commit
edef6ca191
@ -32,7 +32,7 @@ int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
|
||||
olduse = x->used;
|
||||
|
||||
/* grow a as required */
|
||||
if (x->alloc < n->used + 1) {
|
||||
if (x->alloc < (n->used + 1)) {
|
||||
if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
@ -57,7 +57,7 @@ int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
|
||||
}
|
||||
|
||||
/* zero the high words of W[a->used..m->used*2] */
|
||||
for (; ix < n->used * 2 + 1; ix++) {
|
||||
for (; ix < ((n->used * 2) + 1); ix++) {
|
||||
*_W++ = 0;
|
||||
}
|
||||
}
|
||||
@ -126,7 +126,7 @@ int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
|
||||
/* alias for next word, where the carry goes */
|
||||
_W = W + ++ix;
|
||||
|
||||
for (; ix <= n->used * 2 + 1; ix++) {
|
||||
for (; ix <= ((n->used * 2) + 1); ix++) {
|
||||
*_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
|
||||
}
|
||||
|
||||
@ -143,7 +143,7 @@ int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
|
||||
/* alias for shifted double precision result */
|
||||
_W = W + n->used;
|
||||
|
||||
for (ix = 0; ix < n->used + 1; ix++) {
|
||||
for (ix = 0; ix < (n->used + 1); ix++) {
|
||||
*tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
|
||||
}
|
||||
|
||||
|
@ -87,7 +87,7 @@ int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
||||
{
|
||||
register mp_digit *tmpc;
|
||||
tmpc = c->dp;
|
||||
for (ix = 0; ix < pa+1; ix++) {
|
||||
for (ix = 0; ix < (pa + 1); ix++) {
|
||||
/* now extract the previous digit [below the carry] */
|
||||
*tmpc++ = W[ix];
|
||||
}
|
||||
|
@ -66,7 +66,7 @@ int fast_s_mp_sqr (mp_int * a, mp_int * b)
|
||||
* we halve the distance since they approach at a rate of 2x
|
||||
* and we have to round because odd cases need to be executed
|
||||
*/
|
||||
iy = MIN(iy, (ty-tx+1)>>1);
|
||||
iy = MIN(iy, ((ty-tx)+1)>>1);
|
||||
|
||||
/* execute loop */
|
||||
for (iz = 0; iz < iy; iz++) {
|
||||
|
@ -29,12 +29,12 @@ mp_2expt (mp_int * a, int b)
|
||||
mp_zero (a);
|
||||
|
||||
/* grow a to accomodate the single bit */
|
||||
if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) {
|
||||
if ((res = mp_grow (a, (b / DIGIT_BIT) + 1)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
/* set the used count of where the bit will go */
|
||||
a->used = b / DIGIT_BIT + 1;
|
||||
a->used = (b / DIGIT_BIT) + 1;
|
||||
|
||||
/* put the single bit in its place */
|
||||
a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT);
|
||||
|
@ -23,14 +23,14 @@ mp_add_d (mp_int * a, mp_digit b, mp_int * c)
|
||||
mp_digit *tmpa, *tmpc, mu;
|
||||
|
||||
/* grow c as required */
|
||||
if (c->alloc < a->used + 1) {
|
||||
if (c->alloc < (a->used + 1)) {
|
||||
if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
/* if a is negative and |a| >= b, call c = |a| - b */
|
||||
if (a->sign == MP_NEG && (a->used > 1 || a->dp[0] >= b)) {
|
||||
if ((a->sign == MP_NEG) && ((a->used > 1) || (a->dp[0] >= b))) {
|
||||
/* temporarily fix sign of a */
|
||||
a->sign = MP_ZPOS;
|
||||
|
||||
|
@ -28,7 +28,7 @@ mp_clamp (mp_int * a)
|
||||
/* decrease used while the most significant digit is
|
||||
* zero.
|
||||
*/
|
||||
while (a->used > 0 && a->dp[a->used - 1] == 0) {
|
||||
while ((a->used > 0) && (a->dp[a->used - 1] == 0)) {
|
||||
--(a->used);
|
||||
}
|
||||
|
||||
|
@ -31,7 +31,7 @@ int mp_cnt_lsb(mp_int *a)
|
||||
}
|
||||
|
||||
/* scan lower digits until non-zero */
|
||||
for (x = 0; x < a->used && a->dp[x] == 0; x++) {}
|
||||
for (x = 0; (x < a->used) && (a->dp[x] == 0); x++) {}
|
||||
q = a->dp[x];
|
||||
x *= DIGIT_BIT;
|
||||
|
||||
|
28
bn_mp_div.c
28
bn_mp_div.c
@ -71,7 +71,7 @@ int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
|
||||
|
||||
/* now q == quotient and ta == remainder */
|
||||
n = a->sign;
|
||||
n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG);
|
||||
n2 = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
|
||||
if (c != NULL) {
|
||||
mp_exch(c, &q);
|
||||
c->sign = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
|
||||
@ -190,7 +190,7 @@ int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
|
||||
/* step 3.1 if xi == yt then set q{i-t-1} to b-1,
|
||||
* otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
|
||||
if (x.dp[i] == y.dp[t]) {
|
||||
q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
|
||||
q.dp[(i - t) - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
|
||||
} else {
|
||||
mp_word tmp;
|
||||
tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
|
||||
@ -199,7 +199,7 @@ int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
