diff --git a/demo/test.c b/demo/test.c index 2d1d774..f6b3c36 100644 --- a/demo/test.c +++ b/demo/test.c @@ -707,9 +707,9 @@ static int test_mp_sqrtmod_prime(void) }; static struct mp_sqrtmod_prime_st sqrtmod_prime[] = { - { 5, 14, 3 }, - { 7, 9, 4 }, - { 113, 2, 62 } + { 5, 14, 3 }, /* 5 \cong 1 (mod 4) */ + { 7, 9, 4 }, /* 7 \cong 3 (mod 4) */ + { 113, 2, 62 } /* 113 \cong 1 (mod 4) */ }; int i; @@ -723,6 +723,14 @@ static int test_mp_sqrtmod_prime(void) DO(mp_sqrtmod_prime(&b, &a, &c)); EXPECT(mp_cmp_d(&c, sqrtmod_prime[i].r) == MP_EQ); } + /* Check handling of wrong input (here: modulus is square and cong. 1 mod 4,24 ) */ + mp_set_ul(&a, 25); + mp_set_ul(&b, 2); + EXPECT(mp_sqrtmod_prime(&b, &a, &c) == MP_VAL); + /* b \cong 0 (mod a) */ + mp_set_ul(&a, 45); + mp_set_ul(&b, 3); + EXPECT(mp_sqrtmod_prime(&b, &a, &c) == MP_VAL); mp_clear_multi(&a, &b, &c, NULL); return EXIT_SUCCESS; diff --git a/mp_sqrtmod_prime.c b/mp_sqrtmod_prime.c index 8930184..0fae1d0 100644 --- a/mp_sqrtmod_prime.c +++ b/mp_sqrtmod_prime.c @@ -13,19 +13,23 @@ mp_err mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret) { mp_err err; int legendre; - mp_int t1, C, Q, S, Z, M, T, R, two; - mp_digit i; + /* The type is "int" because of the types in the mp_int struct. + Don't forget to change them here when you change them there! */ + int S, M, i; + mp_int t1, C, Q, Z, T, R, two; /* first handle the simple cases */ if (mp_cmp_d(n, 0uL) == MP_EQ) { mp_zero(ret); return MP_OKAY; } - if (mp_cmp_d(prime, 2uL) == MP_EQ) return MP_VAL; /* prime must be odd */ - if ((err = mp_kronecker(n, prime, &legendre)) != MP_OKAY) return err; - if (legendre == -1) return MP_VAL; /* quadratic non-residue mod prime */ + /* "prime" must be odd and > 2 */ + if (mp_iseven(prime) || (mp_cmp_d(prime, 3uL) == MP_LT)) return MP_VAL; + if ((err = mp_kronecker(n, prime, &legendre)) != MP_OKAY) return err; + /* n \not\cong 0 (mod p) and n \cong r^2 (mod p) for some r \in N^+ */ + if (legendre != 1) return MP_VAL; - if ((err = mp_init_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL)) != MP_OKAY) { + if ((err = mp_init_multi(&t1, &C, &Q, &Z, &T, &R, &two, NULL)) != MP_OKAY) { return err; } @@ -33,8 +37,8 @@ mp_err mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret) * compute directly: err = n^(prime+1)/4 mod prime * Handbook of Applied Cryptography algorithm 3.36 */ - if ((err = mp_mod_d(prime, 4uL, &i)) != MP_OKAY) goto LBL_END; - if (i == 3u) { + /* x%4 == x&3 for x in N and x>0 */ + if ((prime->dp[0] & 3u) == 3u) { if ((err = mp_add_d(prime, 1uL, &t1)) != MP_OKAY) goto LBL_END; if ((err = mp_div_2(&t1, &t1)) != MP_OKAY) goto LBL_END; if ((err = mp_div_2(&t1, &t1)) != MP_OKAY) goto LBL_END; @@ -49,12 +53,12 @@ mp_err mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret) if ((err = mp_copy(prime, &Q)) != MP_OKAY) goto LBL_END; if ((err = mp_sub_d(&Q, 1uL, &Q)) != MP_OKAY) goto LBL_END; /* Q = prime - 1 */ - mp_zero(&S); + S = 0; /* S = 0 */ while (mp_iseven(&Q)) { if ((err = mp_div_2(&Q, &Q)) != MP_OKAY) goto LBL_END; /* Q = Q / 2 */ - if ((err = mp_add_d(&S, 1uL, &S)) != MP_OKAY) goto LBL_END; + S++; /* S = S + 1 */ } @@ -63,6 +67,12 @@ mp_err mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret) /* Z = 2 */ for (;;) { if ((err = mp_kronecker(&Z, prime, &legendre)) != MP_OKAY) goto LBL_END; + /* If "prime" (p) is an odd prime Jacobi(k|p) = 0 for k \cong 0 (mod p) */ + /* but there is at least one non-quadratic residue before k>=p if p is an odd prime. */ + if (legendre == 0) { + err = MP_VAL; + goto LBL_END; + } if (legendre == -1) break; if ((err = mp_add_d(&Z, 1uL, &Z)) != MP_OKAY) goto LBL_END; /* Z = Z + 1 */ @@ -77,7 +87,7 @@ mp_err mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret) /* R = n ^ ((Q + 1) / 2) mod prime */ if ((err = mp_exptmod(n, &Q, prime, &T)) != MP_OKAY) goto LBL_END; /* T = n ^ Q mod prime */ - if ((err = mp_copy(&S, &M)) != MP_OKAY) goto LBL_END; + M = S; /* M = S */ mp_set(&two, 2uL); @@ -86,16 +96,21 @@ mp_err mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret) i = 0; for (;;) { if (mp_cmp_d(&t1, 1uL) == MP_EQ) break; + /* No exponent in the range 0 < i < M found + (M is at least 1 in the first round because "prime" > 2) */ + if (M == i) { + err = MP_VAL; + goto LBL_END; + } if ((err = mp_exptmod(&t1, &two, prime, &t1)) != MP_OKAY) goto LBL_END; i++; } - if (i == 0u) { + if (i == 0) { if ((err = mp_copy(&R, ret)) != MP_OKAY) goto LBL_END; err = MP_OKAY; goto LBL_END; } - if ((err = mp_sub_d(&M, i, &t1)) != MP_OKAY) goto LBL_END; - if ((err = mp_sub_d(&t1, 1uL, &t1)) != MP_OKAY) goto LBL_END; + mp_set_i32(&t1, M - i - 1); if ((err = mp_exptmod(&two, &t1, prime, &t1)) != MP_OKAY) goto LBL_END; /* t1 = 2 ^ (M - i - 1) */ if ((err = mp_exptmod(&C, &t1, prime, &t1)) != MP_OKAY) goto LBL_END; @@ -106,12 +121,12 @@ mp_err mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret) /* R = (R * t1) mod prime */ if ((err = mp_mulmod(&T, &C, prime, &T)) != MP_OKAY) goto LBL_END; /* T = (T * C) mod prime */ - mp_set(&M, i); + M = i; /* M = i */ } LBL_END: - mp_clear_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL); + mp_clear_multi(&t1, &C, &Q, &Z, &T, &R, &two, NULL); return err; } diff --git a/tommath_class.h b/tommath_class.h index 0fe046f..68055cc 100644 --- a/tommath_class.h +++ b/tommath_class.h @@ -872,12 +872,12 @@ # define MP_CMP_D_C # define MP_COPY_C # define MP_DIV_2_C -# define MP_DIV_D_C # define MP_EXPTMOD_C # define MP_INIT_MULTI_C # define MP_KRONECKER_C # define MP_MULMOD_C # define MP_SET_C +# define MP_SET_I32_C # define MP_SQRMOD_C # define MP_SUB_D_C # define MP_ZERO_C