mp_expt_d: bring back pre 921be35779 state

The implementation of the expt_d functionality is now implemented in the
mp_expt_d_ex() function.

The user can now choose between the old (more timing resistant) version
and the new version by modification of the parameter 'fast'.

mp_expt_d() defaults to the old version
This commit is contained in:
Steffen Jaeckel 2014-02-13 20:21:18 +01:00 committed by Steffen Jaeckel
parent 8ed6043209
commit e9b1837c8c
5 changed files with 91 additions and 33 deletions

View File

@ -15,41 +15,12 @@
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
/* calculate c = a**b using a square-multiply algorithm */
/* wrapper function for mp_expt_d_ex() */
int mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
{
int res;
mp_int g;
if ((res = mp_init_copy (&g, a)) != MP_OKAY) {
return res;
}
/* set initial result */
mp_set (c, 1);
while (b > 0) {
/* if the bit is set multiply */
if (b & 1) {
if ((res = mp_mul (c, &g, c)) != MP_OKAY) {
mp_clear (&g);
return res;
}
}
/* square */
if (b > 1 && (res = mp_sqr (&g, &g)) != MP_OKAY) {
mp_clear (&g);
return res;
}
/* shift to next bit */
b >>= 1;
}
mp_clear (&g);
return MP_OKAY;
return mp_expt_d_ex(a, b, c, 0);
}
#endif
/* $Source$ */

81
bn_mp_expt_d_ex.c Normal file
View File

@ -0,0 +1,81 @@
#include <tommath.h>
#ifdef BN_MP_EXPT_D_EX_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
/* calculate c = a**b using a square-multiply algorithm */
int mp_expt_d_ex (mp_int * a, mp_digit b, mp_int * c, int fast)
{
int res;
unsigned int x;
mp_int g;
if ((res = mp_init_copy (&g, a)) != MP_OKAY) {
return res;
}
/* set initial result */
mp_set (c, 1);
if (fast) {
while (b > 0) {
/* if the bit is set multiply */
if (b & 1) {
if ((res = mp_mul (c, &g, c)) != MP_OKAY) {
mp_clear (&g);
return res;
}
}
/* square */
if (b > 1 && (res = mp_sqr (&g, &g)) != MP_OKAY) {
mp_clear (&g);
return res;
}
/* shift to next bit */
b >>= 1;
}
}
else {
for (x = 0; x < DIGIT_BIT; x++) {
/* square */
if ((res = mp_sqr (c, c)) != MP_OKAY) {
mp_clear (&g);
return res;
}
/* if the bit is set multiply */
if ((b & (mp_digit) (((mp_digit)1) << (DIGIT_BIT - 1))) != 0) {
if ((res = mp_mul (c, &g, c)) != MP_OKAY) {
mp_clear (&g);
return res;
}
}
/* shift to next bit */
b <<= 1;
}
} /* if ... else */
mp_clear (&g);
return MP_OKAY;
}
#endif
/* $Source$ */
/* $Revision$ */
/* $Date$ */

View File

@ -96,7 +96,7 @@ bn_mp_init_multi.o bn_mp_clear_multi.o bn_mp_exteuclid.o bn_mp_toradix_n.o \
bn_mp_prime_random_ex.o bn_mp_get_int.o bn_mp_sqrt.o bn_mp_is_square.o bn_mp_init_set.o \
bn_mp_init_set_int.o bn_mp_invmod_slow.o bn_mp_prime_rabin_miller_trials.o \
bn_mp_to_signed_bin_n.o bn_mp_to_unsigned_bin_n.o bn_mp_import.o bn_mp_export.o \
bn_mp_balance_mul.o
bn_mp_balance_mul.o bn_mp_expt_d_ex.o
$(LIBNAME): $(OBJECTS)
$(AR) $(ARFLAGS) $@ $(OBJECTS)

View File

@ -364,6 +364,7 @@ int mp_div_3(mp_int *a, mp_int *c, mp_digit *d);
/* c = a**b */
int mp_expt_d(mp_int *a, mp_digit b, mp_int *c);
int mp_expt_d_ex (mp_int * a, mp_digit b, mp_int * c, int fast);
/* c = a mod b, 0 <= c < b */
int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);

View File

@ -41,6 +41,7 @@
#define BN_MP_EXCH_C
#define BN_MP_EXPORT_C
#define BN_MP_EXPT_D_C
#define BN_MP_EXPT_D_EX_C
#define BN_MP_EXPTMOD_C
#define BN_MP_EXPTMOD_FAST_C
#define BN_MP_EXTEUCLID_C
@ -333,6 +334,10 @@
#endif
#if defined(BN_MP_EXPT_D_C)
#define BN_MP_EXPT_D_EX_C
#endif
#if defined(BN_MP_EXPT_D_EX_C)
#define BN_MP_INIT_COPY_C
#define BN_MP_SET_C
#define BN_MP_MUL_C