|
||||
if (tmp > (mp_word) MP_MASK) {
|
||||
tmp = MP_MASK;
|
||||
}
|
||||
q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
|
||||
q.dp[(i - t) - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
|
||||
}
|
||||
|
||||
/* while (q{i-t-1} * (yt * b + y{t-1})) >
|
||||
@ -207,32 +207,32 @@ int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
|
||||
|
||||
do q{i-t-1} -= 1;
|
||||
*/
|
||||
q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
|
||||
q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] + 1) & MP_MASK;
|
||||
do {
|
||||
q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;
|
||||
q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1) & MP_MASK;
|
||||
|
||||
/* find left hand */
|
||||
mp_zero (&t1);
|
||||
t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
|
||||
t1.dp[0] = ((t - 1) < 0) ? 0 : y.dp[t - 1];
|
||||
t1.dp[1] = y.dp[t];
|
||||
t1.used = 2;
|
||||
if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
|
||||
if ((res = mp_mul_d (&t1, q.dp[(i - t) - 1], &t1)) != MP_OKAY) {
|
||||
goto LBL_Y;
|
||||
}
|
||||
|
||||
/* find right hand */
|
||||
t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
|
||||
t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
|
||||
t2.dp[0] = ((i - 2) < 0) ? 0 : x.dp[i - 2];
|
||||
t2.dp[1] = ((i - 1) < 0) ? 0 : x.dp[i - 1];
|
||||
t2.dp[2] = x.dp[i];
|
||||
t2.used = 3;
|
||||
} while (mp_cmp_mag(&t1, &t2) == MP_GT);
|
||||
|
||||
/* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
|
||||
if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
|
||||
if ((res = mp_mul_d (&y, q.dp[(i - t) - 1], &t1)) != MP_OKAY) {
|
||||
goto LBL_Y;
|
||||
}
|
||||
|
||||
if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
|
||||
if ((res = mp_lshd (&t1, (i - t) - 1)) != MP_OKAY) {
|
||||
goto LBL_Y;
|
||||
}
|
||||
|
||||
@ -245,14 +245,14 @@ int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
|
||||
if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
|
||||
goto LBL_Y;
|
||||
}
|
||||
if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
|
||||
if ((res = mp_lshd (&t1, (i - t) - 1)) != MP_OKAY) {
|
||||
goto LBL_Y;
|
||||
}
|
||||
if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
|
||||
goto LBL_Y;
|
||||
}
|
||||
|
||||
q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
|
||||
q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1UL) & MP_MASK;
|
||||
}
|
||||
}
|
||||
|
||||
@ -261,7 +261,7 @@ int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
|
||||
*/
|
||||
|
||||
/* get sign before writing to c */
|
||||
x.sign = x.used == 0 ? MP_ZPOS : a->sign;
|
||||
x.sign = (x.used == 0) ? MP_ZPOS : a->sign;
|
||||
|
||||
if (c != NULL) {
|
||||
mp_clamp (&q);
|
||||
|
@ -47,7 +47,7 @@ int mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
|
||||
}
|
||||
|
||||
/* quick outs */
|
||||
if (b == 1 || mp_iszero(a) == MP_YES) {
|
||||
if ((b == 1) || (mp_iszero(a) == MP_YES)) {
|
||||
if (d != NULL) {
|
||||
*d = 0;
|
||||
}
|
||||
|
@ -40,7 +40,7 @@ mp_dr_reduce (mp_int * x, mp_int * n, mp_digit k)
|
||||
m = n->used;
|
||||
|
||||
/* ensure that "x" has at least 2m digits */
|
||||
if (x->alloc < m + m) {
|
||||
if (x->alloc < (m + m)) {
|
||||
if ((err = mp_grow (x, m + m)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
@ -62,7 +62,7 @@ top:
|
||||
|
||||
/* compute (x mod B**m) + k * [x/B**m] inline and inplace */
|
||||
for (i = 0; i < m; i++) {
|
||||
r = ((mp_word)*tmpx2++) * ((mp_word)k) + *tmpx1 + mu;
|
||||
r = (((mp_word)*tmpx2++) * (mp_word)k) + *tmpx1 + mu;
|
||||
*tmpx1++ = (mp_digit)(r & MP_MASK);
|
||||
mu = (mp_digit)(r >> ((mp_word)DIGIT_BIT));
|
||||
}
|
||||
|
@ -37,7 +37,7 @@ int mp_export(void* rop, size_t* countp, int order, size_t size,
|
||||
} lint;
|
||||
lint.i = 0x01020304;
|
||||
|
||||
endian = (lint.c[0] == 4 ? -1 : 1);
|
||||
endian = (lint.c[0] == 4) ? -1 : 1;
|
||||
}
|
||||
|
||||
odd_nails = (nails % 8);
|
||||
@ -48,14 +48,14 @@ int mp_export(void* rop, size_t* countp, int order, size_t size,
|
||||
nail_bytes = nails / 8;
|
||||
|
||||
bits = mp_count_bits(&t);
|
||||
count = bits / (size * 8 - nails) + ((bits % (size * 8 - nails) != 0) ? 1 : 0);
|
||||
count = (bits / ((size * 8) - nails)) + (((bits % ((size * 8) - nails)) != 0) ? 1 : 0);
|
||||
|
||||
for (i = 0; i < count; ++i) {
|
||||
for (j = 0; j < size; ++j) {
|
||||
unsigned char* byte = (
|
||||
(unsigned char*)rop +
|
||||
(order == -1 ? i : count - 1 - i) * size +
|
||||
(endian == -1 ? j : size - 1 - j)
|
||||
(((order == -1) ? i : ((count - 1) - i)) * size) +
|
||||
