp_err err;
/* init our temps */
if ((err = mp_init_multi(&ta, &tb, &tq, &q, NULL)) != MP_OKAY) {
return err;
}
mp_set(&tq, 1uL);
n = mp_count_bits(a) - mp_count_bits(b);
if ((err = mp_abs(a, &ta)) != MP_OKAY) goto LBL_ERR;
if ((err = mp_abs(b, &tb)) != MP_OKAY) goto LBL_ERR;
if ((err = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) goto LBL_ERR;
if ((err = mp_mul_2d(&tq, n, &tq)) != MP_OKAY) goto LBL_ERR;
while (n-- >= 0) {
if (mp_cmp(&tb, &ta) != MP_GT) {
if ((err = mp_sub(&ta, &tb, &ta)) != MP_OKAY) goto LBL_ERR;
if ((err = mp_add(&q, &tq, &q)) != MP_OKAY) goto LBL_ERR;
}
if ((err = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) goto LBL_ERR;
if ((err = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY) goto LBL_ERR;
}
/* now q == quotient and ta == remainder */
sign = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
if (c != NULL) {
mp_exch(c, &q);
c->sign = MP_IS_ZERO(c) ? MP_ZPOS : sign;
}
if (d != NULL) {
mp_exch(d, &ta);
d->sign = MP_IS_ZERO(d) ? MP_ZPOS : a->sign;
}
LBL_ERR:
mp_clear_multi(&ta, &tb, &tq, &q, NULL);
return err;
}
#endif

View File

@ -146,6 +146,9 @@
# define MP_ZERO_C
# define S_MP_ADD_C
# define S_MP_BALANCE_MUL_C
# define S_MP_DIV_RECURSIVE_C
# define S_MP_DIV_SCHOOL_C
# define S_MP_DIV_SMALL_C
# define S_MP_EXPTMOD_C
# define S_MP_EXPTMOD_FAST_C
# define S_MP_GET_BIT_C
@ -250,24 +253,12 @@
#endif
#if defined(MP_DIV_C)
# define MP_ADD_C
# define MP_CLAMP_C
# define MP_CLEAR_C
# define MP_CMP_C
# define MP_CMP_MAG_C
# define MP_COPY_C
# define MP_COUNT_BITS_C
# define MP_DIV_2D_C
# define MP_EXCH_C
# define MP_INIT_C
# define MP_INIT_COPY_C
# define MP_INIT_SIZE_C
# define MP_LSHD_C
# define MP_MUL_2D_C
# define MP_MUL_D_C
# define MP_RSHD_C
# define MP_SUB_C
# define MP_ZERO_C
# define S_MP_DIV_RECURSIVE_C
# define S_MP_DIV_SCHOOL_C
# define S_MP_DIV_SMALL_C
#endif
#if defined(MP_DIV_2_C)
@ -1022,6 +1013,59 @@
# define MP_MUL_C
#endif
#if defined(S_MP_DIV_RECURSIVE_C)
# define MP_ADD_C
# define MP_CLEAR_MULTI_C
# define MP_CMP_D_C
# define MP_COPY_C
# define MP_DECR_C
# define MP_DIV_2D_C
# define MP_EXCH_C
# define MP_INIT_MULTI_C
# define MP_LSHD_C
# define MP_MUL_2D_C
# define MP_MUL_C
# define MP_SUB_C
# define MP_ZERO_C
# define S_MP_DIV_SCHOOL_C
# define S_MP_RECURSION_C
#endif
#if defined(S_MP_DIV_SCHOOL_C)
# define MP_ADD_C
# define MP_CLAMP_C
# define MP_CLEAR_C
# define MP_CMP_C
# define MP_CMP_MAG_C
# define MP_COPY_C
# define MP_COUNT_BITS_C
# define MP_DIV_2D_C
# define MP_EXCH_C
# define MP_INIT_C
# define MP_INIT_COPY_C
# define MP_INIT_SIZE_C
# define MP_LSHD_C
# define MP_MUL_2D_C
# define MP_MUL_D_C
# define MP_RSHD_C
# define MP_SUB_C
# define MP_ZERO_C
#endif
#if defined(S_MP_DIV_SMALL_C)
# define MP_ABS_C
# define MP_ADD_C
# define MP_CLEAR_MULTI_C
# define MP_CMP_C
# define MP_COUNT_BITS_C
# define MP_DIV_2D_C
# define MP_EXCH_C
# define MP_INIT_MULTI_C
# define MP_MUL_2D_C
# define MP_SET_C
# define MP_SUB_C
#endif
#if defined(S_MP_EXPTMOD_C)
# define MP_CLEAR_C
# define MP_COPY_C

View File

@ -213,6 +213,11 @@ MP_PRIVATE mp_err s_mp_prime_is_divisible(const mp_int *a, mp_bool *result);
MP_PRIVATE mp_digit s_mp_log_d(mp_digit base, mp_digit n);
MP_PRIVATE mp_err s_mp_log(const mp_int *a, uint32_t base, uint32_t *c);
MP_PRIVATE mp_err s_mp_div_recursive(const mp_int *a, const mp_int *b, mp_int *q, mp_int *r);
MP_PRIVATE mp_err s_mp_div_school(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d);
MP_PRIVATE mp_err s_mp_div_small(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d);
/* TODO: jenkins prng is not thread safe as of now */
MP_PRIVATE mp_err s_mp_rand_jenkins(void *p, size_t n) MP_WUR;
MP_PRIVATE void s_mp_rand_jenkins_init(uint64_t seed);

View File

@ -68,7 +68,7 @@
# define S_MP_REVERSE_C
/* other modifiers */
# define MP_DIV_SMALL /* Slower division, not critical */
/* here we are on the last pass so we turn things off. The functions classes are still there