((endian == -1) ? j : ((size - 1) - j))
|
||||
);
|
||||
|
||||
if (j >= (size - nail_bytes)) {
|
||||
@ -63,9 +63,9 @@ int mp_export(void* rop, size_t* countp, int order, size_t size,
|
||||
continue;
|
||||
}
|
||||
|
||||
*byte = (unsigned char)(j == size - nail_bytes - 1 ? (t.dp[0] & odd_nail_mask) : t.dp[0] & 0xFF);
|
||||
*byte = (unsigned char)((j == ((size - nail_bytes) - 1)) ? (t.dp[0] & odd_nail_mask) : (t.dp[0] & 0xFF));
|
||||
|
||||
if ((result = mp_div_2d(&t, (j == size - nail_bytes - 1 ? 8 - odd_nails : 8), &t, NULL)) != MP_OKAY) {
|
||||
if ((result = mp_div_2d(&t, ((j == ((size - nail_bytes) - 1)) ? (8 - odd_nails) : 8), &t, NULL)) != MP_OKAY) {
|
||||
mp_clear(&t);
|
||||
return result;
|
||||
}
|
||||
|
@ -89,7 +89,7 @@ int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
|
||||
|
||||
/* if the modulus is odd or dr != 0 use the montgomery method */
|
||||
#ifdef BN_MP_EXPTMOD_FAST_C
|
||||
if (mp_isodd (P) == MP_YES || dr != 0) {
|
||||
if ((mp_isodd (P) == MP_YES) || (dr != 0)) {
|
||||
return mp_exptmod_fast (G, X, P, Y, dr);
|
||||
} else {
|
||||
#endif
|
||||
|
@ -96,8 +96,8 @@ int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode
|
||||
|
||||
/* automatically pick the comba one if available (saves quite a few calls/ifs) */
|
||||
#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
|
||||
if (((P->used * 2 + 1) < MP_WARRAY) &&
|
||||
P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
|
||||
if ((((P->used * 2) + 1) < MP_WARRAY) &&
|
||||
(P->used < (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) {
|
||||
redux = fast_mp_montgomery_reduce;
|
||||
} else
|
||||
#endif
|
||||
@ -219,12 +219,12 @@ int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode
|
||||
* in the exponent. Technically this opt is not required but it
|
||||
* does lower the # of trivial squaring/reductions used
|
||||
*/
|
||||
if (mode == 0 && y == 0) {
|
||||
if ((mode == 0) && (y == 0)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
/* if the bit is zero and mode == 1 then we square */
|
||||
if (mode == 1 && y == 0) {
|
||||
if ((mode == 1) && (y == 0)) {
|
||||
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
@ -266,7 +266,7 @@ int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode
|
||||
}
|
||||
|
||||
/* if bits remain then square/multiply */
|
||||
if (mode == 2 && bitcpy > 0) {
|
||||
if ((mode == 2) && (bitcpy > 0)) {
|
||||
/* square then multiply if the bit is set */
|
||||
for (x = 0; x < bitcpy; x++) {
|
||||
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
||||
|
@ -26,7 +26,7 @@ unsigned long mp_get_int(mp_int * a)
|
||||
}
|
||||
|
||||
/* get number of digits of the lsb we have to read */
|
||||
i = MIN(a->used,(int)((sizeof(unsigned long)*CHAR_BIT+DIGIT_BIT-1)/DIGIT_BIT))-1;
|
||||
i = MIN(a->used,(int)(((sizeof(unsigned long) * CHAR_BIT) + DIGIT_BIT - 1) / DIGIT_BIT)) - 1;
|
||||
|
||||
/* get most significant digit of result */
|
||||
res = DIGIT(a,i);
|
||||
|
@ -26,12 +26,12 @@ unsigned long mp_get_long(mp_int * a)
|
||||
}
|
||||
|
||||
/* get number of digits of the lsb we have to read */
|
||||
i = MIN(a->used,(int)((sizeof(unsigned long)*CHAR_BIT+DIGIT_BIT-1)/DIGIT_BIT))-1;
|
||||
i = MIN(a->used,(int)(((sizeof(unsigned long) * CHAR_BIT) + DIGIT_BIT - 1) / DIGIT_BIT)) - 1;
|
||||
|
||||
/* get most significant digit of result */
|
||||
res = DIGIT(a,i);
|
||||
|
||||
#if ULONG_MAX != 0xffffffffuL || DIGIT_BIT < 32
|
||||
#if (ULONG_MAX != 0xffffffffuL) || (DIGIT_BIT < 32)
|
||||
while (--i >= 0) {
|
||||
res = (res << DIGIT_BIT) | DIGIT(a,i);
|
||||
}
|
||||
|
@ -26,7 +26,7 @@ unsigned long long mp_get_long_long (mp_int * a)
|
||||
}
|
||||
|
||||
/* get number of digits of the lsb we have to read */
|
||||
i = MIN(a->used,(int)((sizeof(unsigned long long)*CHAR_BIT+DIGIT_BIT-1)/DIGIT_BIT))-1;
|
||||
i = MIN(a->used,(int)(((sizeof(unsigned long long) * CHAR_BIT) + DIGIT_BIT - 1) / DIGIT_BIT)) - 1;
|
||||
|
||||
/* get most significant digit of result */
|
||||
res = DIGIT(a,i);
|
||||
|
@ -33,7 +33,7 @@ int mp_import(mp_int* rop, size_t count, int order, size_t size,
|
||||
} lint;
|
||||
lint.i = 0x01020304;
|
||||
|
||||
endian = (lint.c[0] == 4 ? -1 : 1);
|
||||
endian = (lint.c[0] == 4) ? -1 : 1;
|
||||
}
|
||||
|
||||
odd_nails = (nails % 8);
|
||||
@ -44,19 +44,19 @@ int mp_import(mp_int* rop, size_t count, int order, size_t size,
|
||||
nail_bytes = nails / 8;
|
||||
|
||||
for (i = 0; i < count; ++i) {
|
||||
for (j = 0; j < size - nail_bytes; ++j) {
|
||||
for (j = 0; j < (size - nail_bytes); ++j) {
|
||||
unsigned char byte = *(
|
||||
(unsigned char*)op +
|
||||
(order == 1 ? i : count - 1 - i) * size +
|
||||
(endian == 1 ? j + nail_bytes : size - 1 - j - nail_bytes)
|
||||
(((order == 1) ? i : ((count - 1) - i)) * size) +
|
||||
((endian == 1) ? (j + nail_bytes) : (((size - 1) - j) - nail_bytes))
|
||||
);
|
||||
|
||||
if (
|
||||
(result = mp_mul_2d(rop, (j == 0 ? 8 - odd_nails : 8), rop)) != MP_OKAY) {
|
||||
(result = mp_mul_2d(rop, ((j == 0) ? (8 - odd_nails) : 8), rop)) != MP_OKAY) {
|
||||
return result;
|
||||
}
|
||||
|
||||
rop->dp[0] |= (j == 0 ? (byte & odd_nail_mask) : byte);
|
||||
rop->dp[0] |= (j == 0) ? (byte & odd_nail_mask) : byte;
|
||||
rop->used += 1;
|
||||
}
|
||||
}
|
||||
|
@ -19,7 +19,7 @@
|
||||
int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
|
||||
{
|
||||
/* b cannot be negative */
|
||||
if (b->sign == MP_NEG || mp_iszero(b) == MP_YES) {
|
||||
if ((b->sign == MP_NEG) || (mp_iszero(b) == MP_YES)) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
|
@ -22,7 +22,7 @@ int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
|
||||
int res;
|
||||
|
||||
/* b cannot be negative */
|
||||
if (b->sign == MP_NEG || mp_iszero(b) == MP_YES) {
|
||||
if ((b->sign == MP_NEG) || (mp_iszero(b) == MP_YES)) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
@ -41,7 +41,7 @@ int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
|
||||
}
|
||||
|
||||
/* 2. [modified] if x,y are both even then return an error! */
|
||||
if (mp_iseven (&x) == MP_YES && mp_iseven (&y) == MP_YES) {
|
||||
if ((mp_iseven (&x) == MP_YES) && (mp_iseven (&y) == MP_YES)) {
|
||||
res = MP_VAL;
|
||||
goto LBL_ERR;
|
||||
}
|
||||
@ -64,7 +64,7 @@ top:
|
||||
goto LBL_ERR;
|
||||
}
|
||||
/* 4.2 if A or B is odd then */
|
||||
if (mp_isodd (&A) == MP_YES || mp_isodd (&B) == MP_YES) {
|
||||
if ((mp_isodd (&A) == MP_YES) || (mp_isodd (&B) == MP_YES)) {
|
||||
/* A = (A+y)/2, B = (B-x)/2 */
|
||||
if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
@ -89,7 +89,7 @@ top:
|
||||
goto LBL_ERR;
|
||||
}
|
||||
/* 5.2 if C or D is odd then */
|
||||
if (mp_isodd (&C) == MP_YES || mp_isodd (&D) == MP_YES) {
|
||||
if ((mp_isodd (&C) == MP_YES) || (mp_isodd (&D) == MP_YES)) {
|
||||
/* C = (C+y)/2, D = (D-x)/2 */
|
||||
if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
|
@ -73,9 +73,9 @@ int mp_jacobi (mp_int * a, mp_int * n, int *c)
|
||||
/* else set s=1 if p = 1/7 (mod 8) or s=-1 if p = 3/5 (mod 8) */
|
||||
residue = n->dp[0] & 7;
|
||||
|
||||
if (residue == 1 || residue == 7) {
|
||||
if ((residue == 1) || (residue == 7)) {
|
||||
s = 1;
|
||||
} else if (residue == 3 || residue == 5) {
|
||||
} else if ((residue == 3) || (residue == 5)) {
|
||||
s = -1;
|
||||
}
|
||||
}
|
||||
|
@ -26,7 +26,7 @@ int mp_lshd (mp_int * a, int b)
|
||||
}
|
||||
|
||||
/* grow to fit the new digits */
|
||||
if (a->alloc < a->used + b) {
|
||||
if (a->alloc < (a->used + b)) {
|
||||
if ((res = mp_grow (a, a->used + b)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
@ -42,7 +42,7 @@ int mp_lshd (mp_int * a, int b)
|
||||
top = a->dp + a->used - 1;
|
||||
|
||||
/* base */
|
||||
bottom = a->dp + a->used - 1 - b;
|
||||
bottom = (a->dp + a->used - 1) - b;
|
||||
|
||||
/* much like mp_rshd this is implemented using a sliding window
|
||||
* except the window goes the otherway around. Copying from
|
||||
|
@ -31,7 +31,7 @@ mp_mod (mp_int * a, mp_int * b, mp_int * c)
|
||||
return res;
|
||||
}
|
||||
|
||||
if (mp_iszero(&t) != MP_NO || t.sign == b->sign) {
|
||||
if ((mp_iszero(&t) != MP_NO) || (t.sign == b->sign)) {
|
||||
res = MP_OKAY;
|
||||
mp_exch (&t, c);
|
||||
} else {
|
||||
|
@ -39,7 +39,7 @@ mp_mod_2d (mp_int * a, int b, mp_int * c)
|
||||
}
|
||||
|
||||
/* zero digits above the last digit of the modulus */
|
||||
for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) {
|
||||
for (x = (b / DIGIT_BIT) + (((b % DIGIT_BIT) == 0) ? 0 : 1); x < c->used; x++) {
|
||||
c->dp[x] = 0;
|
||||
}
|
||||
/* clear the digit that is not completely outside/inside the modulus */
|
||||
|
@ -29,7 +29,7 @@ int mp_montgomery_calc_normalization (mp_int * a, mp_int * b)
|
||||
bits = mp_count_bits (b) % DIGIT_BIT;
|
||||
|
||||
if (b->used > 1) {
|
||||
if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) {
|
||||
if ((res = mp_2expt (a, ((b->used - 1) * DIGIT_BIT) + bits - 1)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
} else {
|
||||
|
@ -28,10 +28,10 @@ mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
|
||||
* than the available columns [255 per default] since carries
|
||||
* are fixed up in the inner loop.
|
||||
*/
|
||||
digs = n->used * 2 + 1;
|
||||
digs = (n->used * 2) + 1;
|
||||
if ((digs < MP_WARRAY) &&
|
||||
n->used <
|
||||
(1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
|
||||
(n->used <
|
||||
(1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) {
|
||||
return fast_mp_montgomery_reduce (x, n, rho);
|
||||
}
|
||||
|
||||
@ -52,7 +52,7 @@ mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
|
||||
* following inner loop to reduce the
|
||||
* input one digit at a time
|
||||
*/
|
||||
mu = (mp_digit) (((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK);
|
||||
mu = (mp_digit) (((mp_word)x->dp[ix] * (mp_word)rho) & MP_MASK);
|
||||
|
||||
/* a = a + mu * m * b**i */
|
||||
{
|
||||
@ -72,8 +72,8 @@ mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
|
||||
/* Multiply and add in place */
|
||||
for (iy = 0; iy < n->used; iy++) {
|
||||
/* compute product and sum */
|
||||
r = ((mp_word)mu) * ((mp_word)*tmpn++) +
|
||||
((mp_word) u) + ((mp_word) * tmpx);
|
||||
r = ((mp_word)mu * (mp_word)*tmpn++) +
|
||||
(mp_word) u + (mp_word) *tmpx;
|
||||
|
||||
/* get carry */
|
||||
u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
|
||||
|
@ -36,15 +36,15 @@ mp_montgomery_setup (mp_int * n, mp_digit * rho)
|
||||
}
|
||||
|
||||
x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
|
||||
x *= 2 - b * x; /* here x*a==1 mod 2**8 */
|
||||
x *= 2 - (b * x); /* here x*a==1 mod 2**8 */
|
||||
#if !defined(MP_8BIT)
|
||||
x *= 2 - b * x; /* here x*a==1 mod 2**16 */
|
||||
x *= 2 - (b * x); /* here x*a==1 mod 2**16 */
|
||||
#endif
|
||||
#if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT))
|
||||
x *= 2 - b * x; /* here x*a==1 mod 2**32 */
|
||||
x *= 2 - (b * x); /* here x*a==1 mod 2**32 */
|
||||
#endif
|
||||
#ifdef MP_64BIT
|
||||
x *= 2 - b * x; /* here x*a==1 mod 2**64 */
|
||||
x *= 2 - (b * x); /* here x*a==1 mod 2**64 */
|
||||
#endif
|
||||
|
||||
/* rho = -1/m mod b */
|
||||
|
@ -44,8 +44,8 @@ int mp_mul (mp_int * a, mp_int * b, mp_int * c)
|
||||
|
||||
#ifdef BN_FAST_S_MP_MUL_DIGS_C
|
||||
if ((digs < MP_WARRAY) &&
|
||||
MIN(a->used, b->used) <=
|
||||
(1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
|
||||
(MIN(a->used, b->used) <=
|
||||
(1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) {
|
||||
res = fast_s_mp_mul_digs (a, b, c, digs);
|
||||
} else
|
||||
#endif
|
||||
|
@ -21,7 +21,7 @@ int mp_mul_2(mp_int * a, mp_int * b)
|
||||
int x, res, oldused;
|
||||
|
||||
/* grow to accomodate result */
|
||||
if (b->alloc < a->used + 1) {
|
||||
if (b->alloc < (a->used + 1)) {
|
||||
if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
@ -28,8 +28,8 @@ int mp_mul_2d (mp_int * a, int b, mp_int * c)
|
||||
}
|
||||
}
|
||||
|
||||
if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) {
|
||||
if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) {
|
||||
if (c->alloc < (int)(c->used + (b / DIGIT_BIT) + 1)) {
|
||||
if ((res = mp_grow (c, c->used + (b / DIGIT_BIT) + 1)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
@ -24,7 +24,7 @@ mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
|
||||
int ix, res, olduse;
|
||||
|
||||
/* make sure c is big enough to hold a*b */
|
||||
if (c->alloc < a->used + 1) {
|
||||
if (c->alloc < (a->used + 1)) {
|
||||
if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
@ -48,7 +48,7 @@ mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
|
||||
/* compute columns */
|
||||
for (ix = 0; ix < a->used; ix++) {
|
||||
/* compute product and carry sum for this term */
|
||||
r = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b);
|
||||
r = (mp_word)u + ((mp_word)*tmpa++ * (mp_word)b);
|
||||
|
||||
/* mask off higher bits to get a single digit */
|
||||
*tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));
|
||||
|
@ -31,7 +31,7 @@ int mp_n_root_ex (mp_int * a, mp_digit b, mp_int * c, int fast)
|
||||
int res, neg;
|
||||
|
||||
/* input must be positive if b is even */
|
||||
if ((b & 1) == 0 && a->sign == MP_NEG) {
|
||||
if (((b & 1) == 0) && (a->sign == MP_NEG)) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
|
@ -31,7 +31,7 @@ int mp_prime_is_prime (mp_int * a, int t, int *result)
|
||||
*result = MP_NO;
|
||||
|
||||
/* valid value of t? */
|
||||
if (t <= 0 || t > PRIME_SIZE) {
|
||||
if ((t <= 0) || (t > PRIME_SIZE)) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
|
@ -67,10 +67,10 @@ int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
|
||||
}
|
||||
|
||||
/* if y != 1 and y != n1 do */
|
||||
if (mp_cmp_d (&y, 1) != MP_EQ && mp_cmp (&y, &n1) != MP_EQ) {
|
||||
if ((mp_cmp_d (&y, 1) != MP_EQ) && (mp_cmp (&y, &n1) != MP_EQ)) {
|
||||
j = 1;
|
||||
/* while j <= s-1 and y != n1 */
|
||||
while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) {
|
||||
while ((j <= (s - 1)) && (mp_cmp (&y, &n1) != MP_EQ)) {
|
||||
if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) {
|
||||
goto LBL_Y;
|
||||
}
|
||||
|
@ -27,7 +27,7 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
|
||||
mp_int b;
|
||||
|
||||
/* ensure t is valid */
|
||||
if (t <= 0 || t > PRIME_SIZE) {
|
||||
if ((t <= 0) || (t > PRIME_SIZE)) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
@ -129,7 +129,7 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
|
||||
y = 1;
|
||||
}
|
||||
}
|
||||
} while (y == 1 && step < ((((mp_digit)1)<<DIGIT_BIT) - kstep));
|
||||
} while ((y == 1) && (step < ((((mp_digit)1) << DIGIT_BIT) - kstep)));
|
||||
|
||||
/* add the step */
|
||||
if ((err = mp_add_d(a, step, a)) != MP_OKAY) {
|
||||
@ -137,7 +137,7 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
|
||||
}
|
||||
|
||||
/* if didn't pass sieve and step == MAX then skip test */
|
||||
if (y == 1 && step >= ((((mp_digit)1)<<DIGIT_BIT) - kstep)) {
|
||||
if ((y == 1) && (step >= ((((mp_digit)1) << DIGIT_BIT) - kstep))) {
|
||||
continue;
|
||||
}
|
||||
|
||||
|
@ -36,7 +36,7 @@ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback
|
||||
int res, err, bsize, maskOR_msb_offset;
|
||||
|
||||
/* sanity check the input */
|
||||
if (size <= 1 || t <= 0) {
|
||||
if ((size <= 1) || (t <= 0)) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
|
@ -25,7 +25,7 @@ int mp_radix_size (mp_int * a, int radix, int *size)
|
||||
*size = 0;
|
||||
|
||||
/* make sure the radix is in range */
|
||||
if (radix < 2 || radix > 64) {
|
||||
if ((radix < 2) || (radix > 64)) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
@ -36,7 +36,7 @@ int mp_radix_size (mp_int * a, int radix, int *size)
|
||||
|
||||
/* special case for binary */
|
||||
if (radix == 2) {
|
||||
*size = mp_count_bits (a) + (a->sign == MP_NEG ? 1 : 0) + 1;
|
||||
*size = mp_count_bits (a) + ((a->sign == MP_NEG) ? 1 : 0) + 1;
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
|
@ -25,7 +25,7 @@ int mp_read_radix (mp_int * a, const char *str, int radix)
|
||||
mp_zero(a);
|
||||
|
||||
/* make sure the radix is ok */
|
||||
if (radix < 2 || radix > 64) {
|
||||
if ((radix < 2) || (radix > 64)) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
|
@ -36,9 +36,9 @@ mp_sqr (mp_int * a, mp_int * b)
|
||||
{
|
||||
#ifdef BN_FAST_S_MP_SQR_C
|
||||
/* can we use the fast comba multiplier? */
|
||||
if ((a->used * 2 + 1) < MP_WARRAY &&
|
||||
a->used <
|
||||
(1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) {
|
||||
if ((((a->used * 2) + 1) < MP_WARRAY) &&
|
||||
(a->used <
|
||||
(1 << (((sizeof(mp_word) * CHAR_BIT) - (2 * DIGIT_BIT)) - 1)))) {
|
||||
res = fast_s_mp_sqr (a, b);
|
||||
} else
|
||||
#endif
|
||||
|
@ -56,7 +56,7 @@ int mp_sqrtmod_prime(mp_int *n, mp_int *prime, mp_int *ret)
|
||||
/* Q = prime - 1 */
|
||||
mp_zero(&S);
|
||||
/* S = 0 */
|
||||
while (mp_iseven(&Q)) {
|
||||
while (mp_iseven(&Q) != MP_NO) {
|
||||
if ((res = mp_div_2(&Q, &Q)) != MP_OKAY) goto cleanup;
|
||||
/* Q = Q / 2 */
|
||||
if ((res = mp_add_d(&S, 1, &S)) != MP_OKAY) goto cleanup;
|
||||
@ -64,7 +64,7 @@ int mp_sqrtmod_prime(mp_int *n, mp_int *prime, mp_int *ret)
|
||||
}
|
||||
|
||||
/* find a Z such that the Legendre symbol (Z|prime) == -1 */
|
||||
mp_set_int(&Z, 2);
|
||||
if ((res = mp_set_int(&Z, 2)) != MP_OKAY) goto cleanup;
|
||||
/* Z = 2 */
|
||||
while(1) {
|
||||
if ((res = mp_jacobi(&Z, prime, &legendre)) != MP_OKAY) goto cleanup;
|
||||
@ -96,7 +96,7 @@ int mp_sqrtmod_prime(mp_int *n, mp_int *prime, mp_int *ret)
|
||||
i++;
|
||||
}
|
||||
if (i == 0) {
|
||||
mp_copy(&R, ret);
|
||||
if ((res = mp_copy(&R, ret)) != MP_OKAY) goto cleanup;
|
||||
res = MP_OKAY;
|
||||
goto cleanup;
|
||||
}
|
||||
|
@ -23,7 +23,7 @@ mp_sub_d (mp_int * a, mp_digit b, mp_int * c)
|
||||
int res, ix, oldused;
|
||||
|
||||
/* grow c as required */
|
||||
if (c->alloc < a->used + 1) {
|
||||
if (c->alloc < (a->used + 1)) {
|
||||
if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
@ -49,7 +49,7 @@ mp_sub_d (mp_int * a, mp_digit b, mp_int * c)
|
||||
tmpc = c->dp;
|
||||
|
||||
/* if a <= b simply fix the single digit */
|
||||
if ((a->used == 1 && a->dp[0] <= b) || a->used == 0) {
|
||||
if (((a->used == 1) && (a->dp[0] <= b)) || (a->used == 0)) {
|
||||
if (a->used == 1) {
|
||||
*tmpc++ = b - *tmpa;
|
||||
} else {
|
||||
@ -67,13 +67,13 @@ mp_sub_d (mp_int * a, mp_digit b, mp_int * c)
|
||||
|
||||
/* subtract first digit */
|
||||
*tmpc = *tmpa++ - b;
|
||||
mu = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1);
|
||||
mu = *tmpc >> ((sizeof(mp_digit) * CHAR_BIT) - 1);
|
||||
*tmpc++ &= MP_MASK;
|
||||
|
||||
/* handle rest of the digits */
|
||||
for (ix = 1; ix < a->used; ix++) {
|
||||
*tmpc = *tmpa++ - mu;
|
||||
mu = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1);
|
||||
mu = *tmpc >> ((sizeof(mp_digit) * CHAR_BIT) - 1);
|
||||
*tmpc++ &= MP_MASK;
|
||||
}
|
||||
}
|
||||
|
@ -24,7 +24,7 @@ int mp_toradix (mp_int * a, char *str, int radix)
|
||||
char *_s = str;
|
||||
|
||||
/* check range of the radix */
|
||||
if (radix < 2 || radix > 64) {
|
||||
if ((radix < 2) || (radix > 64)) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
|
@ -27,7 +27,7 @@ int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen)
|
||||
char *_s = str;
|
||||
|
||||
/* check range of the maxlen, radix */
|
||||
if (maxlen < 2 || radix < 2 || radix > 64) {
|
||||
if ((maxlen < 2) || (radix < 2) || (radix > 64)) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
|
@ -19,7 +19,7 @@
|
||||
int mp_unsigned_bin_size (mp_int * a)
|
||||
{
|
||||
int size = mp_count_bits (a);
|
||||
return (size / 8 + ((size & 7) != 0 ? 1 : 0));
|
||||
return (size / 8) + (((size & 7) != 0) ? 1 : 0);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
@ -36,7 +36,7 @@ s_mp_add (mp_int * a, mp_int * b, mp_int * c)
|
||||
}
|
||||
|
||||
/* init result */
|
||||
if (c->alloc < max + 1) {
|
||||
if (c->alloc < (max + 1)) {
|
||||
if ((res = mp_grow (c, max + 1)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
@ -164,12 +164,12 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
|
||||
* in the exponent. Technically this opt is not required but it
|
||||
* does lower the # of trivial squaring/reductions used
|
||||
*/
|
||||
if (mode == 0 && y == 0) {
|
||||
if ((mode == 0) && (y == 0)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
/* if the bit is zero and mode == 1 then we square */
|
||||
if (mode == 1 && y == 0) {
|
||||
if ((mode == 1) && (y == 0)) {
|
||||
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
@ -211,7 +211,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
|
||||
}
|
||||
|
||||
/* if bits remain then square/multiply */
|
||||
if (mode == 2 && bitcpy > 0) {
|
||||
if ((mode == 2) && (bitcpy > 0)) {
|
||||
/* square then multiply if the bit is set */
|
||||
for (x = 0; x < bitcpy; x++) {
|
||||
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
||||
|
@ -29,8 +29,8 @@ int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
||||
|
||||
/* can we use the fast multiplier? */
|
||||
if (((digs) < MP_WARRAY) &&
|
||||
MIN (a->used, b->used) <
|
||||
(1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
|
||||
(MIN (a->used, b->used) <
|
||||
(1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) {
|
||||
return fast_s_mp_mul_digs (a, b, c, digs);
|
||||
}
|
||||
|
||||
@ -61,9 +61,9 @@ int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
||||
/* compute the columns of the output and propagate the carry */
|
||||
for (iy = 0; iy < pb; iy++) {
|
||||
/* compute the column as a mp_word */
|
||||
r = ((mp_word)*tmpt) +
|
||||
((mp_word)tmpx) * ((mp_word)*tmpy++) +
|
||||
((mp_word) u);
|
||||
r = (mp_word)*tmpt +
|
||||
((mp_word)tmpx * (mp_word)*tmpy++) +
|
||||
(mp_word)u;
|
||||
|
||||
/* the new column is the lower part of the result */
|
||||
*tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
|
||||
@ -72,7 +72,7 @@ int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
||||
u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
|
||||
}
|
||||
/* set carry if it is placed below digs */
|
||||
if (ix + iy < digs) {
|
||||
if ((ix + iy) < digs) {
|
||||
*tmpt = u;
|
||||
}
|
||||
}
|
||||
|
@ -30,7 +30,7 @@ s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
||||
/* can we use the fast multiplier? */
|
||||
#ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
|
||||
if (((a->used + b->used + 1) < MP_WARRAY)
|
||||
&& MIN (a->used, b->used) < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
|
||||
&& (MIN (a->used, b->used) < (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) {
|
||||
return fast_s_mp_mul_high_digs (a, b, c, digs);
|
||||
}
|
||||
#endif
|
||||
@ -57,9 +57,9 @@ s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
||||
|
||||
for (iy = digs - ix; iy < pb; iy++) {
|
||||
/* calculate the double precision result */
|
||||
r = ((mp_word)*tmpt) +
|
||||
((mp_word)tmpx) * ((mp_word)*tmpy++) +
|
||||
((mp_word) u);
|
||||
r = (mp_word)*tmpt +
|
||||
((mp_word)tmpx * (mp_word)*tmpy++) +
|
||||
(mp_word)u;
|
||||
|
||||
/* get the lower part */
|
||||
*tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
|
||||
|
@ -24,18 +24,18 @@ int s_mp_sqr (mp_int * a, mp_int * b)
|
||||
mp_digit u, tmpx, *tmpt;
|
||||
|
||||
pa = a->used;
|
||||
if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) {
|
||||
if ((res = mp_init_size (&t, (2 * pa) + 1)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
/* default used is maximum possible size */
|
||||
t.used = 2*pa + 1;
|
||||
t.used = (2 * pa) + 1;
|
||||
|
||||
for (ix = 0; ix < pa; ix++) {
|
||||
/* first calculate the digit at 2*ix */
|
||||
/* calculate double precision result */
|
||||
r = ((mp_word) t.dp[2*ix]) +
|
||||
((mp_word)a->dp[ix])*((mp_word)a->dp[ix]);
|
||||
r = (mp_word)t.dp[2*ix] +
|
||||
((mp_word)a->dp[ix] * (mp_word)a->dp[ix]);
|
||||
|
||||
/* store lower part in result */
|
||||
t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK));
|
||||
@ -47,7 +47,7 @@ int s_mp_sqr (mp_int * a, mp_int * b)
|
||||
tmpx = a->dp[ix];
|
||||
|
||||
/* alias for where to store the results */
|
||||
tmpt = t.dp + (2*ix + 1);
|
||||
tmpt = t.dp + ((2 * ix) + 1);
|
||||
|
||||
for (iy = ix + 1; iy < pa; iy++) {
|
||||
/* first calculate the product */
|
||||
|
@ -47,14 +47,14 @@ s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
|
||||
u = 0;
|
||||
for (i = 0; i < min; i++) {
|
||||
/* T[i] = A[i] - B[i] - U */
|
||||
*tmpc = *tmpa++ - *tmpb++ - u;
|
||||
*tmpc = (*tmpa++ - *tmpb++) - u;
|
||||
|
||||
/* U = carry bit of T[i]
|
||||
* Note this saves performing an AND operation since
|
||||
* if a carry does occur it will propagate all the way to the
|
||||
* MSB. As a result a single shift is enough to get the carry
|
||||
*/
|
||||
u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
|
||||
u = *tmpc >> ((mp_digit)((CHAR_BIT * sizeof(mp_digit)) - 1));
|
||||
|
||||
/* Clear carry from T[i] */
|
||||
*tmpc++ &= MP_MASK;
|
||||
@ -66,7 +66,7 @@ s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
|
||||
*tmpc = *tmpa++ - u;
|
||||
|
||||
/* U = carry bit of T[i] */
|
||||
u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
|
||||
u = *tmpc >> ((mp_digit)((CHAR_BIT * sizeof(mp_digit)) - 1));
|
||||
|
||||
/* Clear carry from T[i] */
|
||||
*tmpc++ &= MP_MASK;
|
||||
|
@ -208,8 +208,8 @@ int mp_init_size(mp_int *a, int size);
|
||||
|
||||
/* ---> Basic Manipulations <--- */
|
||||
#define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
|
||||
#define mp_iseven(a) ((((a)->used > 0) && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO)
|
||||
#define mp_isodd(a) ((((a)->used > 0) && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO)
|
||||
#define mp_iseven(a) ((((a)->used > 0) && (((a)->dp[0] & 1u) == 0u)) ? MP_YES : MP_NO)
|
||||
#define mp_isodd(a) ((((a)->used > 0) && (((a)->dp[0] & 1u) == 1u)) ? MP_YES : MP_NO)
|
||||
#define mp_isneg(a) (((a)->sign != MP_ZPOS) ? MP_YES : MP_NO)
|
||||
|
||||
/* set to zero */
|
||||
|
@ -66,9 +66,9 @@ int mp_karatsuba_sqr(mp_int *a, mp_int *b);
|
||||
int mp_toom_sqr(mp_int *a, mp_int *b);
|
||||
int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c);
|
||||
int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c);
|
||||
int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
|
||||
int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int mode);
|
||||
int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int mode);
|
||||
int fast_mp_montgomery_reduce(mp_int *x, mp_int *n, mp_digit rho);
|
||||
int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int redmode);
|
||||
int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode);
|
||||
void bn_reverse(unsigned char *s, int len);
|
||||
|
||||
extern const char *mp_s_rmap;
|
||||
@ -88,14 +88,14 @@ int func_name (mp_int * a, type b) \
|
||||
mp_zero (a); \
|
||||
\
|
||||
/* set four bits at a time */ \
|
||||
for (x = 0; x < (sizeof(type) * 2); x++) { \
|
||||
for (x = 0; x < (sizeof(type) * 2u); x++) { \
|
||||
/* shift the number up four bits */ \
|
||||
if ((res = mp_mul_2d (a, 4, a)) != MP_OKAY) { \
|
||||
return res; \
|
||||
} \
|
||||
\
|
||||
/* OR in the top four bits of the source */ \
|
||||
a->dp[0] |= (b >> ((sizeof(type) * 8) - 4)) & 15; \
|
||||
a->dp[0] |= (b >> ((sizeof(type) * 8u) - 4u)) & 15u; \
|
||||
\
|
||||
/* shift the source up to the next four bits */ \
|
||||
b <<= 4; \
|
||||
|
Loading…
Reference in New Issue
Block a user